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ABSTRACT: 

 

Road markings play an important role in vehicular navigation. It helps provide sufficient information for safe driving and smooth 

traffic flow. As such, with the rise of digital maps such as High-Definition (HD) maps, which are used by autonomous vehicles or self-

driving cars, they must be well represented in their digital counterparts. However, survey-grade mobile mapping systems are expensive 

and thus open the idea of using lower-cost/level LIDAR sensors for mapping. Unfortunately, using such sensors provide sparser point 

clouds. This work aims to propose a method that successfully classifies road markings on sparse mobile LIDAR point cloud-derived 

images using UNET trained with focal loss. Results have shown successful road marking classification with a 94.68% increase in recall 

and a maximum 49.39% increase in F1-score. Adjusting precision by removing the insignificant class (“black”) further increases the 

resulting F1-score to 82.74%. Extending the method produces a classified point cloud by combining the classified image with a depth 

image. This research also aims to help aid boost the research on lower-cost/level sensors for mobile mapping purposes.  

 

1. INTRODUCTION 

1.1 Background 

Road markings are an essential component in navigating the 

roadway. They provide the necessary information to guide a 

vehicle on how it should act to ensure safety and a good flow of 

traffic. For example, road arrows can provide driving directions 

and pedestrian cross marks can indicate possible non-vehicular 

interactions. As such, it must be properly and accurately 

delineated in virtual representations of our society, like High-

Definition (HD) Maps. HD Maps are centimeter-level 3D digital 

maps that are used by autonomous vehicles (or self-driving cars) 

and also act as a source of urban inventory (Liu et al, 2020). 

 

There are already many existing types of research on how to 

automatically extract road markings from raw/processed mobile 

sensor data. One of which is using deep learning in classifying 

road markings from LIDAR point cloud-derived images. When 

projected as top-down view images, these dense point clouds 

provide clear and detailed representations of the road and 

everything on it. As such, deep learning techniques on images 

such as using CNN, the U-Net model to be specific, produce 

excellent classification results. (Lagahit and Tseng, 2021) 

(Lagahit and Tseng, 2020) (Wen et al, 2019)  

 

However, in most cases, the LIDAR sensor used for mobile 

mapping is of survey-grade quality. This means that the scanned 

point clouds are highly dense, reaching up to 1 point per 

centimeter cube. But, these high-level sensors can be quite 

expensive and thus make HD map map-making and updating 

extremely costly. This problem opens up the idea of exploring 

the use of lower-cost LIDAR sensors in HD map mapping such 

as those onboard autonomous vehicles. 

 

Unfortunately, these low-cost sensors produce way sparser point 

clouds, which causes a poor representation of road markings and 

other features on the road. This can become a problem that affects 

the resulting classification accuracy of deep learning methods, 

such as that of extraction from point-cloud derived images. 

 

1.2 Objective 

The research aims to improve road marking classification of deep 

learning methods on sparse mobile LIDAR point cloud-derived 

images. This is done by proposing the use of a weighted focal 

loss as the loss function in training a CNN model, in this case of 

U-Net, as compared to that of the cross-entropy loss which is the 

most commonly used loss function. As an extension, a classified 

point cloud will be generated using the classified point cloud 

derived-image together with a generated depth map. Finally, this 

work also aims to help advance research in using low-cost/level 

sensors for mobile mapping and HD map mapping purposes. 

 

2. METHODOLOGY 

 

Figure 1. Proposed Workflow 
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The workflow for road marking classification on mobile LIDAR 

sparse point cloud-derived images as well as the extended 

generation of a classified point cloud is shown in Figure 1. Each 

part will be further explained in the succeeding sub-chapters. 

 

2.1 Data Gathering 

The point cloud scanning was done using a small autonomous 

vehicle with a Velodyne Puck (VLP-16) as the LIDAR sensor. 

The sensor is located in front of the vehicle tilted at 45-degrees 

downward from the horizontal. It was driven inside Tokyo 

Institute of Technology’s Ōokayama campus which has 

roadways containing an assortment of road markings and 

roadway features (traffic signs, etc.). 

 

2.2 Point Cloud to Image 

Each LIDAR scan was geometrically filtered beforehand. This 

meant that only a fixed portion of the scanning, which is an area 

in front of the vehicle, is retained. This was done to reduce the 

number of unnecessary points (e.g. buildings, vegetation, etc.) in 

road marking classification, which only focuses on the roadway. 

 

 

Figure 2. Point Cloud Projection to Top-Down Image. 

 

Then, the point cloud was projected to a top-down or birds-eye-

view image. This meant that Z or elevation values are disregarded 

and the point cloud is viewed flat from above, much like an aerial 

orthophoto. The corresponding ground resolution of the images 

is 1 cm x 1 cm, resulting in an image size of 2048 pixels x 512 

pixels. Intensity values of the point cloud were used for the pixel 

values. When multiple points are contained in one pixel, the 

average intensity value of the points were used. 

 

2.3 Annotation and Augmentation 

(a) 

 

(b) 

 

(c) 

 

Figure 3. Image Annotation Process: (a) Intensity Filtering,   

(b) Manual Cleaning, and (c) Labelling. 

 

An annotated dataset was generated for this work. The images 

were initially filtered by a certain intensity range to isolate road 

markings as much as possible. Then, the images were manually 

cleaned to remove non-road marking pixels that were not filtered 

out in the preceding step. Finally, the identified road markings 

were used to label the road markings in the original image. 

 

 
 
 

 
 
 

 
 
 

 

Figure 4. Image Augmentation by Flipping 

 

The annotated dataset will be split, 90% of which will be fed to 

the neural network model and 10% will be used for testing and 

accuracy assessment. To densify this sub-dataset for training, 

augmentation by flipping has been done. The image was copied 

and flipped in horizontal, vertical, and both horizontal and 

vertical. In total, the original number of images was increased by 

three times. 

 

2.4 U-Net and Focal Loss 

U-Net is a convolutional neural network (CNN) originally 

developed for biomedical image segmentation (Ronneberger, 

2015). It is a popular CNN model that is now widely used in 

varying fields of research. It has also been used to extract and 

classify road markings from point cloud-derived images. 

(Lagahit and Tseng, 2021) (Lagahit and Tseng, 2020) (Wen et al, 

2019) 

 

Focal Loss is an extended or improved version of the Cross-

Entropy Loss. It aims to solve the imbalance between classes by 

providing weights. (Lin et al, 2017) In this way, classes that can 

be easily misclassified, like the background which holds an 

assortment of features, can be given less focus when training.  
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  Class 

Model 
Loss 

Function 
Black Ground 

Road 

Marking 

A 
Cross 

Entropy 
None None None 

B 

Focal 

10% 10% 80% 

C 1% 1% 98% 

D 0.1% 0.1% 99.8% 

E 0.01% 0.01% 99.98% 

F 0.001% 0.001% 99.998% 

Table 1. Model Class Weights 

 

Table 1 shows six U-Net models and their corresponding loss 

function and class weights used in training. There are 3 classes 

for the images: (1) “Black” which are pixels that have no value, 

(2) “Road Marking” which are pixels that are road marking 

features, and (3) “Ground” which are pixels that are non-road 

marking features. Since the main target for this work are road 

markings, it has been assigned the bulk of the weight and the 

remaining is equally distributed to the other classes. We can see 

that in this work the difference between the range of weights per 

model is by the power of 10. 

 

2.5 Model Training 

The python implemented UNET model was trained in a computer 

with an 11th Gen Intel i7 processor, 32 GB of RAM, and an 

NVIDIA GeForce RTX 3060 Laptop GPU. Due to these 

conditions, batch size was limited to 16, and images for training 

and validation were downscaled by a quarter of the original size. 

90% of the augmented dataset was used for training and 10% for 

validation. A maximum of 100 epochs were used for all trials. 

 

2.6 Assessment 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 , ...........(1) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 , ......(2) 

 

 𝐹1𝑠𝑐𝑜𝑟𝑒 =  
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 ...........................(3) 

 

The remaining 10% of the original dataset was used to test the 

trained UNET model. The equations above were used to assess 

the resulting classification. Recall is the proportion of actual 

positive cases that are correctly predicted as positive, precision is 

the proportion of predicted positive cases that are correctly 

predicted as positive, and the F1-Score or Dice Coefficient is the 

harmonic mean between precision and recall (Powers, 2011). 

 

3. RESULTS AND DISCUSSION 

3.1 Resulting Classified Images 

Because the original images are too large and contain very sparse 

features, making it difficult to interpret, the resulting classified 

images have been dilated for visualization purposes (dilation has 

not been used in the method itself), as shown in Figure 5. The 

green, white, black pixels correspond to road marking, ground, 

and black (none) classification, respectively. 

 

 

Figure 5. (Top) Original and (Bottom) Dilated Images 

 

(A) 

 

(B) 

 

(C) 

 

(D) 

 

(E) 

 

(F) 

 

Figure 6. Sample Inference Results  

 

Figure 6 shows sample resulting classified images based on the 

trained U-Net models. In hindsight, we can see that as the class 

weight for road marking increases so does it become clearer and 

better represented on the image. However, considering that the 

same weight has been given to the ground and black classes, it is 

interesting to see that as the weights for these classes decrease 

the number of correctly classified ground pixels decreases as 

well, but in contrast, the number of black pixels increases. The 

ratio between the number of pixels may be a factor when given 

weights to multiple classes are the same. In addition, based on 

the reference annotated image shown in Figure 5, it has shown 

that the detected features (non-black) are “focused” or 

concentrated around the target class (road markings), and 

features far from it are disregarded.  
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3.2 Classification Results 

 

 

Figure 7. Class Legends 

 

Figure 7 shows the legend, the colors representing the feature 

classes, that will be used in the graphical representations of the 

assessment criteria in the succeeding figures. 

 

 

Figure 8. Recall 

 

 Black Ground Rd. Marking 

A 99.86% 30.96% 1.86% 

B 99.81% 31.42% 16.58% 

C 99.94% 32.50% 40.55% 

D 99.96% 30.20% 61.32% 

E 99.85% 27.42% 94.01% 

F 99.85% 11.59% 96.54% 

Table 2. Recall Values 
 

For recall, which considers the reference or actual image, there is 

a continuous improvement for the target road marking class, as 

the given weights increase, for the U-Net models trained with 

focal loss. It was able to attain a maximum increase of 94.68% as 

compared to the U-Net model trained with cross-entropy loss. 

Unfortunately, it is not the case for the ground class which 

continuously deteriorated and decreased by a maximum of 

19.37%. The results for the black class relatively remain 

unchanged with a maximum increase of 0.1% and a maximum 

decrease of 0.05%. 

 

 

Figure 9. Precision 

 Black Ground Rd. Marking 

A 99.33% 66.12% 71.56% 

B 99.33% 61.22% 54.37% 

C 99.35% 84.43% 64.20% 

D 99.34% 94.70% 46.70% 

E 99.34% 97.21% 16.32% 

F 99.21% 98.69% 16.79% 

Table 3. Precision Values 
 

For precision, which considers the resulting predicted image, it 

has shown an inverse of the results of recall for the road marking 

and ground classes. The target road marking class deteriorated by 

a maximum of 55.24% and the ground class improved by a 

maximum of 32.57%. To investigate this drastic decrease in 

precision of the target road marking class we can take a look at 

its misclassifications. 

 

 

Figure 10. Road Marking Misclassifications (Precision) 

 

 Black Ground 

A 1.42% 27.02% 

B 4.28% 41.35% 

C 1.74% 34.06% 

D 50.78% 2.52% 

E 79.05% 4.63% 

F 78.52% 4.69% 

Table 4. Road Marking Misclassification Values 

(Precision) 
 

From Figure 10, it can be observed that, from the U-Net model 

trained with a focal loss and a weight of 99.8%, as the weights 

increase so do the “black” misclassified pixels. In addition, it can 

also be seen that “black” class misclassifications take up more 

than half of the predicted pixels. This causes the drastic decrease 

in precision values shown in the previous figure. Given that the 

“black” class has no corresponding point cloud value and that the 

end product is a point cloud it can be removed in computing 

precision values.   

 

 

Figure 11. Road Marking Misclassifications (Precision) 
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 Black Rd.Marking 

A 1.89% 31.99% 

B 0.54% 38.24% 

C 0.57% 15.00% 

D 0.55% 4.75% 

E 0.08% 2.71% 

F 0.29% 1.02% 

Table 5. Road Marking Misclassification Values 

(Precision) 
 

Moreso, we can also observe the misclassifications on the ground 

class. It can be seen from Figure 11 that most of the 

misclassifications are from the target road marking class. 

However, we can see a continuous decrease in the 

misclassifications as the weights used in the focal loss for the 

target class increase. The misclassified road markings decreased 

to a minimum value of 1.02%. 

 

 

Figure 12. Precision and Adjusted Precision 

 

 Ground 
Adjusted 

Ground 
Rd.Marking 

Adjusted 

Rd.Marking 

A 66.12% 67.39% 71.56% 98.05% 

B 61.22% 61.55% 54.37% 92.70% 

C 84.43% 84.91% 64.20% 97.36% 

D 94.70% 95.22% 46.70% 94.88% 

E 97.21% 97.29% 16.32% 77.90% 

F 98.69% 98.98% 16.79% 78.17% 

Table 6. Precision and Adjusted Precision Values 
 

As was mentioned previously, since the “black” class did not 

correspond to a point cloud value it can be removed in the 

computation of precision values. In Figure 12, the adjusted 

precision values have been shown alongside the original 

precision values. Since the “black” misclassifications are 

minimal in the ground class there was not much difference in the 

adjusted precision values. However, it has shown tremendous 

improvement in the precision values of the target road marking 

class. It was able to achieve an increase of a minimum and 

maximum of 26.49% and 61.58%, respectively. Although the 

precision values still decrease as the given weights to the focal 

loss increase, the range of its deterioration minimizes.   

 

Finally, the F1-Score, which represents the harmonic mean of 

precision and recall, shows that using focal loss increases the 

overall results of road marking classification, as shown in Figure 

13. Initially, the road marking class gained a minimum and 

maximum improvement of 22% and 49%, respectively. But,  

using the adjusted precision, caused a continuous increase in F1-

Score snd was able to achieve a maximum increase of 82.74%. 

For the ground class, initially and after using the adjusted 

precision, it has improved by a maximum of around 5% but it has 

also shown a maximum deterioration of around 21%.  

 

 

Figure 13. F1-Score 

 

 Black Ground 
Adjusted 

Ground 

Rd. 

Marking 
Adjusted 

Rd.Marking 

A 99.59% 42.18% 42.43% 3.63% 3.65% 

B 99.57% 41.53% 41.60% 25.41% 28.13% 

C 99.64% 46.94% 47.01% 49.71% 57.25% 

D 99.65% 45.79% 45.86% 53.02% 74.49% 

E 99.59% 42.78% 42.78% 27.81% 85.20% 

F 99.53% 20.75% 20.75% 28.60% 86.39% 

Table 7. F1-Score 
 

In direct comparison with previous works that used U-Net in 

dense point-cloud derived images; (Wen et al, 2019) achieved 

F1-Scores of 74.42% and 56.42% on the TUM-MLS and their 

highway dataset, respectively, and (Lagahit and Tseng, 2021) 

achieved an F1-Score of 86.66% on their data set. This shows 

that the proposed improvement in the methodology was able to 

attain F1-Scores from sparse point cloud-derived imagery that 

was comparable or even better than those that made use of dense 

point cloud-derived imagery under the same U-Net model.  

 

3.3 Post-Processing: Project to 3D. 

 

Figure 14. Point Cloud Generation 
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As an extension for post-processing. The road marking pixels in 

the resulting classified image can be coupled with a generated 

depth map, created by using Z or elevation values instead of 

intensity when projecting the point cloud to an image, to generate 

a classified point cloud. This is done by projecting the 

classifications unto the depth map and using the elevation values 

and the position of the pixel in the image as Z, X, and Y values, 

respectively. If positioning sensors (GNSS, IMU, etc.) and sensor 

calibration parameters are available, direct georeferencing should 

be possible.    

 

Furthermore, using this method of point cloud generation 

supports the method of adjusting the precision values by 

removing the “black” misclassification in the computation, as 

was done in the preceding steps of the process. If we project the 

black classifications onto the depth map, which has the 

information of which pixels have corresponding values of the 

point cloud, it will simply be discarded and thus irrelevant when 

computing precision values. 

 

4. CONCLUSION 

Overall, it can be seen that the proposed method of using focal 

loss with assigned weights in training U-Net to improve the 

classification accuracy for road markings from sparse mobile 

LIDAR point cloud-derived images has been successful. A huge 

improvement in recall from 2.86% to 96.54%, and in F1-score 

from 3.65% to 86.39%. Its F1-score results on sparse point cloud-

derived imagery have also proved to be comparable and even 

better than recent works on using U-Net on dense point cloud-

derived imagery. In addition, given the extension of classified 

point cloud generation and with more enhancements, this method 

can be used to realize automatic classification of road markings 

for mobile mapping units with low-level LIDAR sensors. 
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APPENDIX 

Additional sample resulting classified images based on the 

trained models have been included here. 

 

(A) 

 

(B) 

 

(C) 

 

(D) 

 

(E) 

 

(F) 

 

Figure 15. Sample Inference Results 2 
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