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ABSTRACT:

Dramatically increasing collection of point clouds raises an essential demand for highly efficient data management. It can also facil-
itate modern applications such as robotics and virtual reality. Extensive studies have been performed on point data management and
querying, but most of them concentrate on low dimensional spaces. High dimensional data management solutions from computer
science have not considered the special features of spatial data; so, they may not be optimal. A Space Filling Curve (SFC) based
approach, PlainSFC which is capable of nD point querying has been proposed and tested in low dimensional spaces. However, its
efficiency in nD space is still unknown. Besides that, PlainSFC performs poorly on skewed data querying. This paper develops
HistSFC which utilizes point distribution information to improve the querying efficiency on skewed data. Then, the paper presents
statistical analysis of how PlainSFC and HistSFC perform when dimensionality increases. By experimenting on simulated nD data
and real data, we confirmed the patterns deduced: for inhomogeneous data querying, the false positive rate (FPR) of PlainSFC
increases drastically as dimensionality goes up. HistSFC alleviates such deterioration to a large extent. Despite performance de-
generation in ultra high dimensional spaces, HistSFC can be applied with high efficiency for most spatial applications. The generic
theoretical framework developed also allows us to study related topics such as visualization and data transmission in the future.

1. INTRODUCTION

In point cloud data, each point contains multiple dimensions.
Dimension and attribute are equivalent terms, and each repres-
ents a specific type of information. Apart from routinely con-
cerned spatio-temporal dimensions, i.e. X/Y/Z/T, other dimen-
sions such as Level of Detail (LoD), classification and identity
are also indispensable. In specific fields, points may carry more
information. For instance, in hydraulic modelling, a point may
also record the flow direction and speed, sediment concentra-
tion, and other fluid parameters. For certain applications, sev-
eral dimensions can be queried in a combined way. Take in-
door navigation in a Virtual Reality (VR) environment as an ex-
ample, it is sufficient to only show important objects along the
route to avoid excessive data loading. This can be realized us-
ing a customized LoD which represents importance of objects.
Besides, people should be able to see things through windows
which belong to a specific class. Then, a query concerned with
XYZ, LoD and classification will form the basis to realize the
visualization. Another example is the prevalent Building In-
formation Modeling (BIM), which frequently uses XYZ, LoD
and Time. In the future, as information continues to grow, we
will expect to see more dimensions involved in queries. Gener-
ally, we call them nD queries.

Current point data management solutions are mostly file based
systems, and formats include LAS/LAZ, PCL, TEXT and vendor
specific schemas. The integration of different data sources thus
becomes a critical problem. Also, sorting and indexing need
additional data structure design and implementation. Aimed
at generic purposes, Database Management Systems (DBMS)
on the other hand avoid those issues to a large extent. Oracle
and PostgreSQL offer state-of-the-art flat table and block ap-
proaches (Van Oosterom et al., 2015). Flat table stores each
point as a record, and uses one column for each dimension;
the block approach groups points into blocks and then indexes

these blocks in a base table. It is possible to build a B tree on
one or several columns of flat tables, but it is only favourable for
limited types of queries. If columns requested change, the ex-
ecution would most likely become much inefficient. The block
approach first utilizes spatial indexes such as the R tree to loc-
ate blocks that intersect the query geometry. Then it unpacks
the boundary blocks for filtering to achieve accuracy at the in-
dividual point level. It is the fact that if the blocks do not fit in
the query geometry well, the process can be very inefficient due
to the unpacking and filtering processes. To make things worse,
it only supports a limited number of dimensions to be indexed,
e.g., at most 3 for Oracle SDO PC (Oracle, 2013b).

Efficient solutions for generic nD points querying have been
proposed and implemented in computer science (Berchtold et
al., 1996, Berchtold et al., 1998, Ooi et al., 2000). Advanced
data modelling and partitioning strategies have been applied,
which results in significant performance gain. However, most
data structures were not adapted and optimized to spatial ap-
plications. The characteristics of spatial data have not been con-
sidered, including number of dimensions, typical query shapes,
specific distributions of commonly used dimensions such as
XYZ and LoD, and spatio-temporal coherence embedded in the
data (Section 2).

Nonetheless, some of the studies did take the peculiarity of spa-
tial data into account (Böhm et al., 2001, Zhang et al., 2014).
Spatial Filling Curve (SFC), as an advanced technique to cluster
and access the data, has been considered and used. SFC ap-
proaches have been adapted and improved for point data man-
agement (Wang, Shan, 2005, Zhang et al., 2014, Van Oosterom
et al., 2015). Specifically, Van Oosterom et al. (2015) presen-
ted a prospective SFC mapping-based clustering and indexing
framework, which we will call PlainSFC, for the sake of con-
venience for referencing. Basically, PlainSFC maps both mul-
tidimensional points and queries into a one-dimensional SFC
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space so that one-dimensional indexing structure such as the
B+-tree could be used. Note that only organizing dimensions
which are used to cluster and index the data, e.g., X/Y/Z/T are
transformed and mapped. The other property dimensions are
affiliated, such as color, intensity and classification, which are
not frequently used in the SQL WHERE clause. These two
types of dimensions are interchangeable depending on applic-
ations. PlainSFC has been studied since then (Martinez-Rubi
et al., 2015, Psomadaki, 2016, Guan et al., 2018, Meijers, van
Oosterom, 2018). All the research demonstrates the superiority
of PlainSFC for managing and querying spatial points within
4D, but how it performs in higher dimensional spaces is still un-
known. Low dimensional solutions may perform significantly
worse in high dimensional spaces (Weber et al., 1998), which
is known as the “curse of dimensionality”.

As the foundation for many operations on point clouds, such as
visualization, data downloading and analysis, nD window quer-
ies are executed frequently. We perform this research to im-
prove its querying efficiency. We made two main contributions
in this paper:

• We devised and implemented HistSFC, which improves
the efficiency of PlainSFC for querying inhomogeneously
distributed data. HistSFC utilizes a HistTree recording an
nD histogram of the data to address the problem.

• We set up theoretical basis for nD window querying on
massive points, based on PlainSFC and HistSFC. Influ-
ence of correlation between dimensions was considered.
In addition, we conducted soundly designed tests to verify
the theory.

The rest of the paper is organized as follows: Section 2 iden-
tifies features of spatial window querying, which distinguish
it from general window querying. Section 3 explains struc-
tures and mechanisms of PlainSFC and HistSFC in detail. The
mathematical foundation to quantify the performance of both
approaches is established in Section 4. This is then followed by
experimental evaluation consisting of both simulations and real
data tests in Section 5. The final section concludes the paper.

2. FEATURES OF SPATIAL WINDOW QUERIES

Unlike general nD vectors used in multimedia or data mining
(Böhm et al., 2001, Weber et al., 1998), every dimension of nD
point clouds has a physical or semantic meaning. The dimen-
sionality of spatial window queries is thus limited, instead of an
ultra high number. Besides, the dimensionality is also confined
by the data volume. For example, a typical source for point
clouds is laser scanning. Suppose the most accurate Airborne
Laser Scanning (ALS) can return 1 point per cm2. As the area
of US is 9.8×106 km2, then, 9.8×1016 points can be collected.
We assume a selective query should at least reach a 10 percent
selectivity on each dimension. Then the expected number of
points retrieved is as follows:

E(k) = N × 10−m ≈ 1016−m

where k is the output size, and m refers to the dimensionality
of the query box. To guarantee at least one point is retrieved, m
should be less than 16.

Data distribution along each dimension is of various types in
point clouds: despite uniform distribution of XY and time, Gam-
ma distribution (e.g., Z and LoD (Van Oosterom, 2019)) and

normal distribution such as colour and intensity are also com-
mon. Non-uniform data distribution in nD space poses higher
requirement for efficient querying.

Besides, we also note that the majority of current spatial applic-
ations still focus on several dimensions. They are, for instance,
spatio-temporal dimensions, LoD and so on. The implication is
that if the solution is organized by n dimensions, then it should
also perform efficiently for mD queries (m < n). In addition,
spatial window queries are not always cubic, based on previous
investigation (Van Oosterom et al., 2015, Meijers, van Oost-
erom, 2018, Guan et al., 2018), we list some typical non-cubic
querying windows (Table 1):

Buffer of a curve, e.g., a river or a road
Diagonal rectangle for an inclined feature
Arbitrary geometry, e.g., footprint of a municipality
View frustum for perspective view selection
3D XYLoD rectangle for zooming in and out, with LoD
much thinner than XY dimensions
Trajectory of an object, i.e., a 4D window query on XYT
and identity dimensions where identity is a specific value
while XYT can be the entire extent
Spatio-temporal rectangle, e.g., one day out of a year in
the whole spatial region

Table 1. Typical non-cubic window queries

Nonetheless, cubic queries are still executed frequently, e.g.,
in quality checking (Pavlovic et al., 2018), performance testing
(Pajić et al., 2018) and k Nearest Neighbor (kNN) search.

These features have been largely considered in the experiments
in Section 5.

3. PLAINSFC AND HISTSFC

Among all SFCs, Morton curve is commonly studied and prac-
ticed due to the simplicity of mapping functions (Morton, 1966,
Wang, Shan, 2005). It is based on interleaving the bits from the
coordinates. By truncating the Morton key, we can construct the
upper levels in the SFC hierarchy. In Figure 1, the four points
residing in the lower left box all start with 0000. If we truncate
the last two bits of their keys, they could be represented by a
point for which the key equals 0 in the upper level. That is to
say, SFC contains an implicit 2n-tree, where n is the dimension
number.

Figure 1. Mapping a 2D window to 1D Morton ranges

3.1 PlainSFC

In this paper, PlainSFC is implemented using a Morton curve.
For compact and non-redundant storage of real point data, each
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point is encoded as a full resolution SFC key, a combination
of all organizing dimensions. Property dimensions are attached
to the SFC key. Such a full resolution key can be decoded dir-
ectly to the original coordinates. Figure 2 presents the workflow
of PlainSFC. For storage, after computing SFC keys, PlainSFC
adopts the B+-tree structure to manage them. Oracle has im-
plemented B+-tree in Index-Organized Tables (IOT) (Oracle,
2013a). The key and other property dimensions are stored in
leaf nodes present in a normal table, while the internal structure
uses the SFC keys to organize and index the storage. IOT is
used throughout the paper.

With regard to querying, PlainSFC adopts two filters to process
(Figure 2). PlainSFC uses SFC at different levels to approach
the query window, by decomposing the Minimum Bounding
Box (MBB) of the dataset recursively. As is illustrated in Fig-
ure 1, the query algorithm first examines whether MBB of the
dataset intersects the query window. If they intersect, the MBB
would be decomposed into 4 quadrants, and the spatial rela-
tionship between each quadrant and the query window would
be assessed again. During the process, if a quadrant is totally
inside the query window, the corresponding 1D range of the
quadrant would be exported directly without further decompos-
ition. Near the query boundary, the process continues to the
maximum depth defined. In this way, PlainSFC maps the query
window from the original multidimensional space into the SFC
ranges. It then searches the data using the ranges, e.g. by using
a SQL WHERE clause for selection (Figure 1).

A large depth during the decomposition will cause huge num-
ber of ranges generated, slowing down the first filter. A small
depth, however, results in a rough result, where the error comes
from coarse boundary cells. This is also unacceptable because
it moves the burden to the second filter for an accurate answer.

3.2 HistSFC

A crucial bottleneck of PlainSFC is that part of the ranges gen-
erated may actually contain few or even no points when the
data distribution is skewed. For instance, ALS points mostly
lie on the ground, and the number decreases sharply as eleva-
tion grows. On the one hand, this implies extra time is spent
on keeping refining cells containing few points, and generating
empty ranges; on the other hand, large quantities of non-dense
and empty ranges increase the time cost of data selection later.
We thus propose using HistTree to improve the quality of ranges
and thereafter the whole querying performance. We build Hist-
Tree as an additional structure to represent the data distribution
(Liu et al., 2020), and use it to optimize the range computation.

As Figure 3 shows, the HistTree records the point count for each
SFC node at different level. If the count exceeds the threshold
of the tree, it will be partitioned into SFC nodes in a lower level.
A height field is used in a HistTree node to distinguish differ-
ent nodes, because branch nodes at different levels may possess
identical keys. A HistTree node actually represents the MBB of
a quadrant, but it contains neither points nor pointers to points.
Thus, HistTree is a compact structure which can be stored in a
normal table.

When querying, unlike PlainSFC that adopts a fixed depth for
recursive decomposition of nodes, HistSFC employs HistTree
which is adaptive to point density. Starting from the root node,
the extent of each node can be computed using its height and
the key (Figure 3). Then, by performing intersecting computa-
tion between branch nodes and the query window iteratively,

the function retrieves all relevant nodes, and abandons non-
overlapping nodes. Part of the result are branch nodes which
locate totally inside the query window. The searching process
stops at these nodes and exports their ranges. The other res-
ultant nodes are leaf nodes which fall on the boundary of the
query window. The leaf nodes can be further refined using the
fixed decomposition approach adopted by PlainSFC. The pro-
cess stops when the number of ranges reaches the maximum
number allowed. In this way, with same number of ranges, the
accuracy of the first filter is expected to be improved signific-
antly when data distribution is non-uniform.

However, what accuracy that the first filter can reach, and how
effective the HistTree performs in the nD space remain unclear.
We express the accuracy using False Positive Rate (FPR):

FPR =

∣∣∣∣k′ − kk

∣∣∣∣ (1)

The first filter leverages the B+-tree for querying, which is effi-
cient, while the second filter is a linear scanning process and is
adversely affected by a large FPR. Therefore, FPR is a key in-
dicator to evaluate the performance of PlainSFC and HistSFC.
Next section quantifies how FPR changes with dimensionality.

4. MATHEMATICAL FOUNDATION

The mathematical derivation uses symbology listed in Table 2.

Notation Description
n Number of organizing dimensions
m Number of dimensions in querying
N Number of points in input
k Number of points in output (i.e., exact answer)
k′ Number of points returned by the first filter
Di The ith dimension
Fi, fi Cumulative and Probability Density Function

(CDF and PDF) of the ith dimension
Mi The maximum range of the ith dimension
ri The length of data region in a biased dimension
T Maximum number of ranges for querying
l The edge length of the mD query box

∆l The length of a SFC cell for each dimension

Table 2. Notations used in the formulation

Low dimensional key solutions are inefficient for high dimen-
sional queries, as the first filter may return huge amount of false
positive points due to the whole span of dimensions not existing
in the key. So, we adopt high dimensional key storage. How-
ever, the efficiency to perform low dimensional queries may
then decrease, as the involvement of more dimensions in the
key undermines the clustering of dimensions concerned in the
query. So, this section focuses on the FPR of m-nD queries
(m ≤ n). It demonstrates the main idea with two specific cases:
A 2-nD query and an n-nD query. To simplify the proof, we
employ a hyper-cube query.

Problem statement: A point cloud with size N is the input,
and the query window is a hyper-cube with an edge length of l.
What is the FPR to perform a 2-nD query and an n-nD query,
with constant T , where 2 ≤ n < +∞?

Theorem 1: For both queries, the FPR of PlainSFC rises with
the increase of n, when points are uniformly distributed.
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Figure 2. The loading and querying procedure of PlainSFC, divided by the dash line
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Figure 3. A 2D HistTree example, where the threshold is 100; left: point counting, middle: pointer structure of HistTree, with each
node storing a SFC key and number of points, right: structure of a HistTree node

Proof: For 2-2D query, the output size is,

k = N

∫ a+l

a

∫ b+l

b

f1 · f2 dD1 dD2

= N(F1(a+ l)− F1(a))(F2(b+ l)− F2(b))

where (a, b) refers to the lower-left anchor of the query window.
Suppose every dimension has same length M (, ∀i > 0,Mi =
M ), the length of the SFC cell at the given depth is ∆l:

∆l =
l√
T

(2)

SFC grid normally does not match the query window exactly.
For genericness, we assume the boundary of the query window
splits SFC cells intersecting the boundary into halves. We will
retrieve more points than needed:

E(k′ − k) = N

(
F1

∣∣∣a
a−∆l

2

F2

∣∣∣b+l+ ∆l
2

b−∆l
2

+ F1

∣∣∣a+l+ ∆l
2

a+l
F2

∣∣∣b+l+ ∆l
2

b−∆l
2

+F1

∣∣∣a+l

a
F2

∣∣∣b
b−∆l

2

+ F1

∣∣∣a+l

a
F2

∣∣∣b+l+ ∆l
2

b+l

)
Assume ∆l� l, according to Equation 1,

FPR =
E(k′ − k)

k
≥
F1(a+ l + ∆l

2
)− F1(a− ∆l

2
)

F1(a+ l)− F1(a)
+

F2(b+ l + ∆l
2

)− F2(b− ∆l
2

)

F2(b+ l)− F2(b)
− 2

(3)

Then we generalize the derivation, for 2-nD query. We could
then get the same mathematical expression as Equation 3. How-
ever, ∆l changes:

∆ln
∆ln−1

=

(
M2T

l2

) 1
n(n−1)

(4)

As MT > l (M ≥ l and T > 1), then ∆ln > ∆ln−1. That
is to say, for 2D query, the FPR of a higher dimensional organ-
ization will always be larger than that of a lower dimensional
organization. For m-nD query, where 2 < m < n, we could
draw the same conclusion.

With respect to n-nD query, if the lower-left anchor of the query
window is (a1, a2 . . . an), then,

FPR ≥
n∑

i=1

Fi(ai + l + ∆l
2

)− Fi(ai − ∆l
2

)

Fi(ai + l)− Fi(ai)
− n (5)

Hence, with the increase of dimensionality, the FPRs of both
2-nD query and n-nD query grow. �

Theorem 2: Starting from 1D, when an organizing dimension
added is non-uniform, the HistTree will be more effective in
a higher dimensional space under a certain dimensionality, for
both types of query.

Proof: The exact FPR of HistSFC depends on specific data dis-
tribution. Without losing generality, we adopt a partial uniform
model to approximate a non-uniform dimension (Figure 4). In
this model, the data portion is ri, which implies that from δ to
δ + ri (where δ refers to the offset from 0), data obeys uni-
form distribution in Di. It is apparent that when ri = M , Di

becomes a uniform dimension.

We define effectiveness of HistTree by

e =
FPRPlainSFC

FPRHistSFC
(6)

When the 2D querying box is totally inside the data region
where points are uniformly distributed, there will be no gain
from HistTree. So e equals 1. When the querying box par-
tially intersects the data region (Figure 5), for both PlainSFC
and HistSFC,

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume VI-4/W1-2020, 2020 
3rd BIM/GIS Integration Workshop and 15th 3D GeoInfo Conference, 7–11 September 2020, London, UK

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-VI-4-W1-2020-119-2020 | © Authors 2020. CC BY 4.0 License.

 
122



Figure 4. PDF of a non-uniform dimension illustrated by the
partial uniform model

Query window

D1

D2

l2

l1

Data

Figure 5. 2D window querying based on PlainSFC grid (dashed)
and HistSFC grid (blue), T = 16

FPR =
E(k′ − k)

k
≈
f1 · f2

(
l1

∆l
2

+ l2
∆l
2

)
f1 · f2 · l1l2

=
∆l(l1 + l2)

2l1l2

(7)

The ∆l, however, changes from l√
T

in PlainSFC to
√

l1l2
T

in
HistSFC. This indicates that HistSFC decreases FPR. In addi-
tion, if the 2D query box does not intersect the data region, then
FPRs for both approaches equal 0. We also assign 1 to e, to
express no gain from HistTree. However, this does not mean
PlainSFC functions equivalently as HistSFC. In fact, HistSFC
generates no range for selection as it learns the data distribution
from HistTree, while PlainSFC still generates T ranges and re-
trieves no points after selection. So PlainSFC takes additional
time.

We then generalize the deduction to 2-nD query. We assume
l ≤ ri (0 < i ≤ n), because in reality, users normally know
the range of data and will not query a larger window than it. As
Table 3 indicates, for both intersection cases, since 0 < ri ≤M
and li ≤ l, then e ≥ 1. In other words, HistTree always has a
positive effect. When the 2D window is inside the data area, we
could derive the following:

en
en−1

=

(∏n−1
i=3 ri

rn−1
n

) 1
n(n−1)

(8)

So, when rn < (
∏n−1

i=3 ri)
1

n−1 , the effectiveness of HistTree

Probability Query position e
(r1−l)(r2−l)

M2 Inside data
area

(
∏n

i=3
ri
M

)−
1
n

2l(r1+r2−l)

M2 Partially inter-
sects data area

( l2

l1l2

∏n
i=3

M
ri

)
1
n

M2−2r1r2+(r1−l)(r2−l)

M2 No data area 1

Table 3. Effectiveness of HistTree for 2-nD query, l ≤ min
2<i≤n

ri

Probability Query position e∏n
i=1(ri−l)

Mn Inside data area 1∏n
i=1(ri+l)

Mn −∏n
i=1(ri−l)

Mn

Partially intersects data
area

( ln∏n
i=1 li

)
1
n

1−
∏n

i=1(ri+l)

Mn No data area 1

Table 4. Effectiveness of HistTree for n-nD query, l ≤ min
2<i≤n

ri

increases. We assume ri
M

are all random variables between 0

and 1, then P (rn < (
∏n−1

i=3 ri)
1

n−1 ) = (n−1
n

)n−3. It is a
monotonically decreasing function. We could derive that when
n < 9, such probability is larger than 0.5. To put it another
way, when we are querying data within 8D space, there is a
high probability that e for 2D box selection rises all the way.
Similarly, when partial intersection occurs, within 5D, HistTree
can perform more effectively in higher dimensional spaces.

Using the same method, we get results for n-nD query (Table 4).
In all cases, e ≥ 1. We could also derive that within 5D,
the probability that HistTree becomes increasingly effective for
n-nD query is high, when partial intersection occurs.

Current derivation is based on the partial uniform model. Now
we present a weak deduction when this model is changed to
curve-shaped distribution such as the normal distribution. A
consequence is that the point density inside data area becomes
varying. Suppose the number of points inside the query window
is still the same, then FPR of PlainSFC is unchanged. For Hist-
SFC, based on the original grid, the following algorithm will be
applied:

Algorithm 1: Query optimization for a point cloud with
varying density
if the density of dense point area is 2n times larger than
that of the sparse area then

HistSFC uses smaller cells to select dense point area,
while employees larger cells for sparse area
(Figure 6);

else
HistSFC uses original grid;

end

We assume the density of the sparse area is d points per cell.
In the sparse area, 2n original cells merge into 1 cell, which
results in 2n−1d false positive points. In contrast, in a dense
area, one cell is decomposed into 2n cells: half of them are
outside the query window, so 0.5 × 2nd false positive points
are removed. By executing Algorithm 1, the FPR of HistSFC
reduces further. However, when n grows until k < 2n, HistSFC
stops optimization, because the cells selected will not change.
�

Theorem 3: For both queries, correlation involved in the data
decreases the FPR of HistSFC, compared to data without cor-
relation.
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Query box

Original cell

Figure 6. Various cell sizes computed by HistSFC when point
density is variable in 2D data. The left two cells are merged into

one bigger cell, while the right cell are split into four smaller
ones with two totally out of the query box

Proof: We assume in a 2D dataset, D1 and D2 are correlated:
cov(D1, D2) =

∫M

0

∫M

0
(D1−µ1)(D2−µ2)f(D1, D2) dD1 dD2,

where µ refers to the mean value. Suppose f(D1, D2) = C,
where C is a constant; then cov(D1, D2) = 0. However, as D1

and D2 are correlated, cov(D1, D2) 6= 0, so f(D1, D2) must
be a variable inside the domain. Then by adopting Algorithm 1,
HistSFC performs more effectively when dimensions are cor-
related. This applies to nD data as well. �

Theorem 1 indicates the FPR of PlainSFC continues to grow as
n keeps increasing. Theorem 2 only shows the effectiveness of
HistTree without discussing HistSFC itself. We now introduce
a lemma when HistSFC performs a 2-nD query:

Lemma: The FPR of HistSFC, on the whole, increases with n
for the 2-nD query.

Proof: It is not difficult to deduce that for the 2-nD query, the
FPR of HistSFC follows Equation 7. However, ∆l changes:

∆l =

(
l1l2

∏n
i=3 ri

T

) 1
n

∆ln
∆ln−1

=

(
Trnrn
l1l2

· rn−3
n∏n−1
i=3 ri

) 1
n(n−1)

(9)

In Equation 9, Trnrn
l1l2

> 1. As r1
M
, r2
M
, · · · rn

M
are all independ-

ent variables between 0 and 1, then,

E

(
rn−3
n∏n−1
i=3 ri

)
=

E( rn
M

n−3)

E(
∏n−1

i=3
ri
M

)
=

2n−3

n− 2
≥ 1,∀n ≥ 3

That is, ∆l increases with n, so does the FPR. �

Theorem 4: When n exceeds a certain value, k′ from PlainSFC
and HistSFC will be a constant for a m-nD query, and FPR is
not influenced by n thereafter.

Proof: It is the fact that when n increases until 2n−m ≥ T ,
PlainSFC will only return the ranges of nodes at the first depth.
For example, when n = 16, m = 2 and T = 10, 000, the first
decomposition of the root node in PlainSFC will results in 216

child nodes. For a 2-nD query, there are 3 types of intersec-
tion between the query box and child nodes. First, when the
query box totally falls in one quadrant of the 2 dimensions it
queries, then one fourth of child nodes of the root will be selec-
ted. In this case, 1

4
× 216 > T . So PlainSFC will not search

deeper in the tree, and will return all the points that reside in the
quadrant. Besides, the query box can also intersect with half of
all child nodes or all child nodes. As n keeps increasing, the
returned number of points will remain unchanged. This is be-
cause the involvement of other dimensions does not influence
the partition of the 2 dimensions queried in the SFC hierarchy.
We could derive the following for 2-nD query (assume uniform
distribution):

E(k′) = N
l2

M2
+
N

2

(
2l

M
− 2l2

M2

)
+
N

4

(
1− 2l

M
+

l2

M2

)
(10)

In selective queries, l�M :

E(k′) ≈ N

4
+

l

2M
(11)

Analogously, we derive the limit of m-nD query:

E(k′) ≈ N

2m
+
Nml

2mM
(12)

As k is not influenced by n, the FPR will not be determined by n
either. We could also derive that when points are distributed in-
homogeneously, E(k′) is the same (by assuming N1, N2...N2n

in each child node). In the case l
M
> 0.5, E(k′) will be N .

HistSFC, however, will not select nodes with no points inside.
Thus, it is likely that when 2n−m ≥ T , the number of actual
child nodes selected, t, is less than T . Then, when we add
one organizing dimension into the storage, the number of child
nodes selected will become 2t. So, if n keeps increasing, until
the number of nodes at the first depth selected by HistSFC is
larger than T , HistSFC will return the same result as PlainSFC.
Therefore, HistTree only postpones the threshold of n when the
limit occurs. �

We then present a significant example derived from Theorem 4:

Example: For n = 16, m = 4, T ≤ 4096, li
Mi

< 0.1 (0 <

i ≤ 4), according to Equation 12,

E(k′) ≈ 0.0875N

A common assumption used frequently (Weber et al., 1998) is
that when the index can reduce the scan to 10% of total data,
then the index is effective. According to this, when we perform
a 4-16D query or with even more dimensions in the query win-
dow, then either PlainSFC or HistSFC works effectively. Based
on previous theorems, when n < 16 and m ≥ 4, PlainSFC and
HistSFC will always be effective, with a proper T .

5. EXPERIMENTAL EVALUATION

This section presents simulations conducted to verify the theor-
ems, and also shows the performance of PlainSFC and HistSFC
using real data. The ideal simulation (IdealSim) builds ideal
situations assumed in the proof of the theorems. The realistic
simulation (RealSim) aims to simulate data and queries in real
cases. Both simulations present FPR for the 2-nD query and the
n-nD query, using PlainSFC and HistSFC. Afterwards, the real
case test uses an ALS dataset, and evaluates the performance in
real spatial applications.
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5.1 IdealSim

IdealSim generates 1 million point records with 16 dimensions.
Every dimension ranges from 0 to 4096, meaning 0 < M ≤
4096. Each dimension follows the partial uniform model ran-
domly generated, where 45 ≤ ri ≤ 3177 (1 ≤ i ≤ 16). The
threshold of all HistTrees is set to 100, to fully exploit the his-
togram. IdealSim then generates 100 2-nD query windows ran-
domly with an edge length of 410; another 100 n-nD query
windows are generated with an edge length of 2000 for the per-
formance test. A large edge length can guarantee that points
will also be selected in high dimensional spaces. To make full
use of the SFC hierarchy for searching, we set T to 100,000.
Figure 7 - 9 show the results.

FPRs for the 2-nD query and the n-nD query are presented in
Figure 7 and 8, respectively. In both cases, FPR of HistSFC
is much lower than that of PlainSFC, especially in higher di-
mensional spaces. Besides, FPRs of both approaches rise as
n goes up, while PlainSFC reaches an upper bound after 10D,
in the 2-nD query. This corresponds to the limit indicated in
Theorem 4 (Section 4). On the other hand, for the same query,
FPR of HistSFC is smaller than 10 until 12D. This is a signi-
ficant sign that HistSFC can function efficiently in high dimen-
sional spaces. Figure 7 also shows that the overall fluctuation of
PlainSFC is stronger than that of HistSFC, especially when di-
mensionality becomes larger. In fact, the stable performance of
HistSFC is also an advantage, as it alleviates worst cases. This
pattern also happens in the n-nD query. In Figure 8, the gap
between the two approaches is more evident. Due to the drastic
increase of PlainSFC, its FPR can reach 1,836 in 16D.

In Figure 9, the effectiveness of HistTree for the n-nD query
rises all the way until 10D, where it starts to drop. The de-
crease occurs a bit later for the 2-nD query. However, Theorem
2 predicts that after 5D, the effectiveness will most probably
drop. The wrong prediction might be attributed to the narrow
data span from D6 to D9, where the ri are 45, 849, 69 and
646, respectively. Specifically, due to the large window size
(i.e., 2000) adopted in the n-nD query, PlainSFC deteriorates
much more significantly; HistSFC, on the other hand, is not in-
fluenced much. 2-nD queries are also affected by the narrow
data span, but the change is not so drastic.

5.2 RealSim

RealSim builds an independent dataset and a correlated data-
set (Table 5), to investigate the effect of correlation within the
data on FPR. Each dataset contains 1 million points with 6 di-
mensions. Each dimension ranges from 0 to 1,048,576 (i.e.,
220). All dimensions either obey Normal distribution N or
Gamma distribution Γ. PDFs of all dimensions are depicted
in Figure 10. In the correlated dataset, the correlation coeffi-
cient between D1 and D2 is 0.85, while it is 0.61 between D1

and D4, and 0.64 between D2 and D4. The threshold to build
HistTrees is still 100. For the 2-nD query, RealSim applies a
box query, with an edge length equal to 1% - 5% of a dimen-
sion range. 100 querying boxes which have point inside are
tested for the evaluation. RealSim then randomly generates 100
nD rectangles which must contain 0.1% - 1% of total points,
for the n-nD query. This is done to guarantee sufficient points
selected in high dimensional spaces. We set T to 1000 in all
cases, as the dimensionality concerned is not high. Figure 11 -
14 present the results.

Independent Correlated Stretch
dimensions dimensions factor

D1 N (219,
√

3 · 217) N (219,
√

3 · 217) 1
D2 N (219, 218) D1 +N (0, 217) 1
D3 Γ(1, 2) Γ(1, 2) 217

D4 N (218,
√

1.48 ·
217)

0.2D1 + 0.3D2 +
N (0, 217)

1

D5 Γ(2, 3) Γ(2, 3) 215

D6 Γ(10, 2) Γ(10, 2) 216

Table 5. Distributions of different dimensions in RealSim

Both types of query are executed on the independent dataset and
the correlated dataset. The overall FPRs (Figure 11 and 13) fol-
low similar patterns as has been discussed in Section 5.1. The
correlation inside data causes further degeneration of PlainSFC,
while it has less influence on HistSFC, particularly for n-nD
queries. As a result, the HistTree is more effective on correl-
ated data queries than independent ones. This is more signific-
ant in n-nD queries, in Figure 14. In Figure 12 and 14, the odd
pattern that effectiveness at 2D is the highest is caused by the
small FPRs. That is, HistSFC most of the time can return very
accurate answer, with few false positive points. So, according
to Formula 6 (Section 4), this will result in a large value of e.
The formula may thus be improved in the future. Despite this,
the effectiveness continues to grow as n goes up, which keeps
in line with the theory.

5.3 Real data test

Real data test is based on AHN2, the Dutch national terrestrial
point cloud. The testing data is part of AHN2 with XYZ co-
ordinates, containing 2 billion points. Its MBB is [13427.64,
363052.95, -3.57; 22000, 380507.68, 100] in spatial reference
system Amersfoort / RD New, EPSG:28992. To prompt visu-
alization of the data, we also added a continuous LoD (cLoD)
dimension. The cLoD value of a point actually represents the
importance of the point during rendering. A smaller value cor-
responds to a higher importance (Liu et al., 2018, Van Oost-
erom, 2019). We computed cLoD using the method introduced
in (Van Oosterom, 2019), and it obeys an exponential distribu-
tion, similar to D3 in RealSim. The final range of cLoD dimen-
sion is (0, 12000) after stretching. CLoD receives more frequent
access than Z in most spatial applications, e.g. in modelling and
processing. Therefore, we built 3D(-key) solutions based on X,
Y and cLoD organizing dimensions and attached Z as a prop-
erty dimension. We also built 4D solutions with all dimensions
in the key. HistTrees were created with threshold 10,000, to
avoid a large occupancy in the memory.

Considering common query scale (size), as well as typical ap-
plications, we devised and selected 5 representative queries among
others (Table 6):

Q1 XY MBB [16671.1, 370494; 16896.76, 370735.45]
Q2 XYLoD MBB [15281.52, 378658.19, 0; 18320.86,

380248,9000]
Q3 XYLoD MBB [16664.54, 370486.56, 0; 17997.76,

372036.45, 9000]
Q4 XYZ MBB [16902.29, 365439.3, 30; 19999,

367189.4, 100]
Q5 XYZLoD MBB [16902.29, 365439.3, 1.5, 0; 19999,

367189.4, 100, 9000]

Table 6. AHN2 queries

Q1 selects points in the region of a small town. Q2 locates in the
coastal area, where half of the XY-plane is sea with no points.
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Q3 locates in the urban area, and contains similar number of
points as Q2 (Table 7). Q4 aims to select ultra high objects. It
actually has no upper constraint in Z; so, we use the largest Z
value as the boundary to form a cube. Q5 is a typical ground
filtering query, which removes massive ground points acquired
by LiDAR, and only reserves objects above the ground. For
all queries, we set T = 1000, 000, as the dataset is large and
our server is efficient enough to process such amount of ranges.
Table 7 lists the results.

For Q1, FPR of HistSFC solutions is lower than that of PlainSFC
solutions, thanks to the finer SFC ranges adopted. However, as
points are distributed evenly on the XY-plane, the gap between
two 3D solutions is insignificant. Comparing Q2 and Q3, Hist-
Tree works more effective for Q2, when 3D solutions are em-
ployed. This is because Q2 (coastal region) contains more va-
cant area than Q3, which increases inhomogeneity of the data.
However, the advantage of HistSFC caused by uneven distribu-
tion on the XY-plane diminishes using 4D solutions. 3D solu-
tions do not encode Z into SFC keys. Consequently, for Q4 and
Q5, points with any Z value which fall into the XY or XYLoD
range will be selected. This causes huge FPRs, especially for
Q4 where the selectivity on Z is only 0.09%.

For all cases, HistSFC solutions improves the accuracy, com-
pared with PlainSFC solutions. Besides, despite that 3D solu-
tions are still preferable for low dimensional queries, 4D solu-
tions can handle more types of queries without significant de-
terioration. This is more evident when the query selects dimen-
sions not existing in the 3D keys.

6. CONCLUSIONS

This paper presents how PlainSFC and HistSFC behave in the
nD space for window queries. Specifically, we developed theor-
ems which prove that up until a certain dimensionality, the FPR
of PlainSFC continues to grow as dimensionality rises. By sim-
ulating various nD point clouds, tests verified this pattern. As

PlainSFC performs poorly to process queries on skewed data,
we developed the HistSFC approach. Both theory and practice
indicate that HistSFC can effectively decrease FPR of all kinds
of window queries. The effectiveness keeps growing within a
certain dimensionality, and this is even more evident when di-
mensions correlate to each other inside the data. Additionally,
we found that HistSFC delivers more stable performance than
PlainSFC in all dimensional spaces. It can alleviate worst cases
significantly. Through tests on real data, we also assert that
when the dimensions queried do not exist in the key, the per-
formance will deteriorate significantly.

When applying HistSFC in practice, a proper T is essential.
It can be acquired by conducting simple selection on flat tables
until an optimum is found, as the ranges are stored in a flat table
for joining. The FPR of the solution should be controlled as low
as possible: as a larger FPR is inevitable when dimensionality
is high, we suggest only putting selective dimensions in the key.
Logs may be used to determine the organizing dimensions.

Generally, the methodology developed, including the mathem-
atical framework based on random variable distributions and
the simulations, can be applied to research in other contexts.
For example, nD spatial data caching, streaming and render-
ing all need optimal data organization. In the future, we plan
to perform a more comprehensive benchmark test, elaborating
more solutions. Also, the data can be more generic, not only
Lidar points. We could also extend the data structures to ad-
dress other spatial operations such as kNN search and querying
with irregular geometries.
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Query Query window Exact answer 3D PlainSFC 3D HistSFC 4D PlainSFC 4D HistSFC

Q1 XY Output (k’) 717,342 749,694 744,476 984,613 802,676
FPR - 4.51% 3.78% 33.95% 9.2%

Q2 XYLoD Output (k’) 498,286 514,772 503,162 607,855 536,087
FPR - 3.31% 0.98% 22% 7.59%

Q3 XYLoD Output (k’) 505,101 517,296 512,597 596,790 539,851
FPR - 2.41% 1.48% 18.15% 6.88%

Q4 XYZ Output (k’) 85,090 100,608,118 100,217,866 645,819 186,101
FPR - 1.181× 103 1.177× 103 659% 119%

Q5 XYZLoD Output (k’) 524,730 1,594,469 1,577,980 1,767,020 1,386,908
FPR - 204% 201% 237% 164%

Table 7. FPRs of PlainSFC and HistSFC for AHN2 querying
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