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ABSTRACT: 
 
Drastic changes in the climate has revised the face of disaster management: it is contributing to abnormal intensity, frequency and 
duration of extreme weather and climate events. The year 2020 started with more than 100 fires burning across Australia. Hazard 
reduction burning has become a resolute and primary land management technique that contribute to the reduction of bushfire severity. 
One of the key variables to consider for this application is fuel load, as the accumulation of vegetation in a forest profile affects the 
intensity of the burn. Conventionally, fuel loads are measured by manually cutting the vegetation and physically measuring the quantity 
after dry heating. This process is expensive, and time consuming. There is an opportunity for these techniques to be digitised and 
automated to give results in a timely manner and work as a decision support tool for practitioners. This paper proposes a voxel-based 
approach that can be used for estimating fuel load and percentage cover of the vegetation, at the elevated and near-surface 
fuel/vegetation layer as a method to augment manual estimation. We use an airborne LiDAR pointcloud dataset of Vermont Place 
Park, Newcastle, Australia to test the method. The preliminary inspection of the results confirms the technique that can approximate 
conventional manual method. Next steps include performance testing including more dataset to derive quantitative measures on the 
approach. 
 

1. INTRODUCTION 

Australia has an extensive history with bushfire, with charcoal 
and fossil deposits indicating the presence of wildfire as far back 
as 400,000 years ago (Vigilante and Thornton 2016). Australia is 
known for its extreme weather events, however climate change is 
making these events increasingly severe (Steffen et al. 2019). The 
2019/2020 bushfires have been dubbed as one of the worst 
bushfire seasons in Australia, burning more than 2 million 
hectares of land in New South Wales (NSW) and Queensland 
alone (Chang 2020). From 1967 until 2013, bushfires have cost 
the Australian economy 4.7 billion dollars (Handmer et al. 2018). 
Along with the loss of human lives and damage to the built 
environment, natural habitats of native species have been 
severely impacted, conditions made favourable for invasive 
species and the air quality is also affected, as illustrated in Figure 
1. 
 

 
 

Figure 1: Smoke rising from fires on the east coast of Australia, red 
shows live fire (Vernier and Reed 2020). 

 
Climate condition, topographic features, fuel/vegetation 
condition and its accumulation are the factors that contribute to 
bushfire behaviour (Gould and Cruz 2012). Increasing 
temperature from global warming has prompted the worlds 
climate to change abruptly, making hot days hotter. Resulting in 
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dryer vegetation, drier the vegetation the faster the fuel will 
ignite. Hazard reduction (HR) burning is a technique that is 
commonly used by fire practitioners worldwide, it is also known 
as controlled burning, prescribed burning, backfire, swailing or 
burn-off (Gage 2016). Its application is by deliberately reducing 
accumulated vegetation through direct burning in bushfire prone 
areas. In Australia, HR burns are conducted based on several 
guides, each state has its own guide to assess fuel. Commonly 
used guide in New South Wales (NSW) are the Overall Fuel 
Hazard Assessment Guide (OFHAG) and Knee-waist-shoulder 
Estimation Guideline (Hines, et al. 2010, Forestry Commission 
of Tasmania, 1984).  
 
OFHAG outlines a hazard rating from low to extreme for 
vegetation layers in a forest profile. One of the metrics used to 
assess hazard rating is Fuel Load (FL) - the accumulation of 
vegetation over an area (Volkova et al. 2016). FL is considered 
along with weather and topography when conducting hazard 
reduction burning (Penman et al. 2011). There are two 
conventional method for acquiring FL data, common attribute of 
both the techniques are that the fire practitioner will go to the 
dense forest profile and visually assess at what location has the 
highest accumulation of vegetation. The difference between the 
two is that: 1) Deliberately cuts the vegetation of interest, oven 
dries it and weigh the vegetation. 2) Fire practitioner goes to the 
site and assess the vegetation based on plant percentage cover 
and surface litter depth, at a certain radius around the assessor. 
Both of this technique are time consuming and costly. At the 
same time, this visually assessments are prone to errors due to the 
technique’s subjectivity of the assessment (Volkova et al. 2016, 
Spits et al. 2017). It has been predicted that by 2050 the number 
of very high and extreme fire days will increase by 15 – 70 % 
(Hennessey et al. 2005, The Australia Institute 2007). That is why 
automating the process of acquiring FL data could give faster and 
reliable data to make tactful decisions when conducting HR 
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burns. Remote sensing technologies enable the collection of 
spatial data to facilitate fuel classification and analysis (Dubayah 
and Drake 2000, Skowronski et al. 2011, Hermosilla et al. 2014, 
Chen, Zhu et al. 2016). Light Detection and Ranging (LiDAR) 
facilitate rapid acquisition of detailed data and allow tasks to be 
increasingly digitised and automated (Yebra et al. 2015, Price 
and Gordon 2016). LiDAR has been widely used worldwide for 
classifying forestry characteristics. In Turkey (Inan et al. 2017) 
investigated the potential of airborne lidar to characterise the 
forest profile based on: tree height, tree diameter, crown diameter 
and the tree volume. This research quantified the forest stands 
(trees) in a forest profile. (Almeida et al. 2016) used a portable 
profiling LiDAR for fire susceptibility and contrasting fire 
damage in the central Amazon. To determine the individuality of 
trees from colour pointcloud data. However, both this research 
did not fully explore the potential of LiDAR.  
 
Gorte and Winterhalder (2004) and Thies et al (2004) reported a 
voxel-based approach using mathematical morphology, 
skeletonization, connected component labelling and shortest path 
computation to reconstruct 3D trees from terrestrial scans. 
Hermosilla, Ruiz et al. (2013) in USA, Spain and Canada 
developed a methodology for the estimating the forest structure 
and canopy fuel parameters. They developed metrices for input 
variables for predictive fire models using forward stepwise 
multiple linear regression. This study used small- footprint and 
large-footprint full-waveform LiDAR sensors that collected data 
for over a decade. They used two approaches to answer the 
limitation present from full-waveform data (unable to detect 
detailed structure of the forest) (Listopad et al. 2012): Pulse 
detection and waveform modelling (Mallet and Bretar 2009). 
Similar approaches were used in different ecological areas in 
USA to quantify forest structures and species (Riano et al.2004, 
Skowronski et al. 2011, Zhao et al. 2011,  Gonza´lez-Olabarria et 
al. 2012). In Canada and France, Grau et al. (2017) estimated 3D 
vegetation data with terrestrial laser scanner data using voxels 
based approach. They used ray tracing method to simulate 
realistic TLS data acquisition, then simulated realistic vegetation 
scene from a 3D range of plant area index (PAI) distribution and 
calculated voxel area density. This research evaluated the 
potential of voxels, and lead to the development of a tool called 
VoxelSD. This tool can be used to assess 3D vegetation density 
from TLS scans. It is an innovative way to estimate the 
distribution of plant/ leaf area with accuracy. 
 
Over 60 years of extensive research, Australia has demonstrated 
several systems that could model and predict fire behaviour 
(Gould and Cruz 2012): CSIRO Grassland fire spread meter 
(Cheney et al. 1998; Cruz et al. 2015b), Phoenix Rapid Fire 
(Tolhurst and Chong, 2008) and the oldest model being the 
McArthur (1967). One of the common variables needed for this 
system is the FL data. (Chen et al. 2016) developed two 
predictive models of forest surface fuel load based on: LiDAR 
indices, forest types and previous fire disturbances. They 
classified the forest fuel structural characteristics based on 
surface fuel depth and percentage cover at distinct layer using a 
Terrestrial Laser Scanner (TLS): they classified the fuel using a 
raster image of a surface fuel depth that is interpolated based on 
the TLS points height values (h) at surface fuel layer. They then 
generated a scatter diagram for forest vertical profiles by plotting 
the density of LiDAR points against height and used a bimodal 
distribution to identify LiDAR points. Two models were created: 
1st represents the density distribution of LiDAR points across 
vertical profile of understorey shrubs and the 2nd component plots 
the density distribution in overstorey fuel. Locally weighted 
scatterplot smoothing (LOWESS) was applied to smoothen the 
scatter plot. Two models were compared and the cut point 

between the two components of the bimodal curve was utilized 
to stratify and characterise the vertical structure of the forest and 
derive LiDAR indices for different vegetation layers. This 
LiDAR derived stratification method provides a significant 
contribution in vegetation classification, forest habitat mapping 
as well as forest wildlife conservation. (Spits et al. 2017) 
investigated the surface and near-surface bushfire attributes from 
Image-based point clouds. The image-based point cloud was 
captured from smart phones loaded with Fuels3D application. 
Fuels3D application is a tool for measuring fuel hazard and fire 
severity in the forest understorey (op.cit).  
 
Most studies done to characterise forest fuel are attributed to the 
canopy layer of the forest profile, understandable as its 
responsible for the rate of fire spread and severity (Gould, 
McCaw et al. 2011, Gould and Cruz 2012, Chen et al. 2016, Price 
and Gordon 2016, Spits et al. 2017). However, there are limited 
studies done in the understorey of the vegetation layer. In this 
paper, we propose a voxel-based approach to estimate the volume 
of fuel in near-surface and elevated fuel layers below the canopy. 
Voxelisation is a useful spatial analysis technique when applied 
to dynamic phenomena like wind, fire, air and noise pollution 
(Gorte and Zlatanova, 2016). This approach may assist in 
quantifying FL from pointcloud data by building a three-
dimensional image of the composition of the forest. The next 
section provides an overview of HR burning and explains the 
methods to quantify fuel load; then the paper elaborates on the 
voxel-based methodology to estimate the volume of surface and 
elevated FL. The paper concludes with proposed future research 
and development. 
 
 

2. PROCEDURE FOR FUEL ESTIMATION 

2.1 Fuel Classification 

 

 
Figure 2: The key structural layers of the fine fuel complex (Hines et al. 

2010). 
 
Fuel can be classified based on five structural layers in the forest: 
canopy fuel, bark fuel, elevated fuel, surface fuel, near-surface 
fuel, as illustrated in Figure 2. At the canopy layer, leaves and 
twigs are usually found on the tallest layer of the forest or 
woodland. The canopy is included in the elevated fuel. Bark fuel 
is the flammable bark on tree trunks and upper branches. 
Elevated fuel shrubs and juvenile understorey plants are usually 
2-3m in height. Near-surface fuel are grasses, low shrubs and 
heath, these often have suspended components like leaves, barks 
and twigs (Hines et al. 2010 
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2.2 Assessing Fuel Load  

The conventional way to assess FL in NSW is based on the knee-
waist-shoulder estimation from the HR burning under dry forests 
guideline (Forestry Commission of Tasmania, 1984) as 
illustrated in Figure 3. This guide estimates FL using a visual 
assessment of surface fuel. A fire practitioner will go to the site, 
locate a spot and visualise at 2m radius (or 10m radius) around 
the assessor and then estimate the surface litter depth of fuel that 
is <6mm in diameter. Once the surface litter is established it is 
then correlated with the percentage of plant cover in that 2m 
radius circle. The combination of the litter depth and plant 
coverage provides an estimate for FL. 

 
Figure 3: Knee-waist-shoulder estimation guidelines for HR 

Burning (Forestry Commission of Tasmania, 1984). 
 
Figure 4 shows how FL is estimated and assessed by the fire 
practitioner. FL is estimated based on three segments. First the 
ground to knee (at 0.5 m), knee to waist (at 1m) and then waist to 
shoulder (1.5m). These three segments are later added based on 
the percentage of plant coverage, to give the estimated total fine 
fuel. Figure 4 illustrates how plant cover percentages are mapped 
while looking straight down at the forest profile from the above 
(Spits et al. 2017, Hines et al. 2010). 
 

 
Figure 4: Visual guide for assessing plant cover (Hines et al., 

2010). 
 
The percentage coverage of plant matter is used to estimate FL. 
For every 10% of cover at 20mm surface litter depth 
approximates to 1 t/ha, for every 100% at 20mm surface litter 
approximates to 10 t/ha. If the plant coverage seems less than 
100%, then the percentage cover needs to be lowered to 80% then 
the estimated FL would be 8 t/ha (Forestry Commission of 
Tasmania, 1984).  
 
2.3 Fuel Hazard rating 

The resulting FL estimates are converted to surface fuel hazard 
scores as low, moderate, high, very high and extreme for the area 
of interest. At coverage less than 10%, the hazard is considered 
low as it has no effect to fire behaviour. At 10% to 20% it is 
considered moderate hazard rating as it dictates the flame height. 
Greater than 20% onwards the hazard rating is very high and 
significantly contributes to the flame height and rate of spread of 
fire. Assessing fuel hazard rating at the elevated surface fuel level 
is slightly different from near-surface fuel. Below 20% fuel 
coverage it is considered low. From 20% to 30% it is considered 
moderate. At 30% to 50% is considered high. HR burning is 
required for elevated surface fuel after the plant coverage reaches 
30%. The near-surface fuel is of high significance when 
conducting HR burning because when fire spreads, that layer will 

work as ladder for fire to travel to the other layers in the forest 
profile (Spits et al. 2017). 
 
These concepts, dynamics and calculations are naturally 
volumetric and typically deal with small-scale measurements in 
relation to larger areas of bushland. The ability to gather data 
remotely and process these data volumetrically and quickly offers 
the capacity to augment and extend existing techniques and 
provides an avenue for rapid data collection and analysis to assist 
in mitigating potential disasters, and pre-planning HR burns that 
may be quickly executed given the constricted timeframes HR 
burning is possible. 
 
To assess and manage bushfire risk, planning fuel treatment and 
controlling smoke plumes, it is crucial to measure the fuel load 
and its arrangement to inform a versatile range of fire 
management activities (Zhou et al. 1998, Bradstock et al. 2010, 
Gould and Cruz 2012, Duff et al. 2017).  
 
Miscalculation of FL can lead to inaccurate data and can 
therefore have significant management implications. 
Underestimating FL leads to erroneously eliminating areas in 
need of HR burning and potentially leaves stakeholders 
underprepared in the event of a wildfire. Overestimating leads 
burning where its unrequired; this has environmental, cost and 
logistical implications. Inconsistent and inaccurate estimation of 
fuel load could lead to unreliable data for smoke dispersion 
models, prediction of greenhouse gas emissions and fire line 
intensity. Accurate and consistent fuel hazard data is imperative 
for fire and land managers in their decision-making process for 
fire management practices. 
 
This research focuses on automating the process of measuring FL 
for HR burning though a voxel-based approach using airborne 
LiDAR pointcloud data as input.  
 

3. DATASETS AND VOXELIZATION 

3.1 Study area, dataset and software 

 
Figure 5: Study area as visualised in Google Earth (left) and 

voxelised point cloud (right). 
 
The methodology was applied to a dataset representative of 
typical Australian bushland, obtained from Fire and Rescue 
NSW. The study area shown in Figure 5 is Vermont Place Park, 
Newcastle, NSW. The Airborne LiDAR pointcloud is collected 
by a low altitude drone platform and has an absolute accuracy of 
<50 mm RMSE at 50m range, with 3 returns, an RMS ranging 
error of 30mm and a scan rate of 420l points/s (1 return). Figure 
6 illustrates the test data set. 
 
The pointcloud was transformed into local coordinate system, by 
truncating the geographical coordinates with the minimum values 
for x,y,z. A voxel grid was then generated across the workspace. 
Processing in voxel space brings three major advantages to 
pointcloud space: first, the size of the data to be processed can be 
reduced significantly; second, the voxel space allows to establish 
connectivity horizontally and vertically, which facilitates 
analysis and third, the effect of different point density can be 
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reduced, which will be favourable for fuel estimation. High point 
density from overlapping flights (Figure 7) may give the wrong 
indication of a higher vegetation density.  
 

 
 

Figure 6: LiDAR pointcloud data. Colour indicates height from 
0m to 40m (blue to red). 

 

 
Figure 7: Plot of LiDAR point densities (points/m2). 
 
Figure 7Error! Reference source not found. plots the point 
densities of the point cloud across the study area. In this 
visualisation, each pixel is 1m2 and the densities shown represent 
the number of LiDAR points at each vertical column. The total 
number of pixels/samples/m2 is n=127,706. The diagonal 
striations reflect the flight path of the airborne LiDAR acquisition 
unit; the heavier densities are the result of matter receiving two 
passes of the scanner from a return path, and the lighter areas 
have only been revealed by one pass. Figure 8 shows the 
distribution of the point density classes. The most frequent class 
300–400 points/m2 (Figure 8). This suggests the point density 
within each cell is sufficient for modelling and analysis. 
 

 
Figure 8: Frequency by number of LiDAR points/m2. 
 
The voxel analyses are performed with in-house J-based 
software. J is a powerful general-purpose array-based language 
that is suitable to develop algorithms for exploring problems with 
matrices and higher dimensional arrays. J is suitable for this 
study as a voxel space is a typical example of large array. 
Alongside J, Cloud Compare is used to visually inspect the 
pointcloud data. 
 

3.2 Voxel resolution  

The resolution of the voxel space will influence whether voxels 
are empty or filled as seen in Figure 9. Since we are using 
the count of non-zero voxels to estimate the fuel load, the 
resolution of the voxel space is very important. If the resolution is 
too course, FL is overestimated, if the resolution is too fine, there 
is a processing and speed overhead. 
 

 
Figure 9: Significance of voxel resolution for the number of 

non-empty voxels. 
 
Figure 9 shows a 2D representation of a voxel space: A illustrates 
that all cells are non-empty; higher resolution as in B has 
16 cells non-empty and one empty, C illustrates 21 empty cells if 
the resolution is four times finer. Given the FL assessment used 
a dimension of 0.50m to knee height, a voxel resolution of 0.40m 
was determined to be optimal in that it each structural fuel layer 
could be classified as belonging to a particular stratum of voxels 
and subdivided accordingly. 
 

4. VOXEL SPACE ANALYSES 

The workflow consists of the following five steps: 
 

1. Terrain estimation 
2. Canopy classification and removal 
3. Tree trunk classification and removal 
4. Near - surface and elevated fuel segregation 
5. Estimation of percentage coverage for elevated and 

near-surface fuel to calculate hazard rating 
 
The dataset for this research has more than the required standard 
for enabling detailed mapping of the forest profile: however, the 
density of pointcloud is also variable across the forest profile. 
Therefore, a voxel-based approach provides an optimal solution 
to add consistency and operability across low to high point 
densities (Thies et al 2004). 
 
4.1 Terrain  

When generating the digital terrain model, a common problem 
associated with LiDAR scanning of large forest profiles is its 
inability to penetrate foliage, which occludes the laser beam. This 
results in incomplete coverages on the understorey of the forest 
profile. The quality of the digital terrain is critical and influences 
the following steps. The terrain is determined in the pointcloud 
through square grid, subdivided into tiles of 4m x 4m. The lowest 
point in those tiles are located and a Triangular Irregular Network 
(TIN) are created from it, at each tile. Larger tile has a higher 
probability to have terrain points and the triangulation will 
approximate the terrain shape. However, the triangulation may 
lead to omission of hills and gaps. Voxel space is then created 
above the normalised TIN.  
 
The digital terrain model is then modified so that the ground level 
and normalised to a horizontal plane, enabling the structural 
layers to be easily separated according to their relative height 
above ground level. To normalise the height data, the lowest non-
zero voxel in each vertical column is transformed to z=0 (Eusuf 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume VI-3/W1-2020, 2020 
Gi4DM 2020 – 13th GeoInformation for Disaster Management conference, 30 November–4 December 2020, Sydney, Australia (online)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-VI-3-W1-2020-3-2020 | © Authors 2020. CC BY 4.0 License.

 
6



 

et al 2020). After the terrain is normalised, we proceed to classify 
the other components of the forest profile; canopy, tree trunks, 
elevated surface fuel and near-surface fuel.  
 
4.2 Canopy classification 

Canopy classification assumes the crowns of the trees form a 
high-density region of filled voxels in the voxelised point cloud. 
The determination of this region is based on applying 3D 
mathematical morphology operations Dilation and Erosion in a 
mixture of object and background voxels, where an object is 
defined as collection of adjacent object voxels. 
 
• Dilation makes objects larger by changing background 

pixels adjacent to the object into object pixels; holes inside 
objects and cracks between objects may therefore disappear, 
i.e. become part of the object. 

• Erosion makes objects smaller by turning object voxels near 
to the outer boundary of an object into background; holes 
become larger; cracks become wider, small or narrow 
objects may disappear. 

 
Whether a background voxel is close to an object, resp. an object 
pixel is close to the boundary (i.e. the background) is determined 
by the Structuring Element (SE). In this study we use a simple 
SE that only considers nearest-neighbouring voxels. 

 
 
Figure 10: Voxelised point cloud 
 
Starting from the voxelised point cloud (Figure 10) we first apply 
two iterations of dilations, which adds a layer of 0.80m around 
all objects in that space. As a result, holes of up to 1.60m diameter 
with the canopy region get completely filled up. Also, the top of 
the canopy becomes 0.80m higher, and its bottom 0.80m lower. 
Other objects, such as trunks and understory objects will extend 
by 0.80m in all directions, but some space between these objects 
will remain. The terrain surfaces become 0.80m higher. Next, we 
apply four iterations of Erosion. This will make originally small 
objects, even though they had just been extended, completely 
disappear. However, the (now filled) block of canopy will shrink 
(by 1.60m from all sides), but the core remains. 

 
Figure 11: result of erosions and dilations 
 
Finally, we apply again two iterations of Dilation. Now the 
canopy will grow back to its original size, but the objects that had 
disappeared before will not come back (Figure 11). 

 
Figure 12: Connected component labelling 
 
To the result of the above we now apply Connected Component 
Labelling. This operation assigns a unique label (as the voxel 
value) to each collection of adjacent object voxels, i.e. to each 
object. After this, the size of each object (i.e. the number of 
voxels in it) can be easily established from a histogram, and only 
the very large objects remain as canopy (Figure 12). 
 

4.3 Tree trunk classification  

The tree trunks naturally cut vertically through the voxel space, 
through the near-surface and elevated surface fuel and up to 
support the canopy. For this study, the trunks would have resulted 
in overestimation of data when calculating the voxel volume of 
near-surface and elevated fuel. An in-house routine identifies 
vertically contiguous voxel columns assuming they approximate 
tree trunks; if there is a large enough connected group of filled 
voxels, we expect this to be typical of a trunk. The routine looks 
for groups of 10 vertical voxels with at least 9 filled. If there is a 
gap, it is considered to be an artefact of occlusion. This set of 
voxels was then isolated from the dataset. Figure 13 shows the 
forest profile in a section of the voxels space having width of 10 
voxels. The mid graphics shows the isolated tree trunks, and the 
lower shows just the remaining voxels. They can be considered 
vegetation that have to be assessed of fuel volume. The colour 
coding shows red to blue: red representing the more non-empty 
voxel in the section and blue as the less non-empty voxels.  
 

 
 

Figure 13: Side elevation showing site before trunk removal 
(upper), extracted trunks (mid) and vegetation with trunks 

removed (lower). 
 
Figure 14 shows an oblique aerial view of the entire site and the 
volume to tree trunk removed from the dataset, and a detail of the 
trunks showing the voxelised structure of the volumes at 0.40m 
per voxel. 
 

 
 
Figure 14: Extracted trunks (left) and detail showing voxels 
(right). 
 
4.4 Elevated surface and near-surface fuel 

Having removed everything but the structural layers of elevated 
surface fuel and near-surface fuel, the two layers can be further 
analysed to estimate the amount of undergrowth of vegetation at 
each level. It is important to state that the lowest voxel in each 
column represents the ground plane- having no LiDAR points 
below the ground level. This is voxel zero. At a resolution of 
0.40m, voxel 1 and voxel 2 represent near-surface fuel and 
elevated surface is upward from voxel 3. 
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Figure 15: Elevated surface fuel at 0.40m resolution 
 
Figure 15 shows the elevated surface fuel visualised using 
CloudCompare at resolution 0.40m and Figure 16 shows the 
vegetation in the near-surface fuel level across the entire site.  
 

 
Figure 16: Near-surface fuel at resolution 0.40m. 

 
These data can now be analysed and plotted to reveal plan 
coverage density and distribution information. 
 
4.5 Estimation of fuel coverage for elevated and near-
surface fuel 

 

 
 
Figure 17: 0.40m resolution voxel plots, where voxels do/do not 
contain near-surface fuel (above) and elevated fuel (below). 

 
Figure 17 shows the extracted and isolated structural layers of 
concern to HR burn practitioners. The non-empty voxels 
containing are plotted in red and the white areas represent empty 
voxels (with no LiDAR points). The density and distribution of 
the fuel can be assessed even visually. 
 

 
 

Figure 18: Densities of fuel types in circular areas with 10m 
radius of near-surface fuel. 

 
Figure 18 and Figure 19 illustrate circular areas having a radius 
of 10m, similar to the NSW knee-hip-shoulder methodology and 
the corresponding coverage percentages: 0-20% (blue), 20-40% 
(green), 40-60% (orange) and more than 60% (red).  
 
 

 
 
Figure 19: Densities of fuel types in circular areas with 10m 
radius of elevated fuel. 
 
The circular areas shown in the figures can readily be used by 
practitioners using OFHAG guide. For example. Blue areas 
indicate plan coverage less than 20%. Based on the amount of 
near-surface and elevated fuel, these areas do not require HR 
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burning. The other areas represent plant coverage greater than 
20%. These areas have to be checked and qualified for HR 
burning. At this point, a visiting fire practitioner can arrive at the 
site pre-prepared to ground truth the data and inspect the areas 
indicating the highest risk, and possibly direct any burns away 
from the blue zones. 
 
To assess the research finding the test area was visited and the 
vegetation fuel was visually inspected. The observations 
confirmed the results obtained for elevated fuel. The images in  
Figure 20 illustrate vegetation in areas, which have high (red area 
in Figure 19) and low vegetation coverage (blue area nearby). 
The classification of near-surface fuel needs more investigation 
and it is too early to draw conclusions. Near-surface fuel is highly 
correlated to the elevated fuel and the tree canopy. If the canopy 
or elevated vegetation are dense, the near-surface vegetation is 
considerably less.  
 

 
 

 
 

Figure 20: Images from the test site for elevation fuel: more 
than 30% coverage (above) and less than 20% coverage 

(below). 
 

5. CONCLUSIONS AND FUTURE WORK 

UAV drones and LiDAR pointclouds have become practically 
ubiquitous, and a represent a bigdata resource. The use of voxels, 
as demonstrated in this paper has enabled a substantial value-add 
to increase the interpretability, (re)usability and practical 
application. The workflow developed is low-cost, processor 
efficient and fit for the purpose of serving as a decision-support 
tool to support fire practitioners by improving the currency of 
data and in developing an evidence-base for helping map and 
prioritise the large-scale operation of HR burning. It should be 
noted that this research is still work in progress, but the results 
are very promising. The next steps will focus on ground-truthing 
and calibrating the voxel analysis method, specifically improving 
the terrain estimates and near-surface fuel. Further advancements 
in the include incorporating further sources of information into 
the model; particularly topographic and slope information that 
had not been examined in this study. 
 
Given the window of opportunity to execute HR burns is 
contracting dues to climatic changes, it is important fire 

practitioners have up-to-date and longitudinal intelligence to best 
plan and perform the complex operations at hand. 
 

6. REFERENCES 

Almeida, D., Nelson, B., Schietti, J., Gorgens, E., Resende, A., 
Stark, S., 2016. Contrasting fire damage and fire susceptibility 
between seasonally flooded forest and upland forest in the 
Central Amazon using portable profiling LiDAR. Remote 
Sensing of Environment. 184, 153 – 160. 
 
Chang, C., 2020. How the 2019 Australian bushfire season 
compares to other fire disasters. URL: 
https://www.news.com.au/technology/environment/how-the-
2019-australian-bushfire-season-compares-to-other-fire-
disasters/news-story/7924ce9c58b5d2f435d0ed73ffe34174  
 
Chen, Y., Zhu, X., Yebra, M., Harris, S., Tapper, N., 2017. 
Development of a predictive model for estimating forest surface 
fuel load in Australian eucalypt forests with LiDAR data. 
Environmental Modelling & Software. 97,61-71.  
 
Cheney, N.P., Gould, J.S., Catchpole, W.R., 1998. Prediction of 
fire spread in grasslands. International Journal of Wildland Fire 
8, 1–13. 
 
Cruz, M.G., Gould, J.S., Alexander, M.E., Sullivan, A.L., 
McCaw, W.L., Matthews, S., 2015a. Empirical-based models for 
predicting head-fire rate of spread in Australian fuel types. 
Australian Forestry. 78, 118–158. 
 
Cruz, M.G., Gould, J.S., Kidnie, S., Bessell, R., Nichols, D., 
Slijepcevic, A., 2015b. Effects of curing on grassfires. II: effect 
of grass senescence on the rate of fire spread. International 
Journal of Wildland Fire 24, 838–848. 
 
Forestry Commission of Tasmania, Tasmania Fire Service, 1984: 
Guideline for fuel reduction burning under dry forests. Forestry 
Commission of Tasmania, Hobart. 
 
Gorte, B. Zlatanova, S., 2016, Rasterization and voxelization of 
2D and 3D space partitioning. Int. Arch. Photogramm. Remote 
Sens. Spatial Inf. Sci., XLI-B4, 283-288. doi.org/10.5194/isprs-
archives-XLI-B4-283-2016. 
 
Gorte, B. and Winterhalder, D., 2004, Reconstruction of laser-
scanned trees using filter operations in the 3D raster domain, Int. 
Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XXXVI-8 
W2, 6p.  
 
Gould, J. S., Cruz. M., 2012. Australian Fuel Classification: 
Stage II. Report number: EP126505. 
 
González-Olabarria, J.R., Rodríguez, F., Fernández-Landa, A., 
Mola-Yudego, B., 2012. Mapping fire risk in the Model Forest 
of Urbio´n (Spain) based on airborne LiDAR measurements. 
Forest Ecology and Management. 282, 149–156. 
doi:10.1016/J.FORECO.2012.06.056 
 
Grau, E., Durrieu, S., Fournier, R., Philippe, G. J., Yin, T., 2017. 
Estimation of 3D vegetation density with Terrestrial Laser 
Scanning data using voxels. A sensitivity analysis of influencing 
parameters. Remote Sens.Env., 188, 373-388. 
doi.org/10.1016/j.rse.2017.01.032. 
 
Inan, M., Bilci, E., Akay. A.E., 2017. Using Airborne Lidar Data 
For Assessment Of Forest Fire Fuel Load Potential. ISPRS 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume VI-3/W1-2020, 2020 
Gi4DM 2020 – 13th GeoInformation for Disaster Management conference, 30 November–4 December 2020, Sydney, Australia (online)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-VI-3-W1-2020-3-2020 | © Authors 2020. CC BY 4.0 License.

 
9



 

Annals of Photogrammetry, Remote Sensing and Spatial 
Information Sciences IV-4/W4: 255-258. 
 
Handmer, J., Ladds, M., Magee, L., 2018. Updating the costs of 
disasters in Australia. Australian Journal of Emergency 
Management., AJEM 33 (2) 
 
Hennessy, K., C. Lucas, N. Nicholls, J. Bathols, R., Suppiah, 
Ricketts, J., 2005. Climate change impacts on fire-weather in 
south-east Australia. Consultancy report for the New South 
Wales Greenhouse Office. 88. 
http://www.cmar.csiro.au/eprint/open/hennessykj_2005b.pdf. 
 
Hermosilla, T., Ruiz, L.A., Kazakova, A.N., Coops, N.C., 2014. 
Estimation of forest structure and canopy fuel parameters from 
small-footprint full-waveform LiDAR data. International 
Journal of Wildland Fire. 23(2): 224-233. 
 
Hines, F., Tolhurst, K. G., Wilson, A., McCarthy, G. J., 2010. 
Overall Fuel Assessment Guide. Department of Sustainability 
and Environment. Fire and Adaptive Management, Report 
Number 82., 4th Edition. ISBN 978-1-74242-677-8. 
 
Eusuf, M., Barton, J., Gorte, B., Zlatanova, S., 2020. Volume 
estimation of fuel load for hazard reduction burning: a voxel 
approach, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci.  
XLIII-B3-2020. 1199-1206. 
 
Listopad, C.M., Drake, J.B., Masters, R.E., Weishampel, J.F., 
2011. Portable and airborne small footprint LiDAR: forest 
canopy structure estimation of fire managed plots. Remote 
Sensing. 3, 1284–1307. doi:10.3390/RS3071284  
 
Mallet, C., Bretar, F., 2009. Full-waveform topographic 
LiDAR: state-of-the art. ISPRS Journal of Photogrammetry and 
Remote Sensing 64, 1–16. doi: 
10.1016/J.ISPRSJPRS.2008.09.007 
 
Morton, A., Graham, R., 2020. Almost 3 billion animals 
affected by Australian bushfires, report shows. The Guardian. 
URL:https://www.theguardian.com/environment/2020/jul/28/al
most-3-billion-animals-affected-by-australian-megafires-report-
shows-aoe 
 
Penman, T., Christie, F., Andersen, A., Bradstock, R., Cary, J., 
G., Henderson, M., Price, O., Tran, C., Wardle, G., Williams, R., 
J., York, A., 2011. Prescribed burning: How can it work to 
conserve the things we value? International Journal of Wildland 
Fire. 20. 721-733. doi.org/10.1071/wf09131. 
 
Pfeifer, N., Gorte, B., Oude Elberink, S., 2004, Influences of 
vegetation on laser altimetry–analysis and correction approaches, 
Int. Arch. Photogramm. Remote Sens. Spatial Inf.Sci., XXXVI-8 
W2, 283-288 
 
Price, O. and C. Gordon, 2016. The potential for LiDAR 
technology to map fire fuel hazard over large areas of Australian 
forest. Journal of Environmental Management, 181. 
doi.org/10.1016/j.jenvman.2016.08.042 
 
Skowronski, N., Clark, L. K., Duveneck, M., Hom, J. 2011. 
Three-dimensional canopy fuel loading predicted using upward 
and downward sensing LiDAR systems. Remote Sens. Env., 
112(2),703-714. doi.org/10.1016/j.rse.2010.10.012. 
 
Sikkink, P. G., Keane, Robert E., 2008. A comparison of five 
sampling techniques to estimate surface fuel loading in montane 

forests. Int. Journal of Wildland Fire.,17(3), 363 -379. 
doi.org/10.1071/WF07003 
 
Sidhaarthan, A., Bhuvaneshwari, B., Jayanth, N. 2012. Real 
Time Exact 3D Modelling of Objects from 2D Images using 
Voxelisation. International Journal of Computer Applications., 
42, 20-24. doi.org/10.5120/5720-7781 
 
Spits, C., Wallace, L., Reinke, K., 2017. Investigating Surface 
and Near-Surface Bushfire Fuel Attributes: A Comparison 
between Visual Assessments and Image-Based Point Clouds. 
Sensors (Basel, Switzerland), 17(4), 910. 
doi.org/10.3390/s17040910 
 
Steffen, W., Hughes, L., Mullins, G., Bambrick, H., Dean, A., 
Rice, M., 2019. Dangerous Summer: Escalating bushfire heat and 
drought risk. Climate Council of Australia Limited. ISBN: 978-
0-6486793-9-4 (digital) 
 
Thies, M., Pfeifer, N., Winterhalder, D., Gorte, B, 2004. Three-
dimensional reconstruction of stems for assessment of taper, 
sweep and lean based on laser scanning of standing trees, 
Scandinavian Journal of Forest Research 19 (6), 571-581 
 
Tolhurst, K., Shields, Brett, Chong, Derek., 2008. Phoenix: 
Development and application of a bushfire risk management tool. 
Australian Journal of Emergency Management. 23. 47-54. 
Vigilante, T., Thornton, R., 2016. Bushfires 2: Managing 
landscapes. Australian Academy of Science 
https://www.science.org.au/curious/earth-
environment/bushfires-managing-landscapes.  
 
Vernier, J. P., Reed, J., 2020. Satellites Provide Multiple Views 
of Australia Fires from the Same Day. disasters.nasa.gov. 
 
Volkova, L., Andrew, S. L., Stephen R. H., Christopher J. W., 
2016. Visual assessments of fuel loads are poorly related to 
destructively sampled fuel loads in eucalypt forests. Int. Journal. 
Wildland Fire. XXV, 1193-1201. doi.org/10.1071/WF15223 
 
Volkova, L., Aparico, W., Weston, A., Christopher, J. 2019. Fire 
intensity effects on post-fire fuel recovery in Eucalyptus open 
forests of south-eastern Australia. Sci.Total Env., 667, 328 - 336. 
doi.org/10.1016/j.scitotenv.2019.03.226  
 
Yebra, M., Marselis, S., Van, D. A., Cary G., Chen, Y., 2015. 
Using LiDAR for forest and fuel structure mapping: options, 
benefits, requirements and costs. Bushfire & Natural Hazards 
CRC, Australia.  
 
Zhou, Q., Robson, M., Pilesjo, P., 1998. On the ground 
estimation of vegetation cover in Australian rangelands. Int. 
Journal of Remote Sens., 19 (9), 1815-1820. 
doi.org/10.1080/014311698215261 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume VI-3/W1-2020, 2020 
Gi4DM 2020 – 13th GeoInformation for Disaster Management conference, 30 November–4 December 2020, Sydney, Australia (online)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-VI-3-W1-2020-3-2020 | © Authors 2020. CC BY 4.0 License.

 
10




