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ABSTRACT:

Three-dimensional (3D) raster data (also named voxel) is important sources for 3D geo-information applications, which have long 
been used for modelling continuous phenomena such as geological and medical objects. Our world can be represented in voxels by 
gridding the 3D space and specifying what each grid represents by attaching every voxel to a real-world object. Nature-triggered 
disasters can also be modelled in volumetric representation. Unlike point cloud, it is still a lack of wide research on how to 
efficiently store and manage such semantic 3D raster data. In this work, we would like to investigate four different data layouts 
for voxel management in open-source (spatial) DBMS - PostgreSQL/PostGIS, which is suitable for efficiently retrieving and quick 
querying. Besides, a benchmark has been developed to compare various voxel data management solutions concerning functionality 
and performance. The main test dataset is the groups of buildings of UNSW Kensington Campus, with 10cm resolution. The 
obtained storage and query results suggest that the presented approach can be successfully used to handle voxel management, 
semantic and range queries on large voxel dataset.

1. INTRODUCTION

Voxels are volumetric pixels, which are spaced in a regular grid
in three-dimensional (3D) space and are perceived without gaps
between them. In contrast to the similar concept of point clouds,
voxels can only inhabit discrete positions in space dictated by
the grid. The grid is regular and all possible voxel positions are
equally spaced. Voxels are the quickest way to quickly model
and visualize volumetric data (especially in natural or organic
formations).

Applications for voxels include the visualization and analysis
of medical and scientific data (Chmielewski, Tompalski, 2017),
and representation of terrain in games and simulations. Medical
researchers are now using volumetric imaging to view Mag-
netic Resonance Imaging (MRI) scans from different angles,
effectively to see the inside of the body from outside. Mine-
craft (Duncan, 2011), a sandbox video game, uses voxels to
store terrain data. Geologists often use voxel modeling tech-
niques to model geological features like terrain and elevation.
More broadly, scientists can use voxel-based modeling to visu-
alize and measure the volume of anything from fluids to green
spaces in urban centers (Anderson et al., 2018). Voxels are also
fundamental in several recent approaches to semantic labeling.
Häne, C. et al. (Hane et al., 2013) use voxels to represent spatial
constraints on scene labels. The regular voxel grid also provides
an ideal basis for deep Convolutional Neural Networks (CNNs),
as has been recently demonstrated by Zhou and Tuzel (Zhou,
Tuzel, 2018).

Same as with the management of other geographic data, voxels
have for many years now been managed in the traditional way of
using file system with different data structures. These files can
then be stored in a hierarchy of folders for sparse voxel models
such as a 3D city model with different LODs and accessed by
∗ Corresponding author

the third-party software. Generally, voxel can be characterized
as being mostly static data sets, that means, once voxels are pro-
cessed, there are few opportunities to modify or update them.
During the last decade, Relational Database Management Sys-
tems (DBMSs) are the most widely used and the most mature
database systems, and they have been applied in various indus-
tries. To enrich geospatial functions and geospatial processing
capability, in 2010, Open Geospatial Consortium (OGC) is-
sued “OpenGIS Implementation Specification for Geographic
information - Simple feature access - Part 2: SQL option” (Her-
ring, 2010), which defines basic geometry types like Point,
Curve, Surface and Polygon. Examples of object-relational
DBMS for geographic information include PostGIS (Obe, Hsu,
2011), Oracle 11g (Kothuri et al., 2008), and Microsoft SQL
Server (Fang et al., 2008). These relational databases can define
geospatial objects, and adopt different indexes for fast spatial
queries (Binary Tree in SQL Server, Binary Tree, R-Trees, and
Generalized Search Tree in PostGIS) (Guo, Onstein, 2020).

To make use of voxel data in different scenarios, an efficient
storage and retrieval system is therefore needed. In this pa-
per, we investigate four data layouts for storing and managing
the 3D raster data in PostgreSQL/PostGIS, namely - (1) a flat
ARRAY table; (2) a POINT geometry table; (3) a MULTIPOINT

geometry table, and (4) a PCPATCH table with the help of
Pointcloud. We present two different implementations of
these four data layouts that use the INTEGER data type with scal-
ing and offset or use the NUMERIC data type directly, depending
on its use.

Our primary contributions are as follows:

1. A novel perspective on different data layouts on voxel
models is proposed considering voxels with multiple offset
coordinates for the sake of improving the ability of expres-
sion of the same built environment from multiple perspect-
ives.
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2. A high-level conceptual design and relational database
design have been developed for voxel models in a joint
manner.

3. An exploration and comparison of semantic and spatial
analysis on our proposed data layouts are developed to in-
vestigate suitable voxel data management solution in dif-
ferent application scenarios.

The rest of this paper is structured as follows: Section 2 gives
a brief retrospect to the voxel and voxel data management. In
addition, the essential aspects and approaches for voxel mod-
elling using geo-database are discussed. Section 3 proposes
our design and implementation of 3D raster data management
in PostgreSQL/PostGIS with details about the four kinds of
data layouts. Moreover, a case study on the UNSW campus
to demonstrate the usability and efficiency of the proposed stor-
age model is shown in Section 4. The last section draws the
conclusions about the presented work and outlines the relevant
aspects of our future research and developments tasks.

2. MANAGEMENT OF 3D RASTER DATA

(3D)Raster data have evolved to establish a major source of
information for many topographic applications (Psomadaki,
2016), and representing 3D urban scenes by voxels brings a
number of advantages (Zlatanova et al., 2016) However, due
to their large volume and semantic complexity, management of
voxels is a rather challenging topic. For many years voxels have
been managed using file-based solutions. Recently, new ways
to manage voxels can be achieved using RDBMS.

2.1 Voxels

Our world can be modelled in voxels by gridding the 3D space
and specifying what each cell represents by semantically ”at-
taching” every cell/voxel to a real-world object (Goncalves et
al., 2016). Storing volumetric spaces such as buildings, air, wa-
ter and terrain is possible. Because of the nature of the way
that they are generated, voxels are considered structured data
(found on a regular grid). On the one hand, voxels can be con-
sidered as vector-based structures (since they are a collection of
grids, but on the other hand they present many differences with
point clouds, given that point clouds are not a regular grid and
unstructured data).

Each voxel Vi that is part of a voxel object has three coordinates,
namely Xi, Yi, Zi, and attached several attributes. These attrib-
utes are highly correlated to the way the voxel was generated in
the first place, such as classification information (which corres-
ponds to the type of real-world object the voxel belongs to, e.g.,
tree, building etc.). Every object is defined by a set of voxels,
with set’s length depending on the level of detail (LOD) (Li
et al., 2019). The storage unit base is a 3D voxel of a cer-
tain size and each voxel’s characteristics e.g. type (wall, glass,
roof, door, etc.), color, density, etc. is then stored as a semantic
property. Representing real-world objects by a single geometry
type (3D cube) instead of a collection of polygons/polyhedron
greatly simplifies a range of geometric operations: volumes and
areas are calculated by simply counting the number of voxels
that form an object; 3D bisections become simple selection op-
erations; dynamic Levels-of-Detail (LOD) as objects can be res-
ampled with larger cubes (Zlatanova et al., 2016).

2.2 Voxels Management

Same as with the management of other geographic data, a file-
based approach is the most common and basic approach to man-
age 3D raster data. Traditionally, 3D raster data have been
stored in XYZ-format or its compressed format – VOX. The two
most important schemes to represent voxels are Octree (Laine,
Karras, 2010) and vector implementation. For a realistic rep-
resentation of highly complex shapes, the Octree grows closer
to its full size (Patil, Ravi, 2005), and the vector implementa-
tion may be simpler as well as more efficient in terms of storage
and further analysis or visualization. Storing the voxel data is
mostly achieved using ASCII, which have been utilised mostly
because they are human-readable. For instance, for a binary
voxel model, we use a single bit (0 or 1) to represent the state of
each voxel. For a general voxel model, the absolute or relative
coordinates combining several attributes are used to represent
each voxel.

However, the file-based approach is not suitable for data shar-
ing, remote accessing and updating. Considering data shar-
ing among different applications, concurrent access control is
difficult to achieve. Besides, since the amount of voxels eas-
ily reaches millions, on-the-fly indexing is required in order to
achieve efficiency while processing. This, together with the in-
creasing availability of voxel information, makes files an ineffi-
cient method of organisation, as being aware of which datasets
are where and when is not simple (Psomadaki, 2016).

Besides the file-based solution, voxel can also be stored
in a Database Management Systems (DBMSs), relational or
not, like Oracle, PostgreSQL (Momjian, 2001) and Mon-
etDB (Zlatanova et al., 2016). The use of files to manage voxels
is viable for limited space coverage, however, in the case of
large-scale coverage on a precinct or regional scale, a database
is more appropriate. The DBMS-based approach presents many
advantages over file-based organisations. One of the motivat-
ing factors in using a DBMS to store voxels is their usefulness
in providing access to the data via a declarative language, like
SQL (Structured Query Language) (Chamberlin, Boyce, 1974)
for Relational DBMS (RDBMS). Besides, DBMSs offer bene-
fits in terms of security, concurrent access, scalability, manage-
ment of updates, quick access through indexing and user man-
agement. At the same time, it is easier for the integration with
other types of (geo-)spatial data already stored in databases.

3. DATA LAYOUT

In this section, we first describe the sample voxel dataset, then
we test several different data layout for storage and queries.

3.1 The Sample Voxel Data

We select part of the University of New South Wales (UNSW)
Kensington lower campus as case study. The raw voxel data-
set includes six building objects with total 33,170,471 voxels as
described in Table 1. We assign ID and name for each build-
ing object, such like the first building named “Built Environ-
ment” with objID = 1. It is worth noting that each data set
has the same scale and different offset. Besides, since the data
source for the voxel data came from the existing BIM model,
each voxel itself carries some IFC attributes 1 like IfcBeam,
IfcDoor. After statistics, we list all the IFC attributes in
Table 2.
1 http://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/
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Building ID Name Scale Offset Number of voxel
objID=1 Built Environment 10cm (336300,6245507,25) 17,460,029
objID=2 Block House 10cm (336042, 6245613, 27) 3,392,202
objID=3 Dalton 10cm (336305, 6245569, 29) 1,887,512
objID=4 Quadrangle 10cm (336409, 6245580, 31) 3,161,733
objID=5 Round House 10cm (336047, 6245651, 25) 6,037,174
objID=6 Science Theatre 10cm (336325, 6245582, 28) 1,231,821

Table 1. Object ID, Name, Scale and Offset in Dataset.

IfcBeam IfcBuildingElementPart IfcBuildingElementProxy IfcColumn
IfcCovering IfcDiscreteAccessory IfcDistributionElement IfcDoor
IfcFlowSegment IfcFlowTerminal IfcFurnishingElement IfcMember
IfcOpeningElement IfcPlate IfcRailing IfcRamp
IfcRampFlight IfcSpace IfcRoof IfcSite
IfcSlab IfcStair IfcStairFlight IfcWall
IfcWallStandardCase IfcWindow

Table 2. Code list of IFC attribute (26 in total).

3.2 The Software and Hardware That Was Used

A high performance HP laptop with 16GB RAM and a
2.80GHZ Intel(R) Core(TM) i7-7600U CPU, running on a
64bit Windows 10 Enterprise and equipped with an internal
512GB SSD for disk storage was used for all the tests.

PostgreSQL 11.2 together with pgAdmin (version 4.3) is used
as a RDBMS for storage and running spatial or semantic quer-
ies. For general query, we directly use pgAdmin to run the
query and evaluate the running time. Moreover, so as to ob-
tain an accurate time, for each query we issued the command
‘EXPALIN ANALYZE stmt’, where stmt is the query that was
run. The query tie is the sum obtained from the planning and
execution times and it is these values which are reported in the
result tables.

Further, QGIS software can be used for visualising entities. It
can open a model across internet connection to the database
server, edit that model and save the amended model either to a
model file on the local system or merge it back into the source
model on the server.

3.3 ARRAY Table

The majority storage models can be adopted for voxel manage-
ment is based upon the organisation of voxels in the flat ARRAY
table, where each voxel is stored separately in a single row us-
ing common data types (INTEGER or NUMERIC). Each voxel at-
tribute constitutes a separate field. The voxels are populated in
a table and indexed using a B-tree index in the X, Y, and Z co-
ordinates respectively. In our case, the coordinates are saved
into a 4 byte-integer and the scale and offset is stored as a table
property.

Due to our subsequent spatial queries will involve cross-object
retrieval, we integrate six buildings into one flat table with cor-
responding semantic object ID, named objID that represents
the building ID in Table 1.

Concerning semantic labels, we set up other two tables:
ifcclass and objclass, which stand for IFC semantic in-
formation in each voxel grid and object semantic information
of voxels in each building, where scale and offset values are
stored in objclass.

To enhance database performance, PostgreSQL provides sev-
eral index types: B-tree, Hash, GiST, SP-GiST and GIN. Each

Figure 1. Example of a table created in PostgreSQL to store
ARRAY layout.

index type uses a different algorithm that is best suited to dif-
ferent types of queries. In our case, as for the flat PostgreSQL
ARRAY table, we create B-tree indexed on (X, Y, Z) since equal-
ity and range queries on these columns are more often in daily
use, and then populate with data from using SQL script via SQL
Shell. An additional index was then added on columns objID
and ifcID, which refer to the building semantic ID.

3.4 POINT Table

A spatial POINT represents a single location on the Earth. This
point is represented by a single coordinate (including either 2-,
3- or 4-dimensions). Points are used to represent objects when
the exact details, such as shape and size, are not important at
the target scale.

For POINT table, we keep both objID and ifcID semantic in-
formation, and create one geometry column with 3D point in
PostGIS. To achieve this data layout, it is essential to know the
following relevant functions in PostGIS:

• geometry ST MakePoint(float x, float y, float z);

The script creating POINT table is shown in List 1. Regarding to
index, we create B-tree index on two semantic columns objID
and ifcID, and GiST index on geom columns (see Figure 2)

3.5 MULTIPOINT Table

MULTIPOINT is another geometry that consists of a collection
of POINT. In this kind of layout, we consider regarding each
building object and each IFC object as one multipoint, that
means, voxels in one MULTIPOINT geometry have same ifcID

and objID. To achieve this data layout, it is essential to know
the following relevant functions in PostGIS:
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CREATE EXTENSION IF NOT EXISTS POSTGIS;
DROP TABLE IF EXISTS voxelpt CASCADE;
CREATE TABLE voxelpt
(

id serial PRIMARY KEY,
objID INTEGER,
ifcID INTEGER,
geom geometry

);
INSERT INTO voxelpt(objID, ifcID, geom)
SELECT objID, ifcID, ST_MakePoint(x,y,z)
FROM voxel AS VALUES;
DROP INDEX IF EXISTS idx_voxelpt CASCADE;
DROP INDEX IF EXISTS geom_voxelpt CASCADE;
CREATE INDEX idx_voxelpt ON voxelpt(objID);
CREATE INDEX geom_voxelpt ON voxelpt USING GIST (geom);

Listing 1. Example of converting ARRAY to POINT layout.

Figure 2. Example of a table created in PostgreSQL to store
POINT layout.

• geometry ST Collect(geometry[] g1 array);

When using the multipoint geometry type, we need to consider
how to cut the voxel data, that is, those Voxels stored in a multi-
point object. We propose a semantic-based voxel data partition-
ing strategy. Specifically, we want to store all voxels with the
same semantic information in a multipoint object, including ob-
ject semantics and IFC semantics. Moreover, similar to POINT,
two indexes (i.e., B-tree and GiST) are built on (objID, ifcID)
and geom, respectively. The following script shows the details
(see List 2) and an example of a table created in PostgreSQL to
store MULTIPOINT layout is shown in Figure 3.

Figure 3. Example of a table created in PostgreSQL to store
MULTIPOINT layout.

3.6 PCPATCH Table

Pointcloud 2 is a PostgreSQL extension for storing point cloud
(LIDAR) data, where PcPatch can be regarded a potential struc-
ture used for management of voxel model in PostgreSQL. In
our case, we collect a group of voxels with same semantic in-
formation into a PcPatch. Each patch should hopefully contain
voxels that are near together. That is the same partition strategy
as MULTIPOINT (see Section 3.5).

Following the Pointcloud schema 3 (PostgreSQL Pointcloud
deals with all this variability by using a “schema document”
2 https://github.com/pgpointcloud/pointcloud
3 https://github.com/pgpointcloud/pointcloud

DROP TABLE IF EXISTS voxelmpt CASCADE;
CREATE TABLE voxelmpt
(

id serial PRIMARY KEY,
objID INTEGER,
ifcID INTEGER,
geom geometry

);
DO $$
DECLARE

f record;
BEGIN

FOR f in SELECT DISTINCT objID, ifcID
FROM voxelpt

LOOP
INSERT INTO voxelmpt(objID, ifcID, geom)
VALUES (f.objID, f.ifcID,
ST_Collect(ARRAY(SELECT geom
FROM voxelpt
WHERE objID=f.objID AND ifcID=f.ifcID)));

END LOOP;
END;
$$
DROP INDEX IF EXISTS idx_voxelmpt CASCADE;
DROP INDEX IF EXISTS geom_voxelmpt CASCADE;
CREATE INDEX idx_voxelmpt ON
voxelmpt(objID, ifcID);
CREATE INDEX geom_voxelmpt ON
voxelmpt USING GIST (geom);

Listing 2. Example of converting POINT to MULTIPOINT
layout.

to describe the contents of any particular LIDAR point.), we
prepare a schema document to describe the contents of any par-
ticular voxel. Each voxel contains three dimensions, named
X,Y, Z, and each dimension will be of INTEGER data type,
with scaling 0.1. This schema document is stored in the
pointcloud formats table, along with a pcid (i.e.,“pointcloud
identifier”) (see List 3).

<pc:dimension>
<pc:position>1</pc:position>
<pc:size>4</pc:size>
<pc:description>
X coordinate as a long integer.
</pc:description>
<pc:name>X</pc:name>
<pc:interpretation>int32_t</pc:interpretation>
<pc:scale>0.1</pc:scale>

</pc:dimension>

Listing 3. Example of schema document for PCPATCH layout.

The central role of the schema document in interpreting the con-
tents of a point cloud object means that care must be taken
to ensure that the right pcid reference is being used in ob-
jects, and that it references a valid schema document in the
pointcloud formats table. The goal of voxel storage is to try
and keep thins small because there’s so much data. So data are
packed into a byte array, using as few bytes as possible to rep-
resent each value, as shown in Figure 4.

Different from multipoint representation, GiST index is cre-
ated based on 2D bounds of the patch because it cannot be in-
dexed directly on the PcPatch type. Fortunately, Pointcloud
provides PC EnvelopeGeometry(PCpatch) functions that
can directly obtain bounding box as a PostGIS Polygon 2D.
Thus, we can index 2D Polygon. The following script shows
the details (see List 4).
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Figure 4. Example of packed bytes.

DROP TABLE IF EXISTS voxelpatch CASCADE;
CREATE TABLE voxelpatch (
id SERIAL PRIMARY KEY,
objID INTEGER,
ifcID INTEGER,
pa PCPATCH(1)

);
DO $$
DECLARE

f record;
BEGIN

FOR f in SELECT DISTINCT objID, ifcID
FROM voxel
LOOP
INSERT INTO voxelpatch(objID, ifcID, pa)
VALUES (f.objID, f.ifcID, PC_Patch(
ARRAY(SELECT PC_MakePoint(1, ARRAY[x,y,z])
as pt FROM voxel WHERE
objID=f.objID AND ifcID=f.ifcID

)));
END LOOP;

END;
$$
DROP INDEX IF EXISTS idx_voxelpatch CASCADE;
DROP INDEX IF EXISTS geom_voxelpatch CASCADE;
CREATE INDEX idx_voxelpatch ON
voxelpatch(objID, ifcID);
CREATE INDEX geom_voxelpatch ON
voxelpatch USING GIST(PC_EnvelopeGeometry(pa));

Listing 4. Example of generating PCPATCH layout
representation.

Figure 5. Example of a table created in PostgreSQL to store
PAPATCH layout.

3.7 Relational Database Design

According to the above four kinds of data layout, we create a
conceptual model including four voxel tables, one IFC semantic
table and one building object table including scale and offset
value for each object in Figure 6.

4. EXPERIMENTS

Within this section, we evaluate and analyse the query per-
formance on voxels under different data layout in Postgr-
eSQL/PostGIS database. In order to evaluate the balance
between disk space and query time. We create corresponding
tables with NUMERIC data type to directly storage real co-
ordinates in EPSG 28356 projection. Due to space limits, we

Figure 6. UML diagram for our conceptual design.

only show the operations on tables with INTEGER data type;
the results on NUMERIC table will be compared.

4.1 Semantic Analysis

Firstly, the semantic analysis regarding to building object and
IFC feature will be presented in this subsection. To make a fair
comparison, the default query returns “*”, which is all columns
in the database table.

Eval-I: Load all voxels for particular building. We are going
to load all voxels associated with building “Built Environment”
in UNSW campus. To achieve this loading, table objclass will
be joined with main voxel table since it can provide building
name information. The queries in Table 3 are conducted and
results are demonstrated in Table 4, where “INTEGER” stands
for queries happen on table with INTEGER data type and so do
“NUMERIC”. Querying time of ARRAY and MULTIPOINT is steady
for the discussed two data types - INTEGER and NUMERIC. POINT
takes slightly more time for NUMERIC type and PCPATCH costs
less on it. It is obvious that MULTIPOINT and PCPATCH runs
much faster than the first two data layouts due to building ob-
ject is segmented into only few partitions (i.e., few records in
database).

Eval-II: Load all voxels for particular IFC object. Similar
to the first experiment, this time we retrieve the IFC semantic
information. There are 26 different IFC features and we pick up
IfcDoor as the query condition. That is, our goal is to retrieve
all door voxels in this dataset. It is straightforward that com-
bining main voxel table with ifcclass, as depicted in Table 4
and Figure 7. The running time showed almost the same trend
as Eval-I. That is, MULTIPOINT and PCPATCH are more efficient
when dong such a semantic query.

4.2 Spatial Analysis

In this section, we investigate the spatial analysis on different
data layouts.

Eval-III: Distance between two buildings. In our case, we
consider to use 2D box to represent each building object and
calculate the distance between two buildings as the distance
between two centers of box2d, which is a spatial data type used
to represent the two-dimensional enclosing box of a geometry
or collection of geometries. The representation contains the val-
ues xmin, ymin, xmax, ymax. These are the minimum and max-
imum values of the X and Y extents. To achieve this query, it is
essential to use the following relevant functions in PostGIS:
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Data Layout SQL

ARRAY
EXPLAIN ANALYZE SELECT * FROM voxel V JOIN objclass O ON V.objID=O.objID
WHERE O.name=’Built Environment’;

POINT
EXPLAIN ANALYZE SELECT * FROM voxelpt V JOIN objclass O ON V.objID=O.objID
WHERE O.name=’Built Environment’;

MULTIPOINT
EXPLAIN ANALYZE SELECT * FROM voxelmpt V JOIN objclass O ON V.objID=O.objID
WHERE O.name=’Built Environment’;

PCPATCH
EXPLAIN ANALYZE SELECT * FROM voxelpatch V JOIN objclass O ON V.objID=O.objID
WHERE O.name=’Built Environment’;

Table 3. Load all voxels for particular building.

Semantic ARRAY POINT MULTIPOINT PCPATCH

Object INTEGER 11,307.749 6,500.334 7.089 4.127
NUMERIC 11,525.086 12,620.6 6.061 0.705

IFC INTEGER 4,203.041 13,665.43 0.741 0.431
NUMERIC 4,972.347 4414.142 0.24 0.428

Table 4. The query times for four queries using the dataset. All times are in milliseconds.

Figure 7. Visualisation of Eval-II via QGIS.

• float ST Distance(geometry g1, geometry g2);

• box2d ST MakeBox2D(geometry pointLowLeft, geometry
pointUpRight);

• geometry ST Scale(geometry geomA, float XFactor, float
YFactor, float ZFactor);

• geometry ST Translate(geometry g1, float deltax, float
deltay, float deltaz);

Next, in order to calculate the distance between any two build-
ings, scaling and translation are applied on “X” and “Y” val-
ues first to convert them into correct coordinate projection, and
then using ST Distance function to return the minimum 2D
Cartesian (planar) distance between two geometries, in projec-
ted units (spatial ref units).

Considering the four kinds of data layout we have proposed
so far, the flat ARRAY schema is a special one that does not
contain geometric feature. According to box2d definition, we
calculate a set of xmin, ymin, xmax, ymax for each building
object to build a box2d object as follows:

In addition, PCPATCH is also a special one whose data type
is specifically designed for point clouds. Fortunately, the
pointcloud postgis extension adds functions that allow to
use PostgreSQL Pointcloud with PostGIS, converting PCPATCH

to Geometry. In our case, following operation are utilized to
return the 2D bounds of the patch as a PostGIS Polygon 2D:

CERATE VIEW box AS
SELECT ST_Translate(

ST_Scale(ST_SetSRID(
ST_MakeBox2D(

ST_Point(minX, minY),
ST_Point(maxX, maxY)

),28356), O.scale, O.scale),
O.offsetX, o.offsetY) AS geom

FROM (SELECT objID,
MIN(x) AS minX, MIN(y) AS minY,
MAX(x) AS maxX, MAX(y) AS maxY
FROM voxel GROUP BY objID) AS tmp

JOIN objclass O ON tmp.objID=O.objID;

Listing 5. Example of generating bounding box for
MULTIPOINT layout.

CREATE VIEW box AS
SELECT ST_Extent(

ST_Translate(ST_Scale(
pa::geometry, O.scale, O.scale),

O.offsetX, o.offsetY))::geometry AS geom
FROM voxelpatch V
JOIN objclass O ON V.objID=O.objID
GROUP BY V.objID;

Listing 6. Example of generating bounding box for PCPATCH
layout.

Based on above analysis, We search all buildings that within
100 meters of “Built Environment”. Our query result is visu-
alized in Figure 8 , where the caption of Figure 8 gives de-
tail of visualization. Besides, we compare the time for con-
structing bounding box for above query result (including “Built
Environment” itself) on different data type under MULTIPOINT
and PCPATCH layouts. From Table 5, it is easy to find that
NUMERIC type is more efficient to get the minimum bounding
box for the supplied geometry, particular in PCPATCH. That is
because coordinates scaling and translation can be avoid dur-
ing such query and PostgreSQL Pointcloud provides function
PC EnvelopeGeometry to return 2D bounds directly. In con-
trast, when using INTEGER type for PCPATCH, PcPatch object
needs to be converted into PcPoint object and then casts PcPoint
to the PostGIS geometry.

Eval-IV: Analysis of internal objects in building. In this ex-
periment, we analyze some positional relations among rooms
in UNSW campus based on voxel model, in which we are gon-
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Figure 8. Visualisation of Eval-III via QGIS. Object painted in
orange belong to the bounding box. The bottom green is “Built

Environment”.

Data Type MULTIPOINT PCPATCH

INTEGER 19,450.293 179,273.16
NUMERIC 5,443.022 36.529

Table 5. The query times based on two different data type using
the dataset. All times are in milliseconds.

ing to search all rooms in “Red Cente” building whose height
is larger than the roof “Science Theatr”, the following query is
conducted:
SELECT tmp1.z, tmp1.geom
FROM (

SELECT ST_Z(geom) AS z, geom
FROM voxelpt V, objclass O, ifcclass I
WHERE V.objID=O.objID
AND I.name='IfcSpace'
AND V.ifcID=I.ifcID
AND O.name='Built Environment'

) AS tmp1,
(

SELECT ST_Z(geom) AS roof
FROM voxelpt V, objclass O, ifcclass I
WHERE V.objID=O.objID
AND I.name='IfcRoof'
AND V.ifcID=I.ifcID
AND O.name='Science Theatre'
ORDER BY roof DESC LIMIT 1

) AS tmp2
WHERE tmp1.z > tmp2.roof;

Listing 7. Script for Eval-IV.

To achieve this query, we first should acquire the roof height
of “Science Theatre”. In the voxel model, attribute value
IfcSpace represents room space and we pick the minimum z
value as the height of one room. Here, we adopt POINT layout
since in MULTIPOINT and PCPATCH particular IFC object only
has one geometry, once you compare the geometry, you either
return the whole geometry or nothing, unless the geometry is
broken up into a single point.

5. DISCUSSION AND CONCLUSIONS

In this paper, a relational 3D geo-database solution for the man-
agement and analysis of voxel model with multiple scaling and

offsets were presented. Four different kinds of data layouts for
voxel data management in PostgreSQL/PostGIS are investig-
ated in this paper. A case study shows that different data layout
can be applied to different situation to get better performance.
For instance, when retrieving a particular building or IFC object
in its entirety, it is better to consider MULTIPOINT and PCPATCH.
Moreover, these two kinds of layouts bring other benefits as
well, such as small disk space and fast loading. On the con-
trary, ARRAY and POINT are more flexible layouts that allow a
user to look for one or some voxels with special semantic in-
formation. Compared to ARRAY, POINT as a basic geometry,
can take full advantage of spatial functions inherent in Postgis.
However, since only one voxel object is recorded per row, these
two representations can take up a lot of disk space. In our test,
four layouts take up 1,651MB, 2,672MB, 64KB, and 16KB of
disk space, respectively.

There are several possible directions that can be explored for fu-
ture works. First, how to decide the partitions for MULTIPOINT
and PCPATCH schema is an interesting topic, for the time being,
we divide voxel objects with the same semantics directly into
a group. In fact, depending on the different application scen-
arios we face and the frequent query operations, we can con-
sider different ways of partitioning. Moreover, PCPATCH looks
like a very promising data layout for voxel model in Postgr-
eSQL/PostGIS.

With the arrival of big data, voxel applications are also re-
quired changeable data schemas, faster query response times,
and more flexible scalability than traditional relational data-
bases currently using (Li et al., 2020). To respond to these new
challenges, NoSQL (Not only SQL) databases are now being
adopted for geospatial data management. We would design and
implement 3D voxel management in the most popular NoSQL
databases in the next step.
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