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ABSTRACT: 

Urban expansion compounded by climate change appears to exacerbate the temperature difference between urban and rural areas. This 

temperature difference, known as the urban heat island (UHI) effect, results from lack of vegetation, increased impervious surfaces, 

excess heat released from human activities, and changing radiation and wind dynamics due to urban morphology. UHI has been found 

to increase heat-related illnesses, and in some instances, mortalities among vulnerable populations. Heat exposure is particularly 

pertinent in 2020, as stay-at-home orders and higher unemployment rates due to the COVID-19 pandemic have further exposed urban 

residents to local temperatures. Certain socio-economic groups that are more affected by COVID-19 are disproportionately exposed 

to high urban temperatures. We investigated the relationships between urban heat island intensity (UHII), normalized difference 

vegetation index (NDVI), and selected socio-economic factors for Dallas, TX and Phoenix, AZ for June 2020. We used an equal-

weighting approach to combine socio-economic factors obtained from 2018 US Census Bureau data to determine socio-economic 

vulnerability, and used Landsat 8 imagery to derive NDVI and land surface temperature. Pearson’s correlation, hot spot analysis, and 

Moran’s I tests revealed that socio-economic vulnerability was higher in areas with high urban temperatures and decreased vegetation. 

1. INTRODUCTION

As cities expand, they exhibit stronger urban heat island (UHI) 

effects. UHI is the phenomenon where an urban area is 

significantly warmer than the surrounding rural areas due to lack 

of vegetation, increase in impervious surfaces, excess heat 

released from human activities, and changing radiation and wind 

dynamics due to urban morphology (Oke, 1982). The resulting 

temperature difference can be as high as 11° Celsius (Glutting, 

2013). Previous studies have concluded that higher urban 

temperatures have detrimental impacts on public health as they 

increase heat-related illness rates (Paravantis et al., 2017) 

(Voelkel et al., 2018). 

Extreme heat, defined as the number of days when the 

temperature is above 35°C (Jones et al., 2015), exacerbates UHI 

and severely impacts the U.S. Sun Belt region, which spans 

much of the southern and western United States. This region is 

home to many of the fastest growing metropolitan areas in the 

country and has experienced considerable population growth 

since the 1970s due to immigration and the expansion of oil and 

defense industries (Briney, 2019). The Sun Belt is also a hot spot 

for COVID-19 infections. Of the 15 large metropolitan areas 

with the fastest doubling rate of COVID-19 cases in June 2020, 

13 were in the Sun Belt (Olin, 2020).  

Recent studies have revealed that specific demographic groups 

are more vulnerable to COVID-19 as well as to heat-related 

illnesses due to underlying health conditions, increased exposure 

due to unemployment, and lack of resources to adapt accordingly 

(Huang and Cadenasso, 2011; Oppel et al., 2020). Studies by 

Huan et al. (2011) and O’Neill and Ebi (2009) have found that 

higher temperatures correspond with areas that have high 

percentages of populations with low income, high poverty, lower 
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educational levels, ethnic minorities, and elderly people. Black 

and Hispanic populations are almost three times as likely to be 

affected by COVID-19 than white populations (Oppel et al., 

2020), and older adults have the highest risks of severe illness 

from the virus (CDC, 2020). Unemployed and retired 

populations are more likely to spend time in their homes than 

working populations, so they have greater potential exposure to 

the local temperatures around their homes. During 2020, stay-at-

home orders, school closures, remote work, and high 

unemployment rates kept additional people home. Lower-

income populations who live in rented homes are less likely to 

have access to air-conditioning or the means to pay for high 

electricity bills from increased electricity use for cooling. This 

poses a public health concern. This study explores the spatial 

relationships between socio-economic vulnerabilities and 

exposure to higher urban temperatures for Dallas-Fort Worth, 

TX, and Phoenix, AZ during June 2020. 

2. STUDY AREA AND DATA COLLECTION

2.1 Study Area 

We selected Dallas, TX, and Phoenix, AZ, for this study as these 

cities are in the Sun Belt (Figure 1). Dallas and Phoenix have 

high population density, experienced significant population 

growth from 2010 to 2017 (Table 1), and had high COVID-19 

infection rates in 2020. On June 18, 2020, there were 378 positive 

COVID-19 cases per 100,000 people in Dallas-Fort Worth, TX 

and 495 positive COVID-19 cases per 100,000 people in the 

Phoenix, AZ area (Olin, 2020).  
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Figure 1. Map of cities studied 

 

City Dallas/ 

Fort Worth 

Phoenix/Mesa/ 

Scottsdale/Tempe 

County/Counties Dallas, 

Tarrant 

Maricopa 

State TX AZ 

2010 Population  226876 161719 

Population Density 

(people/km2) 

1076.068 1080.213 

Pop. Change 

(2010-2017) 

973431 544141 

Climate Zone Hot-Humid Hot-Dry 

Table 1. Cities in study 

 

2.2 Data 

We used Landsat imagery and socio-economic (SE) data from 

the U.S. Census Bureau for the two study sites. The data sets, 

their sources, and spatio-temporal resolutions are presented in 

Table 2. All data sets were converted to the World Geodetic 

System (WGS) 1984 Web Mercator (auxiliary sphere) spatial 

reference system. We implemented a model to create raster 

layers for SE variables at 10m x 10m resolution, and retained the 

30m x 30m resolution for Landsat imagery. 

 

Data LST Socio-economic 

Specific 

Data 

Landsat 8 

OLI/TIRS 

Band 4, Band 

5, Band 10 

Population Population, 

age, housing 

tenure, 

employment, 

income, race 

Spatial 

Resolution 

30m Census 

block 

Census tract, 

block group 

Temporal 

Resolution 

16 day Year Year 

Time Image 

dependent 

2010 2018 

Source USGS 

EarthExplorer 

U.S. 

Census 

Bureau  

American 

Community 

Survey 5-Year 

Estimates 

Table 2. Data sets, sources, and resolution   

2.2.1 Landsat Data: We used Landsat 8 OLI/TIRS data to 

derive land surface temperature (LST) and normalized 

difference vegetation index (NDVI) for each city. LST is used to 

calculate the urban heat island intensity (UHII) and NDVI 

provides information about the presence of vegetation. We 

selected imagery for June 2020 with minimal cloud cover (Table 

3). We used Band 10 (thermal infrared) to calculate LST, and 

Band 4 (red) and Band 5 (near infrared) to calculate NDVI. 

 

City Image Path Image Row Date 

Dallas, TX 27 37 July 17, 2020 

Phoenix, AZ 

 

37 36 June 30, 2020 

37 37 June 21, 2020 

36 37 June 21, 2020 

Table 3. Landsat 8 OLI/TIRS images used in study 

 

2.2.1    U.S. Census Bureau Data: We used the latest (2018) 

American Community Survey 5-Year Estimates data at the 

census block group or census tract level, for population, age, 

race, housing tenure, employment status, and household income 

variables. We used 2010 population at the census block level to 

disaggregate and redistribute the 2018 socio-economic data at the 

block level. 

 

3. METHODOLOGY 

3.1 Landsat Data Processing 

Although Landsat 8 has two thermal bands (10 and 11), band 11 

is not recommended for LST calculation (Xu, 2015). So, we 

implemented the following steps to calculate LST using Band 10 

(Figure 2). We used equations 1 and 2 to convert digital numbers 

(DN) to radiance and then to Kelvin, respectively. We obtained 

corresponding constants for the equations from the Landsat 8 

Data Users Handbook (Zanter, 2019). Finally, we converted the 

temperature from Kelvin to degree Fahrenheit using equation 3. 

For cities with multiple images, we mosaicked the LST layers 

into a single raster. We used zonal statistics to determine the 

maximum LST in each urban area and per block for each city. 

We calculated the UHI intensity (UHII) per block by subtracting 

the maximum LST per block from the maximum LST of each 

urban area, using boundaries from the U.S. Census Bureau. 

Lower UHII values correspond to higher temperatures.  

 

 
Figure 2. Processing steps for LST calculation 

 

 

Lλ = ML * Qcal + AL      (1) 
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where   

Lλ  = Spectral radiance (W/(m2 * sr * μm))  

ML  = Radiance multiplicative scaling factor  

  = 0.00033420 for Landsat 8 Band 10  

AL  = Radiance additive scaling factor  

  = 0.1 for Landsat 8 Band 10  

Qcal  = Level 1 pixel value DN 

 

  𝑇 =
𝐾2

ln(
𝐾1

𝐿𝜆
+1)

         (2) 

 

where   

T = Effective at-satellite temperature in 

Kelvin 

K2 = Calibration constant 2 

  =  1321.0789 Kelvin for Landsat 8 Band 10  

K1 = Calibration constant 1 

  = 607.75 (Watts/(m2 *sr*µm) for Landsat 5 

= 666.09 (Watts/(m2 *sr*µm) for Landsat 

7ETM+ = 774.8853 for Landsat 8 Band 10 

 𝑇𝑓 = (𝑇 − 273) ∗ 1.8 + 32   (3) 

where  

 T = LST in degrees Fahrenheit 

 

To calculate NDVI, we first converted DN values for band 4 

(red) and band 5 (NIR) to reflectance values using equation 4, 

and corrected for the sun angle using equation 5. We then 

calculated NDVI using equation 6. Constants and equations were 

taken from the manuscript by D’Allestro and Claudio (2015) and 

from Landsat image metadata files (D’Allestro and Claudio, 

2015). We eliminated image borders and mosaicked NDVI 

layers as needed. We nullified the few NDVI values that were 

beyond the -1.0 to 1.0 range due to overcorrection from the 

satellite’s atmospheric correction algorithm. Finally, we used 

zonal statistics to obtain mean NDVI values by block. 

 

ρλ’ = Mρ * Qcal + A ρ   (4) 

 

where       

ρλ’  = top of atmosphere (TOA) planetary 

reflectance without correction for solar 

angle 

Mρ  = Band-specific multiplicative rescaling 

factor from image metadata 

A ρ  = Band-specific additive rescaling factor 

from image metadata 

Qcal  = Quantized and calibrated standard product 

pixel value (digital number)   

 

 ρλ = ρλ’/sin θSE   (5) 

where  

ρλ  = TOA planetary reflectance 

θSE = Local sun elevation angle from image 

metadata  

    

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑟𝑒𝑑

𝑁𝐼𝑅+𝑟𝑒𝑑
=

𝑏𝑎𝑛𝑑5ρλ−𝑏𝑎𝑛𝑑4ρλ

𝑏𝑎𝑛𝑑5ρλ+ρλ
   (6)  

 

3.2 Dasymetric Mapping of Socio-Economic Variables  

We used a dasymetric mapping areal interpolation approach to 

dis-aggregate the SE data to the 2010 block boundaries (Figure 

3). First, we created a binary raster layer using 2010 block 

boundaries and population by block, such that blocks with 

population were assigned a value of 1. Next, we created density 

rasters for each SE variable (Figure 4), which we then multiplied 

by the block binary to determine the total count for each SE 

variable at the block level. Finally, we calculated the percent of 

each SE variable per block. For age and race variables, we 

calculated the percent out of the total 2018 population per block. 

For income, we calculated the percent of households with annual 

income less than $25,000. For rented homes, we calculated the 

percent out of the total housing units per block, and for 

unemployment we calculate the percent out of the total civilian 

labor force per block. 

 

 
Figure 3. Dasymetric approach for mapping percent of socio-

economic variables 

 

 
Figure 4. Steps to create density rasters for socio-economic 

variables 

 

3.3 Creating Stacked Socio-Economic Vulnerability Maps  

For each SE variable, we first selected blocks where the variable 

percent was greater than zero. We then rasterized the remaining 

data. We reclassified the percent of each SE variable (aged 0-14, 

aged 60 and up, Black, Hispanic, rented homes, income less than 

$25,000, and percent unemployed) using Jenks Natural Breaks 

classification into five classes. The first class represented least 

vulnerable (assigned a value of 1) and the last class represented 

most vulnerable (assigned a value of 5). We then combined SE 

variables using an equal weighting approach to generate SE 

vulnerabilities. Finally, we determined the SE vulnerability score 

per block using zonal statistics (majority).  

 

Natural Breaks classification reduces variance within each class, 

so that the similarity between values in a class is maximized. 

Natural Breaks classification accounts well for skewed data and 

allows for small bin ranges when suitable, as opposed to Equal 

Interval, Quantile, or Geometric Interval methods. Because SE 

variables were positively skewed, we used Jenks Natural Break 

classification. We did not use a defined interval for both cities, 
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as we wanted to calculate the relative vulnerability per city, not 

absolute vulnerability across the Sun Belt. Appendix A shows 

the Natural Breaks classification for each variable.  

 

3.4 Statistical Analysis 

We used hot spot analysis (Getis-Ord Gi*) to visualize 

statistically significant areas with high and low values of the 

variables. Before performing the remaining statistical analysis, 

we eliminated all blocks with zero population and zero LST. We 

used GeoDa software to run Bivariate Local Moran’s I spatial 

autocorrelation tests to study significant spatial relationships 

between the variables. Pearson’s correlation and scatterplots 

were used to find absolute relationships between variables, 

disregarding spatial relationships. We multiplied the LST and 

NDVI raster layers by a binary to mask out waterbodies before 

calculating correlation coefficients between LST and NDVI.  

 

4. RESULTS AND DISCUSSION 

4.1 Land Surface Temperature, Urban Heat Island Index, 

and Normalized Difference Vegetation Index  

The LST ranges shown are likely higher than the air temperature 

ranges, as LST accounts for solar radiation absorbed by 

impervious surfaces. Although air temperature and relative 

humidity better indicate human experience of UHI, these 

parameters were not used in the current phase of this study. Maps 

of reclassified UHII using Jenks Natural Breaks classification 

are included, which show the intraurban temperature differences 

as well as temperature gradients in Phoenix and Dallas. The 

UHII and LST maps shown here are almost identical, as 

expected. NDVI provides information about the location and 

health of plants. In the NDVI images, darker green areas indicate 

healthy and abundant vegetation, dark purple indicates water, 

and areas in lighter purple indicate impervious surfaces or desert, 

in the case of Phoenix. Evidently, NDVI distribution in the cities 

follows the LST distribution, which is expected. Hot spot 

analysis results, which represent clusters of high and low values, 

accompany selected LST and NDVI distributions. Dark red 

indicates hot spots with 99% confidence and dark blue indicates 

cold spots with 99% confidence. 

 

Figure 5. LST (a), UHII (b), NDVI (c), and LST hot spots (d) 

maps for Tarrant and Dallas Counties, TX for June 2020.  

 

The left box in each map in Figure 5 represents Tarrant County, 

with the center of Fort Worth indicated by the left point in 

Figures 6a and 6b. The right box represents Dallas County, with 

the center of Dallas indicated by the right point in Figures 6a and 

6b. The UHII and LST maps (Figures 6a and 6b) illustrate that 

temperature increases with proximity to the downtown areas of 

Fort Worth and Dallas. The Fort Worth area has a larger area with 

higher temperature than the Dallas area has.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. LST (a), UHII (b), NDVI (c), and NDVI hot spots (d) 

maps for Maricopa County, AZ for June, 2020.  

 

The metropolitan Phoenix/Scottsdale/Tempe/Mesa falls in the 

oval shown in the LST map (6a). The cooler areas portrayed in 

blue in Figures 6a and 6b represent the Superstition Mountains 

northeast of Phoenix, and the red areas south and west of Phoenix 

largely correspond to the Sonoran Desert. Phoenix exhibits a 

reverse UHI effect, where the urbanized areas tend to be cooler 

than the surrounding desert. This may be due to the urban 

vegetation added to the urban area, as can be seen in the NDVI 

maps (Figures 6c and 6d). The dark green areas shown in the 

western part of the NDVI map for Maricopa County (Figure 6c) 

represent farmland and can also be distinguished as cooler in the 

corresponding LST and UHII maps (Figures 6a and 6b).  

 

4.2 Socio-Economic Vulnerability Index 

Figures 7 and 8 represent the SE vulnerability for Dallas and 

Phoenix. Vulnerability in Dallas tends to increase with proximity 

to the urban centers, where the UHII is higher and NDVI is lower. 

A similar trend is present in Phoenix where the socio-economic 

vulnerability is higher in the urban center and western part of the 

county, as opposed to the surrounding areas. These trends 

illustrate that heat mitigation strategies in Dallas and Phoenix 

should target urban centers, as these areas have both the highest 

heat exposure and the most vulnerable populations.  

 

 
(a) 

 
(b) 

Figure 7. Socio-economic vulnerability map and hot spot 

analysis for Dallas and Tarrant Counties 2018. 

     
                   (a) 

 
(b) 

(c) 

 
(d) 
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(a) 

 
(b) 

Figure 8. Socio-economic vulnerability map and hot spot 

analysis for Maricopa County 2018. 

 

4.3 Intraurban Spatial Variability  

Both UHII and vulnerability tend to increase with proximity to 

the urban centers. We determined proximity to urban center 

based on the distance of each block’s centroid to the centroid of 

the corresponding urban boundary. Figures 9 and 10 show the 

mean UHII and mean distance from urban center for blocks in 

the top 25% of vulnerability for the two cities. For both Dallas 

and Phoenix, trend lines show that overall, as vulnerability 

increases, temperature increases and distance from urban center 

decreases.  

 

 
Figure 9 - Mean UHII and distance from Dallas’s urban center 

for blocks with the top 25% of vulnerability scores.  

 

 
Figure 10 - Mean UHII and distance from Phoenix’s urban 

center for blocks with the top 25% of vulnerability scores.  

 

4.4 Statistical Analysis 

While the correlation coefficients for Dallas are not high, they 

are significant (Table 4). The scatter plots and coefficients 

indicate SE vulnerability is higher for areas with increased LST 

and reduced vegetation. As shown in Table 4, there is an inverse 

correlation between LST and UHII. There is a relatively strong 

negative relationship between LST and NDVI. Bivariate 

Moran’s I spatial autocorrelation in Figure 12 indicates 

significant clusters of blocks where there are significant 

relationships between LST and vulnerability.    

 

 LST UHII NDVI Vuln. 

Max LST 1    

UHII -1 1   

Mean NDVI -0.65 0.65 1  

Vulnerability  0.03 -0.03 -0.05 1 

Table 4. Pearson correlation coefficients for Dallas.  

 

 
Figure 11. Scatterplot of maximum UHII versus vulnerability 

index for Dallas. 

 

 

 
Figure 12. Bivariate Local Moran’s I spatial autocorrelation 

cluster and significance maps for maximum LST versus socio-

economic vulnerability for Dallas. 

 

A similar trend exists for Phoenix where the vulnerability 

increases with LST and reduced NDVI. However, the correlation 

coefficients between max LST, vulnerability and mean NDVI are 

stronger than the corresponding coefficients for Dallas. The 

relationship between LST and NDVI is still negative, but the 

strength of the relationship is weaker for Phoenix than for Dallas. 
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 LST UHII NDVI Vuln. 

Max LST 1    

UHII -1 1   

Mean NDVI -0.34 0.34 1  

Vulnerability  0.40 -0.40 -0.19 1 

Table 5. Pearson correlation coefficients for Phoenix. 

 

 
Figure 13. Scatterplot UHII versus vulnerability index for 

Phoenix. There is a negative UHII value because the hottest 

block in Maricopa County is not located inside the urban 

boundary.   

 

 
Figure 14 - Scatter plot for mean NDVI versus vulnerability 

index for Phoenix.  

 

 

 
Figure 15 - Bivariate Local Moran’s I spatial autocorrelation 

cluster and significance maps for maximum LST versus socio-

economic vulnerability for Phoenix.  

 

The dark red and dark blue areas of the spatial autocorrelation 

map, indicating the relationship between high vulnerability and 

high LST and low vulnerability and low LST respectively, 

correspond to darker shades of green on the significant map. This 

indicates significant spatial relationships between vulnerability 

and heat exposure in Phoenix.  

 

5. CONCLUSION 

It is evident that socio-economic vulnerability is higher across 

the Sun Belt in areas with high temperature due to the UHI effect 

and reduced vegetation. Therefore, it could be concluded that the 

urban areas that are susceptible to UHI are occupied by 

vulnerable population groups in both Dallas-Fort Worth and 

Phoenix. The CDC also identifies that many of the socio-

economic groups with increased vulnerability to heat exposure 

(elderly, Hispanic, Black) are at higher risk of experiencing heat-

related illnesses as well as COVID-19 infections. Given that the 

number of COVID-19 infections is on the rise, from a public 

health perspective, it is essential to implement mitigation 

strategies including mobile healthcare facilities in the urban 

centers to reduce the adverse impacts of heat exposure and 

COVID-19 on the vulnerable populations.  

 

Our study identified areas that are at high risk for heat-related 

illnesses based on socio-economic vulnerability and exposure to 

high temperatures due to UHI. Future analysis will incorporate 

other parameters, such as access to heat refuge, relative humidity, 

air temperature, pollution, mobility, number of COVID-19 

infected cases, and mortalities in these cities to understand the 

implication of environmental factors and human activities on 

heat exposure and UHII. Future research will also be expanded 

to other metropolitan areas including Los Angeles and Atlanta 

(other epicenters of COVID-19) to assess if the relationship 

uncovered in this study applies to other metropolitan areas.  

 

A major takeaway of this study is that the vulnerable populations 

are at a higher risk of experiencing heat related illnesses. These 

demographic groups have also been identified to be susceptible 

to COVID-19 infections. The study also revealed the spatial 

distribution of these vulnerable population groups, which could 

be used by city planners and public health professionals to 

undertake strategies, such as the deployment of green 

infrastructures, to reduce UHI effects. The results of this study 

could also be used to explore the accessibility of these 

demographic groups to healthcare, which can subsequently be 

helpful in identifying potential sites for mobile hospitals and to 

locate COVID-19 testing facilities and/or vaccination facilities 

once vaccines are available for public use. 
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APPENDIX 

Natural Breaks Classification Values for SE Percents 

1) Income < $25,000 - 

Dallas 2018 

 2) Ages 0-14 - Dallas 2018 

Percent range  New 

Value 

Percent range  New 

Value 

0.56 - 9.46 1 0.77 - 14.96 1 

9.46 - 18.10 2 14.96- 19.83 2 

18.10 - 28.32 3 19.83 - 23.86 3 

28.32 - 41.15 4 23.86 - 27.88 4 

41.15 - 67.61 5  27.88 - 55 5 

 

3) Ages 60+ - Dallas 2018  4) Black – Dallas 2018 

Percent range  New 

Value 

Percent range  New 

Value 

1.72 - 12.19 1 0.00 - 14.06 

 

1 

12.19 - 17.75 2 14.06 – 32.42 2 

17.75 - 24.62 3 32.42 – 51.56 3 

24.62 - 36.40 4 51.56 – 72.26 4 

36.40 - 85.48 5  72.26 - 100 5 

 

5) Hispanic - Dallas 2018  6) Unemployed - Dallas 

2018 

Percent 

range  

New 

Value 

Percent 

range  

New 

Value 

1.65 - 17.01 1 0.00 - 3.94 1 

17.01- 33.15 2 3.94 - 7.89 2 

33.15 - 52.36 3 7.89 - 13.07 3 

52.36 - 71.57 4 13.07 - 22.44 4 

71.57 - 100 5  22.44 - 63.14 5 
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https://www.thoughtco.com/sun-belt-in-united-states-1435569
https://www.thoughtco.com/sun-belt-in-united-states-1435569
https://www.academia.edu/21540430/GIS_application_for_NDVI_calculation_using_Landsat_8_OLI_images
https://www.academia.edu/21540430/GIS_application_for_NDVI_calculation_using_Landsat_8_OLI_images


 

7) Rented homes- Dallas 

2018 

 8) Income < $25,000 - 

Phoenix 2018 

Percent range  New 

Value 

Percent range  New 

Value 

0.00 - 16.01 1 0.07 - 11.06 1 

16.01- 33.20 2 11.06- 19.24 2 

33.20 - 53.51 3 19.24 - 28.70 3 

53.51 - 78.51 4 28.70 - 40.97 4 

78.51 - 100 5  40.97 - 65.52 5 

 

9) 0-14 - Phoenix 2018  10) Ages 60+ - Phoenix 

2018 

Percent range  New 

Value 

Percent 

range  

New 

Value 

0.034- 6.85 1 0.09 - 15.59 1 

6.85 - 14.34 2 15.59 - 30.70 2 

14.34 - 22.26 3 30.70 - 49.29 3 

22.26 - 29.08 4 49.29 - 72.92 4 

29.08 - 56.38 5  72.92 - 99.27 5 

 

11) Black – Phoenix 2018   12) Hispanic - Phoenix 

2018 

Percent range  New 

Value 

Percent 

range  

New 

Value 

0.00 – 4.96 1 0.20 - 16.02 1 

4.96 - 11.59 2 16.02 - 35.53 2 

11.59 – 19.63 3 35.53 - 54.67 3 

19.63 – 30.28 4 54.678 - 72.33 4 

30.28 – 60.56 5  72.33 - 94.42 5 

 

13) Unemployed - Phoenix 

2018 

 14) Rented homes- 

Phoenix 2018 

Percent range  New 

Value 

Percent 

range  

New 

Value 

0.00 - 3.94 1 0.00 - 20.70 1 

3.90 - 8.98 2 20.70 - 38.28 2 

8.98 - 15.23 3 38.28 - 54.29 3 

15.23 - 25.39 4 54.29 - 75.39 4 

25.39 - 100 5  0.00 - 20.70 5 
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