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ABSTRACT: 

This study investigates the use of Advanced Land Observing Satellite 2 (ALOS-2) equipped with an enhanced L-band SAR sensor 

imagery alongside with Landsat-8 optical sensor in detection and mapping of burnt and unburnt scars occurring after a bushfire in 

Victoria, Australia. The bushfires had recently occurred in the period of 2018-2019. The analysis was explored using a contextual 

classifier Support Vector Machine (SVM), as SVM allows us to integrate spectral information and spatial context through the 

optimal smoothing parameter without degrading image quality. The training and test set datasets consisting of burnt and unburnt 

pixels were created from Landsat-8 scenes used as reference data. The backscatter intensity maps (acquired before and after the 

forest fires) from ALOS-2 data were compared and investigated, with a special concern on topographic influence removal. The dual 

polarizations (HH and HV) have been used to improve the forest fire mapping capability. These change detection techniques were 

based on image feature differences, index calculation such as normalized burn ratio. The burnt area and unburnt area were then 

classified via a threshold given by the pre- and post- disaster differences. The classification result achieved an accuracy of 80% 

Landsat-8 and 89% ALOS-2. This result shows the limitations of burnt area mapping with ALOS-2 due to effect local incidence 

angle and topography were of greater impact resulting in shadows. Nevertheless, the results in both areas verify the use of satellite 

SAR sensors and optical in forestry application.

* Corresponding author

1. INTRODUCTION

Forest is a key component of ecology and sustainable 

development and at the same time a dynamic resource. It is 

mainly affected by coexisting ecological processes, direct 

management interventions, and forest fires. Forest fires are 

generally referred to as wildfires due to their frequency and 

intensity (Westerling et al., 2006). The increased intensity 

during burning in tropical regions, temperate, and mountainous 

forests and the increasing trend in the occurrence of fire events 

in Victoria, Australia, as a result of climate change and 

weather, cause a variation in forest structure, species and global 

biomass burning, topography (Clarke et al., 2013). All this 

underlines the need for the development of a reliable procedure 

to accurately and rapidly map burnt areas.  Satellite remote 

sensing has been used for detection, mapping, managing fire-

prone areas and estimating the severity and intensity of 

bushfires (Yebra et al., 2013). In particular, optical satellite 

data have been extensively used and proved to be useful for 

mapping of burnt areas (Koutsias et al., 2000; Roy et al., 2002; 

Gitas et al., 2012). However, the optical data has a 

disadvantage of being hindered by cloud cover or smoke during 

fire instance and errors due to spectral overlap (Cocke et al., 

2005; Allison et al., 2016). Cloud cover reduces the 

observation rate in the visible/infrared bands which when 

depicting low fire severity and fast vegetation regrowth after 

fire may cause low spectral separability between burnt and 

unburnt zones (Mouillot et al., 2014).   

In contrast, Satellite Synthetic Aperture Radar (SAR) imagery 

has the ability to penetrate clouds and fire smoke providing 

invaluable information on burnt areas (Hoekman et al., 2010). 

Its weather independency also is an advantage compared to 

optical sensors. SAR has widely been used for biomass 

estimation, vegetation mapping and also ecological monitoring 

and growth (Kumar et al., 2017). SAR has not only been used 

for various ecological applications, such as vegetation mapping 

and biomass estimation (Kasischke, 1997; Kasischke et al., 

2000), but has also been used for burnt area mapping, given 

that the backscatter signal is sensitive to vegetation structure 

and biomass: removal of leaves and branches from trees due to 

fire alters the scattering mechanisms causing temporal 

variations of the backscatter coefficient (Bourgeau et al., 2002). 

The effects of fires on the backscatter coefficient have been 

exploited in several fire-related studies. This includes 

identification of fires scars in boreal forestry by exploiting the 

C-band backscatter of burnt areas (Bourgeau et al., 2010). The

research on boreal forest depicted stronger return of backscatter

intensity from burnt scares as compared with the unburnt,

which is in response to changes in moisture content (Tanase et

al., 2014). Similar observations were made in tropical rain

forest environment but discovered under dry weather decrease

in backscatter compared to wet conditions however the

discrimination of burnt and unburnt areas was difficult (Huang

& Siegert, 2004). Some studies also reported the use of SAR in

the mapping of burnt scars in the Mediterranean and the

influence on rainfall in backscatter coefficient (Menges et al.,

2004). However, most of the reported studies have focused on

the detection and mapping of fire severity using SAR and very
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few have highlighted a major issue in utilizing SAR backscatter 

such as the effect of biophysical parameters with great impact 

from local topography (Sivasankar et al., 2015). Few studies 

have been done on the effect of geographical aspect of an area, 

its influence on local topography which directly affects 

backscatter intensity in the retrieval of burnt and unburnt areas 

after a bushfire.  

This research aims to analyze the use of backscatter intensity in 

the retrieval of burnt and unburnt areas in relation to the 

geographical aspect of the study area. In this endeavor, we 

attempt to analyze the effect of bushfire on hilly-mountainous 

areas in Australia, and compare the use of satellite SAR and 

optical imagery in the identification of burnt and unburnt 

patches within fire perimeter zones. 

2. METHODS

2.1 Processing flowchart 

To detect and classify the burnt areas after fires, we carry out 

the processing flowchart in Figure 1, which includes initial pre-

processing (Small. 2011), and contextual classification using 

support vector machine method, assisted by optical (reference) 

data. The deliverable – land cover map includes burnt and 

unburnt classification map and fire severity map. The following 

subsections present the relevant methods that we apply.  

Figure 1. Processing flowchart 

2.2 Burnt sensitive spectral composite 

To define a reference for the precise detection of burnt and 

unburnt areas using optical imagery, we use the spectral index 

normalized burnt ratio (NBR) (Escuin et al., 2008). The NBR 

formula relates similarly to the normalized difference 

vegetation index (NDVI), and is formed as  

        NBR = (NIR - SWIR) ·(NIR+SWIR)-1,                    (1)  

where the NIR (near-infrared) covers 750-900 nm and 

shortwave infrared (SWIR) which covers 2080-2350 nm portion 

of the electromagnetic spectrum (Allison et al., 2005). The NIR 

reflects strongly in vegetation while the SWIR is lower, but 

after the fire, the SWIR reflects stronger than the NIR. The 

contrasted relation between SWIR and NIR over burn scar and 

healthy vegetation is used to identify burnt vegetation by the 

help of NBR.        

The NBR difference (dNBR) in pre- and post- fire can be used 

to measure forest regeneration with time aspect, shown as  

dNBR = preNBR – postNBR.                            (2) 

In general, the burnt severity levels can be categorized as five 

major classes: unburnt areas, lightly burnt areas, medium burnt 

areas and, deeply burnt areas and, post-fire regrowth (Allison et 

al., 2005). The burnt severity levels are used as input to 

machine learning (ML) algorithms, support vector machine for 

our case.  

2.3 Support vector machine (SVM) 

In recent decades, Support Vector Machine (SVM) came out as 

a very popular supervised machine learning algorithm of 

classification and regression and its concept introduced by 

(Cortes & Vapnik, 1995). It is a statistical learning algorithm 

that finds an optimal hyperplane and maximizes the margin 

between two defined classes using fewer training samples 

(Vapnik, 2006). SVM tends to maximize the margin between 

the hyperplane and the training samples while minimizing the 

empirical error caused by the training samples. The learning is 

an iterative process of finding a decision boundary that 

separates the training patterns (Zhu & Blumberg, 2002). The 

maximum margin has selected as a decision boundary. On the 

basis of this distance or margin, the objects are separately 

having different class memberships. A subset of data named as 

support vector determines the position of boundary (Richards & 

Jia, 2006). In the present study, the most used Radial Basis 

Function (RBF) kernel of SVM was employed to classify the 

burn and unburn patches. RBF is selected as the optimal kernel 

in its parameter adjustments according to classifier 

performances and a one-against-one (OAO) strategy is used to 

handle multi-class problems (Kavzoglu & Colkesen, 2009).  

2.4 Training data processing 

A training dataset preparation method is the backbone of 

supervised machine learning techniques to solve classification 

and regression problems (Chi et al., 2008). Training set contains 

two-thirds of the total area and test set one third. The main 

objective of the study is to identify burn and unburn patches, 

therefore to train the algorithms in two categories (burn and 

unburn) of sample dataset is required. The band combination of 

SWIR, NIR and Blue could highlight the burn pixels from 

healthy and unburn vegetation. The RGB color composites of 

images before and after fire can be used as sampling site to 

identify the classes. Additionally the Victoria database shape 
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file (more detail in section 3) can be utilized to generate 

effective and accurate training sample data.  

2.5 Accuracy assessment and validation 

Validation is an essential part of any classification as it assesses 

the accuracy of results and we can tell the correctly and not 

correctly classified pixels in the image. The validation sets are 

chosen with reference to the vegetation index (dNBR) which is 

used in the detection of burnt and unburnt areas by computing 

the difference of two images (pre/post) fire images as shown in 

Eq. (2). They are segmented to extract burnt and unburnt areas. 

According to Madoffe et al. (2000), it defines unburnt areas as 

having the forest fire not burning forest floor, lightly burnt areas 

are partially burnt and scorched trees and burn is Scottish. They 

further described that moderately burnt area are whereby most 

vegetation is burnt to ground level and most forest floor 

coverage is burnt while deeply or highly burnt areas and the 

forest floor is consumed by combustion and skeletons of 

vegetation’s are left as remnants. A random feature selection of 

test sets is suggested to be used to reduce data redundancy. 

Validation dataset is used to test the ability of the SVM 

classifier to classify new pixels in new datasets. Finally, the 

results obtained are validated using training and test sets to 

produce overall accuracy. The classification results are 

evaluated by accuracy assessment accuracy takes into 

consideration the overall accuracy (OA), users’ accuracy (UA), 

producers’ accuracy (PA) and kappa coefficient (Kc) which 

uses the error matrix incorrectly classified pixels. Present study 

has performed some set of accuracy assessment techniques i.e. 

User Accuracy (UA) which corresponds to error of commission 

or exclusion (from user perspective), Producer Accuracy (PA) 

address the omission or inclusion errors (point of view of the 

map maker). The Kappa (K) reflects the dissimilarities between 

actual agreement and expected. Whereas the Overall Accuracy 

(OA) is the simplest statistics, which is calculated by dividing 

the correct pixels by total pixels (Foody, 2010).  

3. STUDY AREA AND DATA DESCRIPTION

3.1 Study area 

The study area (Area of Interest (AOI), in blue) selected for our 

research was Victoria, Australia, see Figure 2 in blue. The 

choice of our study areas was influenced by the following 

factors, firstly it experiences severe wildfires occasionally that 

have caused massive impact on human lives and economic and 

environmental degradation. Thus, it would be key to look into 

the causes of fire and the measures to be undertaken to mitigate 

future fires and also for sustainability of the forest ecology. 

Secondly, it has a forest structure that influences the spread of 

fire rapidly. Thirdly it has varying geographical phenomena 

that would be of interest in our research in understanding how 

the area responds to fire occurrences. Fourthly it has recent 

forest fire occurrences that could be of interest in our research. 

Lastly the availability of ALOS-2 data and Landsat-8 dataset 

would be suitable and available for study area.  

3.2 Victoria bushfire data 

The Victoria bushfire database was used, which contained 

bushfires registered and updated from 1939 to 2018 (Victoria, 

2018). The database contained information in vector shape file 

format of all the burns and bushfires in the area, occurrence 

time, the level of severity, location of the fire, fire type, season, 

area coverage and method of obtaining the fire perimeters 

together with accuracy in the resolution of the method used. 

From the dataset one bushfire was extracted between 2018 and 

2019 using a criterion that it was a bushfire, its occurrence date 

was recent (2018/2019) and their burnt severity level was the 

highest in the database. Example is shown in red in Figure 2. 

Figure 2. Bushfires and controlled burns between 2015 and 

2020 (in yellow), from the Victoria bushfire database. In red: 

fires selected for this study in period 2019/2020. Map source: 

National Geographic, Esri, Garmin, HERE, UNEP-WCMC, 

USGS, NASA, ESA, METI, NRCAN, GEBCO, NOAA, 

increment P Corp. The study area is indicated in blue. 

3.3 ALOS-2 data 

A pair of ALOS-2 data (L1.5) obtained in ascending orbit, 

acquired on 30 July 2019 (before fire), 08 October 2019 (after 

fire) were used. The signal wavelength of ALOS-2 is 24 cm, in 

L-band. Each ALOS-2 image has a dual polarimetric channel,

with HH and HV. The spatial resolution of ALOS-2 is 10 x 10

m. Figure 3 illustrates the pre-fire and post-fire intensity maps

over the AOI in HH mode.

Figure 3. ALOS-2 pre-fire (a) ([-0.47, 63.01] dB in HH)  and 

post-fire (b) ([-0.44, 47.13] dB in HH) intensity images 

covering the area of bushfires, respectively. 

3.4 Landsat-8 data 

Two Landsat-8 Operational Land Imager (OLI) for the period 

2019 images, separately acquired on 26 July 2019 (before fire) 

and 13 October 2019 (after fire), were used. Both images have 

<15% cloud coverage, and with 30 m spatial resolution. We 

deliberately collected data in the mid-dry (October to 
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December) season in Australia during which skies are clearer 

and most satellite images are of good quality. Figure 4 shows 

pre-fire and post-fire false color composite maps over the AOI.  

 

  

Figure 4. Landsat-8 pre-fire (a) and post-fire (b) images 

covering the area of bushfires, respectively. Band combination 

is R:G:B=7:5:2. Foreshowing changes before and after fire. 

  

4. RESULTS AND DISCUSSION  

4.1 Optical-based spectral indices (dNBR) calculation  

Fire scar differentiation using optically based indices was 

attainable in analyzing the bushfire data. The burnt severity 

estimation was accurate for highly burnt sites and medium burnt 

sites however for low and unburnt sites there was a 

classification error. The threshold-based classification of dNBR 

was used as a methodological reference to obtain burnt severity 

maps. The burnt severity using Landsat-8 data was developed 

by comparing pre and post-fire satellite images as this showed 

the capability of different spectral bands in burnt area detection. 

The burnt ratio index was found to be sensitive to regenerate 

vegetation and also showed forest regeneration is slower 

especially in areas where the degree of burnt severity was high. 

The results obtained from dNBR show that the unburnt pixels 

depict very low optimal values that are close to zero. In regard 

to burnt pixels, the optimal values of dNBR are considerably 

high reaching a mean value of 1.32. The categories used in the 

index were classified into five classes as shown  in Table 1. A 

bigger proportion of the bushfire lied between medium to highly 

burnt areas. However,it was noted that the burnt severity levels 

consisted of classification error especially between the high and 

medium burnt areas were difficult to separate two classes and 

also between the unburnt and low burnt areas.  

 

dNBR Values   

(not scaled)  

Burn Severity  

-0.500 to -0.251  Enhanced Regrowth, high (post-fire)  

-0.250 to -0.101  Enhanced Regrowth, low (post-fire)  

-0.100 to +0.99  Unburnt  

+0.100 to +0.269  Low severity burn  

+0.270 to +0.439  Moderate to low severity burn  

+0.440 to +0.659  Moderate to high severity burn  

+0.660 to +1.300  High severity burn  

Table 1. Burn severity levels obtained calculating dNBR, 

proposed by United States Geological Survey (USGS). 

  

  

Figure 5. Difference normalized burnt ratio (dNBR) from 

Landsat-8 of the AOI. 

  

4.2 Synergistic use of optical and radar data  

A backscatter and reflectance analysis of burnt and unburnt 

patches was applied to the ALOS-2 and showed highly different 

values over burnt areas compared to the unburnt areas. The data 

showed only slightly higher backscatter values over burnt areas 

compared to the unburnt areas, the backscatter analysis showed 

a clear increase over the burnt areas compared to the pre- 

disaster image which turned out as sufficient for burnt area 

detection. The ALOS-2 co-polarized backscatter (HH) increased 

with burnt severity while the cross-polarized (HV) backscatter 

decreased with burn severity. Low sensitivity to forest regrowth 

was observed for the L-band backscatter with most of it 

classified as burnt areas. This is because of burnt leaves, 

branches and tree trunks at some areas leaving bare soil area. A 

major issue in the use of ALOS-2 image was the influence of 

topography and local incidence angle on the backscatter 

coefficient during mapping of burnt and unburnt areas. It was 

difficult to separate the burnt severity levels using the ALOS-2 

due to the transitional nature of the fire. All the burn severity 

levels largely overlap each other. However, we reclassified the 

burnt severity level to two classes burnt and unburnt class as 

shown in Figure 6 which shows a stronger return of burnt and 

unburnt patches compared to optical dataset shown in Figure 7, 

due to the high influence of geometry acquisition and hilly 

terrain. Landsat-8  

utilizes the spectral sensitivity of defined classes which take the 

measure of only the vegetation fill and crown closure while 

ALOS-2 utilizes the polarimetric sensitivity of removal of 

crown leaves, branches.  

 

However, the optical Landsat-8 showed a stronger sensitivity to 

changes resulting after the fire compared to ALOS-2 data. This 

is proved by the visual assessment of the RGB image of optical 

data as shown in Figure 4. Nevertheless, Landsat-8 

classification resulted in a similar match with the fire extent of 

the polygon showing the spectral sensitivity of pixels to changes 

after the fire similarly to ALOS-2 foreshowing the capability of 

both radar and optical in mapping burnt areas. Note that for 

classification with the SVM method, we collected 33 and 30 
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training data samples, and 22 and 20 test samples for ALOS-2 

and Landsat-2 images, respectively.  

To assess the certainty of our results in the separation of burnt 

and unburnt areas in both optical and radar we used kappa 

coefficient. Both the producer accuracy and user accuracy were 

taken into consideration as shown in Table 2. The remote 

sensing indices that accessed burnt versus unburnt areas 

produced better overall accuracy, higher user and producer 

accuracy results as shown in Table 2 through SVM 

classification of radar and optical. This showed the capability of 

both the electromagnetic spectrum and SAR backscatter 

intensity in corresponding to changes in vegetation structure 

after a fire. Similarly, we obtained quite a good classification 

percentage accuracy and separation of burnt and unburnt areas 

within fire perimeter zones as shown.  

Data 

Kappa 

coefficient 

Producer 

accuracy 

User accuracy 

ALOS-2 0.89 Burnt=80.69% 

Unburnt=78.65% 

Burnt=85.65% 

Unburnt=80.25% 

Lansat-8 0.80 Burnt=84.35 % 

Unburnt=82.26% 

Burnt=92.43% 

Unburnt=84.65% 

Table 2. Accuracy assessment results based on kappa statistics 

from SVM classification of SAR and optical over the AOI. 

It was seen in particular after classification with SVM the vector 

shape file that represents fire perimeter zone was not exactly 

fitting the all burnt zones depicted in classification results. The 

problem could be related to the timing of digitization of vector 

fire perimeter which might have occurred at early stages of the 

while our spectral classification analysis was related to the post-

fire analysis of the image. This may lead disparity of fire 

perimeter shape file with the actual ground timing of fire 

timeout as shown in Figure 5.  This possibly reflected the start 

of the fire but did not execute the whole fire zone. Thus, it was a 

limiting factor in determining whether the area was burnt or 

unburn while obtaining training sets.  

5. DISCUSSION AND CONCLUSION

In relation to the aim of our research as mentioned in the 

introduction is to characterize the difference in burnt and 

unburnt scars using remote sensing methods comparing ALOS-

2 and Landsat-8. The extent of severity of the fire was explored 

firstly by use of vegetation indices dNBR from Landsat-8 

imagery and resulted in the identification of burnt and unburnt 

patches in Victoria, Australia. The comparison of pre- and post- 

fire reflectance values showed spectral similarity as there was a 

decrease in the post-fire values indicating complete or partial 

loss of vegetation based on fire intensity, see Figure 6 and 

Figure 7. The differences at burnt severity maps displayed in 

Figure 5 particularly at intermediate severity levels point out the 

classification errors that eventually affect the overall accuracy 

result. The spectral confusion has been commonly reported by 

various authors (Sunderman & Weisberg, 2011; Quintano et al., 

2018). These changes were highly influenced by the timely 

acquisition of the images as this is a key component in relation 

to the start of fire dates and sampling of the vegetation changes. 

Figure 6. Classified map of ALOS-2 imagery of study area. 

Red colour representing burnt areas and green representing 

unburnt areas. 

Figure 7. Classified map of Landsat-8 optical imagery of 

study area. Red colour representing burnt areas and green 

representing unburnt areas. 

Secondly was to analyze the use of satellite SAR imagery in 

polarimetric aspect and backscatter intensity. This resulted in 

discrimination of burnt areas from the unburnt areas and 

provided distinct information that was related more to changes 

in the forest structure as shown in section 4.1. The changes were 

mainly associated with the backscatter intensity of the fire 

resulting from changes in vegetation structure and also 

topography similar results obtained from (Siegert & Ruecker, 

2000). However, the influence of local incidence angle and 

topography was of considerable effect resulting in shadows. 

Thus the analysis of combination of the polarimetric aspect and 

backscatter intensity could not be validated in some hilly areas, 

and the resultant difficulty in discriminating whether the areas 
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were burnt or unburnt leads to commission and omission errors 

(Sun & Ranson, 2015).  

Thirdly the determination of the degree of spectral contrast 

between the burnt and unburnt areas was performed. This was 

done by assessing the use of kappa coefficient. Both the 

producer accuracy and user accuracy were taken into 

consideration as shown in Table 2. The remote sensing indices 

that accessed burnt versus unburnt areas produced better overall 

accuracy, user and producer accuracy.  This showed the 

capability of the electromagnetic spectrum to correspond to 

changes in vegetation after fire. Nevertheless, it was important 

to note that overall accuracy obtained could not be relied upon 

as it could be biased on the sample size of one class in relation 

to the other (Benson, 2005). This is clearly shown with the 

dNBR values whereby the bright areas within and outside fire 

perimeter zones were classified as burnt areas even though 

some of the were unburnt areas such as rocky areas and 

buildings outside fire perimeter zone. However, keen attention 

should be kept when relating to the accuracy assessment result 

and expected the outcome of defined classes. Also, validation 

maps or existing forms of information on the land use of the 

patches of holes that remain unburnt would help in 

understanding its influence on fire regeneration.  

Finally, the differences in the sensitivity of fire for SAR and 

optical varied and this has been addressed in section 4.2. 

However, an in-depth in time series analysis would be efficient 

in understanding the structural and behavioral changes caused 

by fire, despite the intensity of the fire. In relation to the 

vegetation changes past and recent analysis of wildfire behavior 

relates it to the rate of fuel consumption, weather, and 

topography. A clear understanding should be brought forth on 

how fire ignition points influence the direction of fires based on 

wind pattern (Fischer et al., 2015).  

Regarding the societal impact, our results would be helpful to 

various stakeholders based on their interests. The main 

stakeholders being state forest agencies including state 

government departments, community or landowners and finally, 

firefighters, risk emergency providers, and forest managers. We 

could see the state government departments who are keen on 

forest management use the spatial mapping of bushfire coverage 

and remote sensing analysis of fire severity act as a guide in 

providing emergency resources in most affected areas. Also, 

they would create restricted boundaries surrounding frequent 

bushfire zones that should not be inhabited as a measure of 

safety of human and ecological preparedness. Community and 

landowners that reside within and close to the fire forested 

zones could be educated on the factors that aggregate and 

influence the fast spread of bushfire, the particular zones that 

are highly susceptible to fire and should be avoided and the 

impact of fire to their physical health and economic wealth. 

Firefighters and risk emergency providers would benefit from 

the study by additional integration of fire ignition points in 

developing fire escape zones and setting up of fire emergency 

units. Forest managers would benefit in decision making on 

how to minimize adverse impacts caused by the bushfire in 

relation to unburnt areas that may act as reignition points of fire 

again. They would also use the information from radar to 

understand the influence of forest type and structure to fuel 

connectivity and use it to adequately allocate resources to 

manage fire risks in an effective and safe manner. 

6. RECOMMENDATION

The results of this study confirmed there was a difference 

between the backscatter intensity and spectral aspect in the 

analysis of burnt and unburnt areas, especially in Australian 

bushfires. Scattering from the tree crown was the most 

predominant of the backscatter for the forested areas at L-band. 

However, the backscatter intensity was highly dependent on 

environmental conditions such as terrain effect and also on the 

local incidence angle.  This affected the separation of burnt and 

unburnt areas.  

As a future scope, we recommend to incorporate the effects of 

topography in the analysis. With an idea of the variations in 

mechanical influences, it is possible to track the spatial 

orientation of bushfires and the regions that are more 

susceptible to the spread. This will also provide vital 

information about the nature and susceptibility of forests to fire. 

Moreover, such topographic analysis when augmented with 

spatial statistics can be of great potential in predicting the future 

fire events in a reliable manner. We further suggest to include 

the uncertainty propagation from multi source remote sensing 

data in an attempt to link the error budget with the operational 

issues, which can be carried out by the forest officials to control 

and prevent such events. 

Further recommendation in the research would be an enhanced 

data fusion of SAR and optical imagery from multiple satellites 

in order to improve the timeliness and accuracy of burnt area 

mapping.  The information derived from different microwave 

bands (C-, L-, and/or P- bands) needs to be investigated since it 

could lead to a more detailed understanding of forest fires and 

to a further improvement of mapping accuracies. Explore other 

target decomposition theorems and compare its results to the 

Cloud and Pottier decomposition theorem and see its 

effectiveness in burnt severity estimation compared to 

vegetation indices. Lastly further method improvement of 

terrain correction upon SNAP software for ALOS-2 is required, 

so that one can perform polarimetric decomposition or use 

alternative tool(s) to improve the quality of the results.  
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