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ABSTRACT: 

Landslide susceptibility and hazard mapping has been developed providing remarkable results through the integration of geographic 

information system (GIS) and remote sensing. In this regard, some approaches have considered the use of Sentinel-1 data and time-

series interferometric synthetic aperture radar (InSAR) techniques, such as differential InSAR (D-InSAR) and persistent scatterers 

interferometric (PSI), for providing precise information about total amount and velocity of ground-surface deformations and 

landslides within a specific area during a specific time period which is important for disaster management’s planning process. 

In this paper, artificial neural network (ANN) was used as a statistical analysis method for landslide susceptibility mapping in 

Northwest Syria using multi-layer perceptron (MLP) neural network on a training dataset of one dependent variable (landslide or 

non-landslide) and nine independent variables (slope, aspect, curvature, land cover, NDVI, lithology, distance from faults, distance 

from road, distance from stream networks). The resulting map of landslide susceptibility was validated using area under curve 

(AUC) analysis using a testing dataset which showed 90.28% of AUC value. Then, landslide susceptibility map was reclassified into 

high-moderate-low classes and integrated with intensity map of mean velocity of ground-surface deformations during the time period 

form (16 October 2018) until (21 March 2019) by using a landslide hazard matrix in a GIS environment in order to get landslide 

hazard map of the study area for that time period. The result shows that around 44.4%, 52.9% and 2.5% of total study area was 

classified as a high, moderate and low hazard zone of landslide, respectively. 

* Corresponding author

1. INTRODUCTION

Landslide hazard investigation, assessment, monitoring and 

mapping processes become increasingly important in most 

mountainous and hilly regions around the world where 

landslides are a major hazard (kervyn et al., 2015) and 

(Hammad et al., 2019). So, landslide studies in those places are 

important to evaluate the relative contributions of all elements 

and factors involved in landslide process within an area and to 

identify the possible locations that might be affected by 

landslides in order to reduce risk on people in those areas and 

help local authorities in the process of future regional planning. 

Previous attempts of using Earth observation data for landslides 

investigation and mapping studies were typically based on field 

work and visual interpretation of stereoscopic aerial 

photography which are relatively time-consuming and not 

always easy to be carried out (Guzzetti et al., 2012). Later, with 

the start of the satellite data era, processing and analysing of 

optical satellite data has been applied to detect any relief 

changes between different dates. Furthermore, landslide 

investigation has been developed providing remarkable results, 

especially through the integration of optical remote sensing data 

and geographic information system (GIS) using different 

statistical analysis models in order to investigate and map 

susceptibility and hazard of landslides (Biswajeet, Saro, 2007). 

Recently, it has been shown that synthetic aperture radar (SAR) 

satellite data can be used as a complementary data source 

providing useful and precise information about ground-surface 

deformation and landslides (Hammad et al., 2018). In this 

direction, some approaches have already considered the use of 

time series interferometric SAR (InSAR) techniques for 

providing information about stability of areas suffering from 

ground-surface deformations and landslides by analysing 

velocity and amount of these ground-surface deformations 

(Hammad et al., 2018). The widely used approach applying 

time-series interferometry for ground-surface deformations 

detection depends mainly on persistent scatterers 

interferometric (PSI) technique (Hooper, 2006). Moreover, 

artificial neural network (ANN) analysis which can be applied 

to landslide susceptibility is a computational mechanism that 

can acquire, represent, and compute a mapping from one 

multivariate space of information to another, given a dataset 

representing that mapping (Garrett, 1994). For many years, 

artificial neural networks have been employed in a wide range 

of classification applications in Earth sciences (Van Leeuwen, 

2012). Also, some studies have also applied artificial neural 

networks as a statistical analysis method for landslide 

susceptibility mapping (Ermini et al., 2005. New approaches 

using GIS and advanced remote sensing techniques are required 

for all researches in field of landslide investigation to take 

advantage of all freely available data and related techniques. 

Therefore, this paper attempts to integrate free interferometric 

data with help of GIS in order to investigate and determine 

locations of possible future landslides in northwest Syria and to 

assess landslide hazard during the study period. 

1.1 Aim and objectives 

Road networks in the study area are susceptible to be damaged 

annually due to unforeseen landslides after intense rainfall 

events. These unforeseen landslides threaten the lives and the 

properties of people who live there (Hammad et al., 2019). 
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The main direct losses are costs of removing debris from the 

roads and costs of roads construction, especially the 

international road between Latakia city, the main city in the 

Syrian coastal area, and the Turkish border near Kassab city in 

the north (Figure 1). While the main indirect losses are the 

disruption of the economic and social activities which can 

frustrate local and regional development. 

 

 
 

Figure 1. The location of the study area and the main roads. 

 

Some pervious geological and geotechnical studies were carried 

out after significant landslide events, but these studies are more 

descriptive geotechnical reports and are limited to specific sites 

and very small isolated spatial extents. Most of these 

geotechnical reports indicated that the ribbon radiolarite 

deposits were the main lithology at the sites where landslides 

occurred, and all landslides at those sites were rotational 

landslides. However, the study area lacks wide extent and 

continuous spatial studies of landslide susceptibility and 

landslide hazard which can be updated continuously in order to 

take the necessary precautions in possible landslides locations 

and minimize the risk of these landslides. 

 

The overall aim of this research work is to get benefits from the 

integration of geographic information system (GIS) and remote 

sensing data, taking into consideration applying interferometric 

techniques in order to guide the landslides investigation process 

after defining the optimal landslide susceptibility map by using 

landslide statistical analysis in the study area, in order to 

achieve the landslide hazard map in northwest Syria as a final 

result. This will be achieved by meeting these objectives: 

- Assessing the suitability of using Sentinel-1 data and SAR 

interferometric techniques for landslide investigation. 

- Evaluating the appropriateness of using SAR interferometric 

techniques results with landslide susceptibility map for the aim 

of landslide hazard mapping. 

 

1.2 Study area 

 

The study area extends over an area of 269 km2 from 35.75◦ in 

the south to 35.94◦ at the Turkish border in the north, and from 

36.00◦ in the east to 35.80◦ on the Mediterranean Sea in the 

west, which corresponds to the extension of Kassab 

topographic map 1:25,000 which was printed in 1990 after 

cartographic field works in 1984 based on aerial photos taken 

in 1983. 

The elevation in the study area ranges between 0 and 1130 

metres above sea level. It should be mentioned that adjacent to 

the study area and to the north is the highest mountain in the 

region, Jebel Al-Aqra mountain, rising from a narrow coastal 

plain to reach 1717 metres (Figure 2). 

 

 
 

Figure 2. Digital elevation model (DEM) of the study area 

generated from topographic map 1:25,000. 

 

The highest monthly average of precipitation over study area is 

in December and January with around 125 mm, while 

maximum monthly precipitation reached 379 mm in January 

2012. Also, it should be mentioned that many extreme 

precipitation events occur in the study area where the maximum 

daily precipitation reached around 70 mm. 

 

In general, the study area consists of the Badrousieh basin, most 

of the Al-Bassit basin, a very small part of Alkabir Alshamali 

basin, and almost the half of Wadi Qandil basin within which 

the Balloran dam is located. The study area also has a good 

road network linking all the small towns and villages in the area 

with the main city of Latakia and with the Turkish border gate 

in Kassab. The main sub-districts in the study area are Qastal 

Maaf sub-district which consists of 19 localities with a 

collective population of 16,784 in 2004 official census, and 

Kassab sub-district which has a total population of 2,500 along 

with the surrounding villages. 

 

According to many geotechnical reports carried out by the 

General Establishment of Geology and Mineral Resources in 

Syria for several landslide events in the study area, heavy 

rainstorms and extreme precipitation events are the main trigger 

for all of those landslides. In recent years, these events have 

increased, and different landslides have occurred at various 

locations in the study area and along its road network. 
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From geological aspect, the study area is characterized by 

spread of the Baer-Bassit ophiolitic complex deposits in 

addition to different Mesozoic and Cenozoic sedimentary rocks. 

The ophiolitic complex outcrop which represents fragments of 

oceanic crust and lithospheric mantle exposed on land by 

tectonic processes, is dominated by two massifs, Baer in the 

east and Bassit in the west near to the coast. The Baer massif 

rocks is relatively structurally intact, while the Bassit massif 

rocks are overthrusted by thin imbricate thrust sheets of pillow 

lavas (Al-Riyami et al., 2000). 

 

 

2. DATA 

 

The Kassab topographic map from the 1980s was used in order 

to represent the topographic characteristics of the study area 

similarly to that which were before the occurrence of all 

landslides participating in this study. This is very significant to 

know the real effects of the main topographic factors on the 

landslide occurrence and to get reliable results.  

  

Optical multispectral data of Landsat-5 Thematic Mapper (TM) 

from 22 September 1984 with 0% cloud cover and 30 m 

resolution were used in order to produce land cover map and 

the normalized difference vegetation index (NDVI) map of the 

study area to reflect also the vegetation cover characteristics 

similarly to that which were before the occurrence of the 

landslides taken into consideration in this study. Furthermore, 

since lithology is constant in general during the study period, 

and in order to get benefits of high resolution optical 

multispectral data of the European Space Agency (ESA), 

Sentinel-2A image from 08 September 2017 with 0% cloud 

cover and 10 - 20 m resolution in VNIR and SWIR range was 

used applying principal component analysis and band ratio 

techniques to prepare the lithology map with the help of the 

geological map which was also used for preparing the fault 

map. 

 

Additionally, radar satellite data from 14 Sentinel-1B single 

look complex (SLC) images during the time period from 16 

October 2018 until 21 March 2019 in interferometric wide (IW) 

swath mode and vertical-vertical (VV) polarization were used 

to produce the mean velocity map of the ground-surface 

deformation during this period of time using persistent 

scatterers interferometric (PSI) technique. The results were 

combined with the landslide susceptibility map to get the final 

landslide hazard map for the specified time period. 

 

 

3. METHODS 

 

3.1 Landslide susceptibility mapping 

 

Considering the local characteristics and different criteria such 

as type of landslides, mapping unit and availability of data 

taking into account similar landslide susceptibility studies 

(Guzzetti, 2005) and (Lee et al., 2012), nine main causative 

factors controlling the occurrence of landslides were 

considered. These factors are slope angle, slope aspect, terrain 

curvature, land cover, normalized differential vegetation index 

(NDVI), lithology, distance to lineaments, distance to roads and 

distance to stream networks. Note that within the relatively 

small study area, precipitation is likely consistent, therefore the 

use of the data for this factor within the analysis processes has 

been excluded in this research.  

Each raster layer of the nine causative factors was reclassified 

into number of classes depending on its own criteria in order to 

be used in the ANN analysis method. 

 

Basically, the first step of landslide susceptibility mapping is 

preparing a database of all previous landslides that happened in 

a given area during a specified period of time. Depending on 

this database, landslide inventory map of that area during that 

period of time will be prepared in order to be used with related 

causative factor maps through statistical analysis methods for 

defining the relationship between landslide occurrences and 

those related factors. Actually, landslide and non-landslide 

dataset was obtained using the information from the available 

technical reports and from local people regarding previous 

landslide events, and also from comparison between available 

older and recent optical satellite data and with the help of the 

ancillary information available through the historical imagery 

tool in Google Earth. 

 

Then, the landslide and non-landslide dataset was randomly 

divided into two datasets; a 70% training dataset of landslides 

to be used in preparing the data from all causative factors 

during the training and testing processes of the artificial neural 

network (ANN) statistical analysis method, and a 30% testing 

dataset of landslides to be used for the validation process of the 

statistical analysis method (Figure 3). 

 

 
 

Figure 3. Methodology of landslide susceptibility mapping. 

 

The pixel size for all maps was set to 12.5 m, same as the 

recommended grid resolution of the DEM extracted from the 

topographic map 1:25,000 used in this research (Hengl, 2006). 

 

For the ANN analysis in this research, a feed forward multi-

layer perceptron (MLP) neural network architecture using a 

back-propagation (BP) learning algorithm was applied on the 

training dataset of landslides and non-landslides pixels and 

their related causative factors. The training dataset was prepared 
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using the Raster-To-Point and Extract-Multi-Values-To-Points 

tools in ArcGIS in order to extract the data from all layers to a 

table in which each row stores one pixel’s data of the dependent 

variable (landslide or non-landslide) and the nine independent 

variables (the causative factors). This table was imported to 

Matlab® as a numeric matrix in order to set the inputs and the 

outputs (targets) and start the neural network training phase. 

 

In fact, the number of hidden layers in the training phase 

depends mainly on the dependent and the independent variables 

and the complexity of the analysis. In this research, the 

structure of 9 input neurons, one hidden layer with 5 neurons, 

and 2 neurons in the output layer was selected for the 

architecture of the neural network (Figure 4). The dataset was 

divided randomly into 70% for training, 15% for validation and 

15% for testing. It should be mentioned that all the input 

training data used in the training phase were numeric, and these 

numeric values were not ordinal data but nominal data and they 

denote the different classes of the causative factors. 

 

 
 

Figure 4. The structure of the neural network. 

 

The susceptibility result of ANN statistical analysis method was 

validated depending on the (30%) landslide testing dataset 

using the area under the curve (AUC) analysis which allows to 

describe the statistical analysis ability of correctly predicting 

occurrence of landslides. So, the landslide susceptibility map 

that resulted from the ANN analysis was reclassified into 100 

class equally and sorted in descending order (it means classes 

having high susceptible to landslide should appear at top). 

 

Then, the resulting map was used with the testing dataset to 

calculate the pixel-based landslide areas in each class. The 

percentage of landslides pixels in each landslide susceptibility 

index class of the total landslide pixels in all the test dataset 

were calculated. Then, the cumulative of landslide area was 

calculated in each class from this percentage. Finally, the AUC 

value in each class was calculated using the following equation 

(Vakhshoori, Zare, 2018): 

 

AUC =                                                                          (1) 

 

Where  (X{i+1} - X{i}) = the difference value between two 

consecutive susceptibility classes; and 

 (Y{i+1} + Y{i}), is the sum value of the cumulative 

percentage of landslides in these two relevant 

consecutive susceptibility classes. 

 

The sum of all AUC values was calculated and divided by (100) 

to get the final value of AUC related to ANN analysis. 

 

3.2 Landslide hazard mapping 

 

Since a systematic record of landslides during the past decades 

in the study area is not available for landslide recurrence 

analysis and since the study area is small to be divided into 

different zones according to precipitation which is the main 

landslide trigger in the study area, landslide hazard mapping 

was carried out in this research depending on landslide hazard 

assessment using a landslide hazard matrix (Figure 5) 

(Hürlimann et al., 2008) and (Lu et al., 2014). 

 

 
 

Figure 5. The high-moderate-low landslide hazard assessment 

using a landslide hazard matrix (after Hürlimann et al., 2008). 

 

Basically, this matrix focuses on two parameters which are 

probability of landslide occurrence (landslide susceptibility), 

and intensity of ground-surface deformations. In this research, 

these two parameters were correlated using this matrix in order 

to represent the landslide hazard as low-moderate-high zones. 

 

In general, the intensity of ground-surface deformations can be 

defined using various parameters including volume or velocity 

(Li et al., 2010). In this research, the intensity of ground-surface 

deformations was defined using the mean velocities of these 

deformations in the satellite line-of-sight (LOS) direction 

during the study time period which was chosen from October 

2018 till March 2019 to cover one main precipitation season in 

the study area.  

 

To produce the mean velocities map of ground-surface 

deformations, PSI technique was applied using radar satellite 

data of single look complex (SLC) imageries from the 

descending orbit, Sentinel-1B, in interferometry wide swath 

mode (IW) and vertical-vertical (VV) polarization including 

fourteen acquisitions from 16 October 2018 until 21 March 

2019 which were all co-registered to one unique master (27 

December 2018) chosen through using Stack-Overview-and-

Optimal-InSAR-Master-Selection tool in Sentinel-1 toolbox in 

Sentinel Application Platform (SNAP) software released by the 

European Space Agency (ESA). 

 

After preparing SAR data in SNAP as it is shown in figure (6), 

the resulted products were processed by using StaMPS in 

Matlab under Linux in order to perform the PS pixels’ 

estimation process and calculate the mean velocity values of 

ground-surface deformations in each of these PS pixels 

averaged over the total study period in the satellite LOS 

direction by unwrapping all phases in the different produced 

interferograms.  
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Figure 6. Flow chart of preparing SAR data in SNAP for PSI. 

 

Eight steps were performed by StaMPS on the products resulted 

from the processing of SAR data. The first step was loading the 

data for initial candidates’ selection process of PS pixels using 

an amplitude dispersion threshold value which was set as 0.4 

(Hooper et al., 2013). In the second step which is an iterative 

step, the estimation process of the phase noise value for each 

candidate pixel in every interferogram was performed. Then, PS 

pixels and non-PS pixels were sorted on the basis of their noise 

characteristics. In the fourth step, the PS Pixels selected in the 

previous step were weeded, dropping those that are due to 

signal contribution from neighbouring ground resolution 

elements. After that, the wrapped phase of the selected pixels is 

corrected for spatially-uncorrelated look angle error. In the 

sixth step, filtering and unwrapping phase processes were 

performed using related algorithms. Then, spatially-correlated 

look angle error was calculated, and the master atmosphere and 

orbit error (AOE) phase was also estimated simultaneously. 

Finally, in the eighth step, the mean velocity values of ground-

surface deformations were calculated in each of the PS pixels 

averaged over the total study period in the satellite LOS 

direction. As the result, a multipoint dataset of mean velocity 

values in millimetres was produced representing the 

deformations during the whole study period, 156 days, and the 

resulted data was exported to an ESRI shapefile in a point 

feature format in order to be processed after that in ArcGIS. In 

order to obtain a continuous spatial extent for the mean velocity 

values of ground-surface deformations and to create the high-

moderate-low zonation areas map required with the total 

ground-surface deformation map for ranking the intensity of the 

ground-surface deformations in the study area during the study 

period, interpolation process of the velocity values was 

performed through inverse distance weighted (IDW) 

interpolation method since the multipoint dataset of the mean 

velocity values is interconnected dataset in the spatiotemporal 

domain (Liu et al., 2019). 

 

 

4. RESULTS AND DISCUSSION 

 

A landslide inventory map of all landslides that happened in the 

study area since 22 September 1984 was prepared in ArcGIS 

depending on all available data and information. Also, the non-

landslide dataset with the same size of the landslide dataset was 

also prepared depending on the related geotechnical reports and 

the knowledge gained through field works there. As a result, a 

dataset of 57 landslide polygons (Figure 7-a) and 57 non-

landslide polygons (Figure 7-b) were prepared and mapped. 

Then, this dataset was randomly subdivided into two datasets, 

70% training landslide dataset, to be used in preparing the data 

from all causative factors during the training process of the 

artificial neural network (ANN) method, and 30% testing 

landslide dataset, to be used later in the validation process. 

 

 
 

Figure 7. The hillshade map of the study area. a- Landslide 

dataset and inventory map. b- Non-landslide dataset. 

 

Also, slope map (Figure 8-a), aspect map (Figure 8-b), 

curvature map (Figure 8-c), and distance map from streams 

(Figure 8-d) were prepared from the DEM extracted from the 

topographic map which was used also to prepare the distance 

map from roads (Figure 9). 

 

 
 

Figure 8. The causative factors maps extracted from the DEM. 

a- Slop. b- Aspect. c- Curvature. d- Distance from streams. 
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Figure 9. The distance map from roads extracted from the 

topographic map. 

 

Moreover, land cover map (Figure 10-a) and NDVI map 

(Figure 10-b) were produced from optical remote sensing data 

of Landsat-5 TM imagery. Furthermore, optical remote sensing 

data of Sentinel-2A through both of band ratio and principal 

component analysis (PCA) techniques was used to prepare the 

lithological map (Figure 10-c) with the help of the geological 

map which was also used in preparing the distance map from 

faults (Figure 10-d). 

 

 
 

Figure 10. The causative factors maps extracted from optical 

remote sensing and geological data. a- Land cover. b- NDVI. c- 

Lithology. d- Distance from faults. 

 

All maps of the nine causative factors were prepared in ArcGIS 

and converted to a raster format, and clipped to the same spatial 

extent. Moreover, all the map layers were resampled using the 

same geometric projection WGS_1984_UTM_Zone_36N in 

order to be unified and have the same pixel size, 12.5 m. As a 

result, the study area has 1693340 pixels, and training dataset 

of landslides in the study area contains 1353 pixels. 

 

After preparing the causative factors in ArcGIS in a (2706×10) 

table contained 10 columns and 2706 rows representing all 

pixels of landslides and non-landslides training dataset with all 

independent variables (the causative factors) for each pixel, this 

table was imported to Matlab for the neural network training 

and simulation phase. As a result, the landslide susceptibility 

indices (LSI) for each pixel were determined as an array of 

floating-point numbers in the range [0, 1]. Then this array was 

converted back to a matrix before converting it to a raster map 

again as 8-bit integers in the range [0, 255] which represents 

the landslide susceptibility map of the study area. For visual 

interpretation, the LSI values in the landslide susceptibility map 

were classified and grouped into High-medium-low classes as it 

is shown in figure (11).  

 

 
 

Figure 11. The landslide susceptibility map of the study area 

using ANN analysis. 

 

The validation process of the ANN analysis results showed an 

AUC value equal to 90.28% as it is shown in figure (12). 

 

 
 

Figure 12. Validation result of the ANN analysis results. 

Moreover, the result of applying PSI technique in this research 

indicates the presence of line-of-sight (LOS) ground-surface 
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deformation in the study area during the study period as it is 

shown in the filtered phases of the different interferograms 

produced in SNAP, especially the interferograms between the 

master and each of 28 October 2018, 01 February 2019 and 09 

March 2019 over the mountains in the north and around 

Balloran dam lake in the south due to the extreme precipitation 

events before these dates (Figure 13) same as the velocity 

values of the persistent scatterers detected by PSI technique 

during the study period which show several extreme negative 

values in the northern mountains and the area around Balloran 

dam lake in the south (Figure 14). 

 

 
 

Figure 13. Filtered phases of SAR data used in PSI technique. 

 

 
 

Figure 14. The distribution of the PSs produced by PSI 

technique and the velocities values during the study period 

from 16 October 2018 until 21 March 2019. 

 

The resulting data was exported to ArcGIS in order to be 

processed and interpolated using inverse distance weighted 

(IDW) interpolation method. As the result, a raster map 

representing the mean velocity map of the ground-surface 

deformation during the study period from 16 October 2018 

until 21 March 2019 was produced as it is shown in figure (15). 

This map shows values between – 47.70 mm/year and + 101.64 

mm/year and also show more clearly the specific locations of 

extreme ground-surface deformation values which refer to the 

high landslide intensity areas. 

 
 

Figure 15. The interpolated mean velocity map of the ground-

surface deformation produced using PSI technique. 

 

Then, the mean velocities in the satellite LOS direction was 

reclassified into high-moderate-low classes in order to produce 

the intensity map of ground-surface deformations (Figure 16) to 

be used with the landslide susceptibility map of the study area 

in the landslide hazard matrix to get the final map of the 

landslide hazard during that period of time. 

 

 
 

Figure 16. Intensity map of ground-surface deformation during 

the period from 16 October 2018 until 21 March 2019. 

 

The intensity map together with susceptibility map produced by 

ANN analysis were used in the landslide hazard matrix with the 

help of GIS in order to get the final map of the landslide hazard 

of the study area during the study time period from 16 October 

2018 until 21 March 2019 as it is shown in figure (17) in which 

44.4%, 52.9% and 2.5% of the total area represent the low, 

moderate and high landslide hazard zones, respectively. 
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Figure 17. Landslide hazard map of the study area during the 

period from 16 October 2018 until 21 March 2019. 

 

 

5. CONCLUSION 

 

This research demonstrates the potential and capability of radar 

satellite data and In-SAR time-series technique to investigate 

and monitor the ground-surface deformation, and also to 

measure millimetre velocity values in the line-of-sight direction 

over time using freely available data and software.  

 

The integration of ANN analysis and PSI technique with the 

help of GIS can be considered as an attractive method for 

geological hazards tasks giving important results which can be 

updated regularly in order to be used in the disaster 

management’s planning process. 
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