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ABSTRACT: 

The rising number of flooding events combined with increased urbanization is contributing to significant economic losses due to 

damages to structures and infrastructures. From a risk reduction and resilience perspective, it is not only essential to forecast flood 

risk and potential impacts, but also to disseminate the information to stakeholders on the ground for rapid implementation of 

mitigation and response measures. This paper provides (i) an introduction to DisasterAWARE®, a global alerting system, that is used 

to disseminate flood risk information to stakeholders across the globe, and (ii) a discussion of the models implemented using earth 

observation data (Synthetic Aperture Radar and optical imagery) for near real-time assessment of flood severity and potential flood 

impacts to infrastructures. While the models are still in their nascent stage, a case study implementation of the models for the 2020 

flooding event in Africa is presented to showcase the model integration with DisasterAWARE®.  

* Corresponding author 

1. INTRODUCTION

Despite the widespread focus on disaster resilience in recent 

years, resilience is a widely used concept with a long history 

(Holling, 1973; Engle et al., 1996). Over the years, significant 

research has been conducted to define, describe and assess 

resilience. Whatever the definition, resilience is a dynamic 

condition that changes across space and time and focuses on 

increasing the ability and capacity of a system (be a community 

or an infrastructure) to return to a new normal after disasters by 

absorbing, responding, adapting, and reorganizing into a fully 

functioning system with minimal loss and within a short period 

(McCubbin, 2001; Bruneau et al., 2003; Klein et al., 2003; 

Paton & Johnston, 2006; Cutter et al., 2008). Resilience is the 

product of socio-economic, cultural, and political variables, but 

is also influenced by science and technological innovations 

(Tinch 1998; Mileti 1999; Rose 2004). Being a multi-

dimensional concept, its operationalization requires achieving 

four properties robustness, resourcefulness, rapidity, and 

redundancy (Bruneau et al., 2003; Renschler et al., 2010). 

Risk assessment and risk communication are two pre-cursors to 

increasing resilience as they ensure dissemination of situational 

awareness information to stakeholders to aid with preparedness, 

mitigation, and response activities (UN/ISDR, 2005; Donovan 

et al., 2019). Even the Sendai Framework has identified the 

need for successful risk communication along with the use of 

geospatial technologies and remotely sensed data to aid with 

resilience and risk reduction activities (UN 2015). The goal of 

risk communication is to provide adequate information about 

an impending hazard to aid communities in taking preparatory 

actions to reduce adverse impacts of the event (Reynolds & 

Seeger, 2005; Gladwin et al., 2007; Krimsky, 2007). Though 

conventional alert and warning devices (e.g. outdoor sirens, 

radio/weather radio, digital and residential phones) are still 

used, the growth in technology has enabled message 

dissemination via cell towers, commercial mobile service 

providers, and social media and social networking sites (e.g. 

Twitter, Face book, Flickr) (Palen et al., 2009; FEMA, 2012). 

For instance, the USGS PAGER (Prompt Assessment of Global 

Earthquakes for Response) is a communication platform that 

delivers rapid assessment and impact analysis for earthquakes 

worldwide (Earle et al., 2009). 

While a global earthquake alerting system is in place, no such 

system currently exists for flood events. Flooding is one of the 

most frequent hydro-meteorological hazards that causes 

significant losses i.e. about $10 billion (USD) in financial 

losses annually (CRED, 2020). In 2004, experts from the 

United Nations University estimated that flood events impact 

over half a billion people every year worldwide and might 

impact two billion people by 2050 (University, 2004). To that 

end, although, significant efforts such as improving flood risk 

mapping (Dutta, Herath, & Musiake, 2006), flood risk and 

impact assessments (Winsemius, Van Beek, Jongman, Ward, & 

Bouwman, 2013) flood forecasting (Jain et al., 2018; Olesen, 
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Löwe, & Arnbjerg-Nielsen, 2017) are underway, we need a 

global alerting system capable of forecasting flood events and 

disseminating flood impacts in near real-time. This paper 

discusses the DisasterAWARE® platform, which is a global 

alerting system. In the next section, a discussion of the platform 

along with the integrated model components implemented for 

flood forecasting and impact assessment are presented.  

2. METHODOLOGY

2.1 Disaster Aware 

DisasterAWARE® is a cloud based software available as 

service technology and  maintained by the Pacific Disaster 

Centre (PDC). DisasterAWARE® uses both Open Source and 

proprietary software to provide multi-hazard warning and 

situational awareness information for decision support through 

mobile apps and web-based platforms. Both local public and 

government entities can use licensed version of these platforms. 

End users can easily receive the alert from public site or the 

freely available Disaster Alert app for an iphone and android, 

and so far, 2M apps have been downloaded.  

End users can select the severity level (Warning, Watch, 

Advisory and Information) for each hazard within the global, 

country or regional reach. These alerts are based on a 

combination of official sources, PDC detection automated 

algorithms and manually entered hazards alerts and, associated 

situational awareness. DisasterAware uses SmartAlert to 

determine the alerting area for each hazard based on magnitude, 

location and type. For example, a tsunami may be local, 

regional or pacific wide based on location, magnitude and depth 

criteria used by official sources. Similarly, for earthquake, it 

applies attenuation functions to determine  the impacted areas 

based on local geology, magnitude and depth to enhance 

alerting. Subsequently earthquake severity levels are adjusted 

once the USGS PAGER product is available.   

The Global Disaster Alerting Coordination System (GDACS) is 

a joint initiative between the United Nations Office for the 

Coordination of Humanitarian Affairs and the European 

Commission. The system is similar to DisasterAWARE® as it 

disseminates disaster related information for international relief 

efforts. However, DisasterAWARE® has more hazards and 

more platform types available that increase user flexibility. 

Furthermore, DisasterAWARE® alerting is based on a 

combination of official sources, detection algorithms and 

manually entered hazards and alerts.  The alert data is also 

combined with risk and exposure layers to generate situational 

awareness products for response. Essentially, DisasterAWARE 

provides uique and efficient tools for multi-hazard warning such 

that user is presented with a commom operating picture 

supporting their entire operation. However, the the current 

system does not have the automated alerting capability for flood 

events. The models discussed herein are now being integrated 

with DisasterAWARE® to generate flood alert at a global scale.  

2.2 Flood Modelling Components 

An integrated modeling approach is implemented to forecast 

and assess risk and flood impacts in near real-time across the 

globe. The three components of the model are (i) Model of 

Models (MoM) to integrate outputs from hydrologic models 

and imagery for flood forecasting and risk assessment, (ii) flood 

extent and depth modeling using synthetic aperture radar (SAR) 

imagery at a granular level for high severity floods identified in 

step 1 and for integration with MoM, and (iii) infrastructure 

impact assessment using high-resolution optical imagery and 

geospatial data sets. The following sections provide a brief 

overview of each modeling component followed by the results 

of each model for a 2020 flood event. 

2.2.1 Model of Models (MoM) to integrate hydrologic 

models for flood forecasting and risk assessment: Although 

several hydrologic models are available for flood forecasting 

(Jain et al. 2018), in this study, GloFAS (Global Flood 

Awareness System) and GFMS (Global Flood Monitoring 

System) models were used. These two flood models are globally 

operational with a wide range of users (Emerton et al., 2016). 

GFMS is functional for a quasi-global latitude range (50°N - 

50°S) that generates outputs at high spatial (about 12 km) and 

temporal (3 hours) resolutions, and is developed by the National 

Aeronautics and Space Administration (NASA) and the 

University of Maryland (Wu et al., 2014).  From several GFMS 

products, flood depth above the threshold is used in our model, 

which is obtained from the University of 

Maryland (http://flood.umd.edu/) in binary raster format.  

The GloFAS system, independent of administrative and political 

boundaries, is a global hydrological forecast and monitoring 

system jointly developed by the European Commission and the 

European Centre for Medium-Range Weather Forecasts 

(ECMWF) (Alfieri et al., 2013). The system couples state-of-

the-art weather forecasts with a hydrologic model to provide 

downstream countries with information on upstream river 

conditions. From the GloFAS products, the ensemble 

predictions of return period events (2, 5, and 20 years), alert 

level (Medium, High, Severe), and peak forecast (in days) 

within world basins are used in our model.   

Assessment and analysis of risk associated with flood events for 

at-risk communities must reflect the dynamic nature of the risk 

because of the changing nature of a hazard, exposure, and 

vulnerability (Viner et al., 2020), and such information is 

crucial for reducing flood impacts (Dutta et al., 2006). For this 

purpose, the GFMS and GloFAS model outputs were integrated 

at watershed boundaries developed by the World Resources 

Institute (WRI). The 16,385 static watershed boundaries from 

WRI provide Riverine Flood Risk (RFR) score and Coastal 

Flood Risk (CFR) score calculated annually. The RFR score for 

watershed boundaries is computed based on inundation caused 

by a river overflow, exposure (population in a flood zone), and 

vulnerability (flooded population and existing level of flood 

protection) (Hofste et al., 2019). Figure 1 depicts the steps 

implemented to integrate the flood models and watershed risk to 

get the MoM outputs. 

Figure 1.  Flowchart for flood model integration (MoM) 

For the MoM approach, using GFMS product (flood depth 

above the threshold), the following parameters were derived: 

watershed area and percentage of the area impacted by a flood, 

depth above baseline (mean and max), and duration of a flood 

(cumulative hours) for the watershed every 24 hours. Within 

each watershed, GloFAS products were used to determine the 

ensemble predictions of streamflow above the threshold for 2, 5, 
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and 20-year return period flood events, alert level based on 

severity, and the number of days until the peak forecast arrival 

every 3-hours. Finally, a weighting scheme was implemented to 

determine the hazard score using each model at the same 

watershed (Table 1, refer to Kar et al. 2020 for further 

discussion about weighting scheme). Flood severity at each 

watershed was computed using a Cumulative Distribution 

Function (CDF) such that the total dynamic hazard score from 

both models are fitted with a logarithmic value of scaled RFR 

score as mean and unit standard deviation. Flood severity score 

is subsequently used to geo-target SAR imagery processing for 

granular flood extent and depth estimation as well as optical 

imagery processing for impact assessment. Flood severity is 

also used for alerting by DisasterAWARE® based on the 

following classification – “Warning” (severity >=75%), 

“Watch” (50 ≤ Severity < 75), “Advisory” (25 ≤ Severity < 50) 

and “Information” (0 ≤ Severity < 25). 

Product Description Initial Weighting 

The total area of watershed 

impacted by the flood 

1 pt for every 1000 sqkm, 

Max =10 

Percentage of watershed area 

impacted from flood 

10 pt for 100%  Max = 10 

(eg. 66% = 6.6) 

The mean depth of flood above 

the threshold in a watershed in 

mm 

1 pt for every 10 mm, Max 

= 10 (eg. 56 mm = 5.6) 

Max depth of flood above 

threshold in a watershed in mm 

1 pt for every 100 mm, Max 

=10 (eg. 890 mm = 8.9) 

Number of 3-hr intervals a 

specific area has been flooded 

(at least 100 square km overlap 

in each interval) 

Continuous days of at least 

100 sqkm overlap, 1 per 

day, Max= 10 (eg. 66 hrs = 

2.75) 

EPS greater than threshold 

exceedance for 2, 5 and 20 year 

return period flood event (%) 

10 pt for 100%  Max = 10 

(eg. 66% = 6.6) 

Alert Level 1 2 and 3 with 3 

greatest value 

1, 2 and 3  =  3,  7 and 10 

respectively 

Number of days until the peak 

forecast arrives at an 

observation point 

Weight in days where 1 

=10, 2=9, … 10 or greater = 

1 

Table.1 Weighting scheme for hazard score 

2.2.2 Flood extent and depth modeling using SAR 

imagery at a granular level: SAR offers the unique advantage 

of all-weather data collection at Earth’s surface, which is 

advantageous for flood mapping due to the likelihood of heavy 

cloud cover during heavy rainfall events. In this study, imagery 

from the European Space Agency’s (ESA) Sentinel-1A/B 

satellite (C-band SAR) that has a 6-12 day repeat period over 

large areas was used, which enabled using high temporal and 

spatial resolution imagery over large regions ideal for flood 

mapping. This data is publicly available from NASA’s Alaska 

Satellite Facility Distributed Active Archive Center (ASF 

DAAC) in both single look complex (SLC) and high-resolution 

ground range detected (GRD) data (Copernicus, 2015).  

A threshold method was employed to map inundated regions 

based on the low backscatter coefficient of the SAR data. Using 

the method of Cao et al. (2019), SAR data with the appropriate 

power transform will follow a bimodal Gaussian distribution. 

We exploit this characteristic to automatically determine a 

threshold for the image to classify water and non-water regions. 

The image is split into tiles due to different sections of the SAR 

scene behaving differently because of a wide swath (Cao et al. 

2019). Each tile is analyzed separately to determine its unique 

threshold. Each tile is further split into an array of s x s pixels to 

determine the sets of pixels within this tile that have a bimodal 

Gaussian distribution using the maximum normalized between-

class variance (BCV) (Demirkaya et al. 2004, Cao et al. 2019). 

Based on simulations, it was determined that a maximum value 

of BCV greater than 0.65 can be assumed to be bimodal. The 

value of s is varied to maximize the number of bimodal sets of 

pixels within each tile. For each set of pixels, an automatic 

threshold is selected using either the mode of the distribution or 

the local minimum separating the peaks in the bimodal 

distribution. The mean of the thresholds for each set of s x s 

pixels is used as the threshold for the entire tile. This process is 

repeated for each tile in the image to generate a binary output 

displaying the classified water regions. Because this method 

also classifies water which is more permanent rather than a 

result of flooding events, a set of images is used to remove the 

common classifications among all images, assuming sufficient 

temporal coverage. This method can be applied to both VV 

(vertical-vertical) and VH (vertical-horizontal) polarizations to 

improve accuracy as well as to for coherence images to further 

refine the method. This method of tiling also has the potential to 

be used in machine learning algorithms to detect changes 

among tiles for flood detection. 

2.2.3 Infrastructure impact assessment using high-

resolution optical imagery and geospatial datasets: Using the 

flood extent output from both MoM and SAR imagery, we 

implemented a deep learning approach using optical imagery to 

extract impacted building footprints. Although, few building 

footprints datasets are available such as open-source Microsoft 

Building footprints, which is limited to Canada, USA, and 

Uganda/Tanzania (Bing Maps Team, 2018) and, Spacenet 

(126k building footprints from Atlanta) (Etten, Lindenbaum, & 

Bacastow, 2019), data availability for a global approach is still 

lacking. So, a model was developed to obtain the building 

footprints from readily available satellite images. The first 

step within this component is a Mask R-CNN model which 

efficiently detects objects in an image while simultaneously 

generating a high-quality segmentation mask for each instance 

(He, Gkioxari, Dollár, & Girshick, 2017). This Mask R-CNN 

model is then trained over the xBD dataset for building 

detection and boundary delineation. This xBD dataset uses 

imagery from Maxar's Open Data Program, which delivers 

native 30cm resolution satellite imagery with Atmospheric 

Compensation. Also, this dataset is the largest building damage 

assessment dataset so far with 850,000 building annotations 

consisting damage scale category (No Damage, Minor Damage, 

Major Damage, Destroyed) for different disaster types (wildfire, 

landslides, dam collapses, volcanic eruptions, 

earthquakes/tsunamis, wind, flooding) across over 45,000 km2 

of imagery (Gupta et al., 2019).  
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2.3 Case Study Results 

2.3.1 MoM Output: African flooding of June 2020 was used 

as a case study to test out the model components and their 

integration in DisasterAWARE® for alerting purpose. Figure 2 

shows the flood severity distribution at a sub-watershed level 

for African countries that were flooded on June 6th, 2020.  

Because alert messages cannot be disseminated to every country 

within a watershed, and watershed boundaries maintained by 

WRI are independent of the political boundaries, the countries 

with high flood severity and present within a watershed were 

identified for alerting. Figure 3 shows the countries with high 

flood severity, which were used for alert message generation as 

well as for flood extent and depth estimation using SAR 

imagery and impact assessment using optical imagery. The 

location of the alert points in Figure 3 are the centroids of the 

countries experiencing flooding shown in Figure 2.  

 
Figure 2. Watershed with flood alert within African Countries 

on 6th June 2020 

 

 
Figure 3. African countries with flood alert on 6th June 2020 

 

2.3.2 SAR output:Figures 4 and 5 show the binary classified 

image north of Lukolela, the town of the Democratic Republic 

of the Congo using SAR imagery. The common classifications 

that allow differentiating between flooded areas vs permanent 

water bodies are not used in these images. However, a series of 

outputs comprising water bodies and areas with standing water 

were created throughout the flood event to determine the flood 

extent using the change detection approach.   

 

 
Figure 4: 2020220 VH binary classified image north of 

Lukolela. Common classifications are not removed in this 

image. 

 

 
Figure 5: 20200303 VH binary classified image north of 

Lukolela. Common classifications are not removed in this 

image. 

 

2.3.3 Infrastructure Impact assessment output: Similar to 

the xBD data, google earth imagery is a satellite image with 

atmospheric compensation and thus we used publicly available 

Google Earth imagery to extract building footprints for Jowhar, 

Somalia as the case study. This area was impacted by a recent 

flood in April 2020. Since google earth does not provide ground 

truth information, we visually inspected the test results and 

found that the model had missed some small buildings. The 

reasoning for missing building footprints could be that the 

Google Earth reference has a low resolution, and it could be 

improed by using original high-resolution data.  

 

The test performance results of the model using the xBD 

datasets are summarized in Table 2. Here we calculated the 

average precision (AP), the area under the Precision-Recall 

curve, the mean average precision (mAP) (the average value of 

AP), recall showing the proportion of the number of correctly 

allocated positive samples to the total number of positive 

samples, F1-score, the harmonic mean of precision and recall, 

and mean intersection-over-union (mIOU) which represents the 

overlap rate between the generated candidate bound and the 

ground truth bound. Figure 6 shows the Google Earth imagery 

and Figure 7 shows the detected building footprints.  

 
AP 

(%) 

MAP 

(%) 
Recall(%) 

F1-

score 

mIoU 

(%) 

XBD 96.44 87.51 75.02 0.8439 85.52 

Table 2. Test results of the model on xBD dataset 
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Figure 6. Jowhar original image on April 2020 

Figure 7. Building footprint detection result in Jowhar 

3. CONCLUSIONS

The current implementation of the MoM approach generates 

flood extent output at the watershed level every 6 hours before 

and during a flood event. The MoM approach integratng 

outputs from the GloFAS and GFMS models has been 

automated using Python and Gdal. An equal weighting 

approach is used to combine the flood model outputs, which 

can be extended to include other flood model outputs that 

forecast riverine and coastal flooding, small and large flood 

events as well as urban flood events.  

The MoM output is currently used to identify SAR imagery for 

high flood severity locations so that flood extent could be 

generated at a granular level (15m x 15m resolution) as was the 

case for African Flood (Figures 4 and 5). The MoM output is 

also used to obtain optical imagery and geospatial datasets to 

assess impacts.  

The current MoM implementation is part of the 

DisasterAWARE® system. This integration allows the 

generation of alerts about potential flood events, their severity 

and location, and potential impacts on infrastructures to help 

stakeholders on the ground in partner countries and 

communities. While such information is useful for resource 

planning, future expansion of MoM will allow estimation and 

categorization of damages based on flood severity and depth to 

help first responders to use the information for response and 

recovery activities, which is the ultimate focus of this project.  

4. CURRENT LIMITATIONS AND FUTURE

DIRECTIONS 

The current version of the MoM approach is undergoing 

improvements to address the following limitations: 

(i) The GFMS is operational on the quasi-global latitude range

(50°N - 50°S) and beyond this range MoM output relies on

GloFas alone and is likely to miss flooding events;

(ii) Both the GFMS and GloFAS don’t foracast storm surge,

thus reducing MoM’s ability to forecast strom surge events in

the coastal areas;

To ensure MoM is comprehensive and precise in forecasting 

floods and flood impacted areas, future expansion will integrate 

SAR imagery output along with Digital Elevation Model 

(DEM) data at a global scale to compute flood depth. Outputs 

from authoritative sources, such as the Dartmouth Flood 

Observatory and other models, such as the Rapid Infrastructure 

flood Tool (RIFT) developed by Pacific Northwest National 

Laboratry (PNNL) for regional level flood forecasting will also 

be used to validate the MoM output and increase its usability 

and accuracy.  

While the flood extent is useful in assessing damaged vs not 

damaged areas and infrastructures, the lack of flood depth 

information prohibits the impact assessment model from 

determining damage extent. These future expansion of MoM 

will increase its use in producing situational awareness 

information for response and recovery activities.  
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