
AUTOMATIC DETECTION AND CHARACTERIZATION OF GROUND OCCLUSIONS 
IN URBAN POINT CLOUDS FROM MOBILE LASER SCANNING DATA 

 
 

J. Baladoa,b*, E. Gonzáleza, E.Verbreeb, L. Díaz-Vilariñoa,b, H. Lorenzoa 

 
aUniversidade de Vigo. CINTECX, Applied Geotechnologies Research Group. 

Campus universitario de Vigo, As Lagoas, Marcosende 36310 Vigo, Spain  
(jbalado, elena, lucia, hlorenzo)@uvigo.es 

 
bDelft University of Technology, Faculty of Architecture and the Built Environment, GIS Technology Section.  

2628 BL Delft, The Netherlands 
(J.BaladoFrias, L.Diaz-Vilarino, E.Verbree)@ tudelft.nl 

 
 

Commission IV/5 
 
 

KEY WORDS: urban environment, point clouds, occlusion detection, image processing, raster, object classification. 
 
 
ABSTRACT: 
 
Occlusions accompany serious problems that reduce the applicability of numerous algorithms. The aim of this work is to detect and 
characterize urban ground gaps based on occluding object. The point clouds for input have been acquired with Mobile Laser Scanning 
and have been previously segmented into ground, buildings and objects, which have been classified. The method generates various 
raster images according to segmented point cloud elements, and detects gaps within the ground based on their connectivity and the 
application of the hit-or-miss transform. The method has been tested in four real case studies in the cities of Vigo and Paris, and an 
accuracy of 99.6% has been obtained in occlusion detection and labelling. Cars caused 80.6% of the occlusions. Each car occluded an 
average ground area of 11.9 m2. The proposed method facilitates knowing the percentage of occluded ground, and if this would be 
reduced in successive multi-temporal acquisitions based on mobility characteristics of each object class. 
 
 
 

1. INTRODUCTION 

Occlusions are one of the main limitations of point clouds 
(Friedman and Stamos, 2012). Occlusions imply a lack of data 
and therefore a lack of knowledge about empty areas. Depending 
on the number and importance of the occlusions, they can 
influence automatic algorithms if these are not designed robustly 
with this problem in mind. In object classification and 
recognition, occlusions distort feature extraction (Papazov and 
Burschka, 2010; Xu et al., 2017). In segmentation, occlusions 
break continuity of structures and objects in space, producing 
over-segmentation (Balado et al., 2018). In registration, 
occlusions hinder the use of well-known algorithms such as ICP 
(Liu et al., 2012). When occlusions are located at point cloud 
border, they make it difficult to know the contour of the acquired 
area. In general, depending on their location and size, occlusions 
cause undesirable behaviour in the algorithms, which may even 
render certain case studies unusable. 
 
The assessment of whether a cloud is suitable, depending on the 
size and location of the occlusions, is a visual task. This can be 
done prior to the treatment of the cloud, or later, when processing 
errors are found in the result. Both options imply a cost in terms 
of hours invested by a human observer and also, in the second 
option, an unproductive processing time. 
 
The existence of occlusions is closely related to the acquisition 
method and the experience of the people responsible for taking 
the data. In terrestrial laser scanning (TLS), several acquisitions 
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are taken from different locations to eliminate occlusions. These 
point clouds, each with different occlusions, need to be 
referenced and merged together to generate a more complete 
point cloud that minimizes the occluded area (Chen and Yang, 
2016). Although planning for TLS data collection is usually a 
manual process, there are also methods to automate it (Frías et 
al., 2019). In Mobile Laser Scanning (MLS), occlusions are 
reduced due to the continuous displacement of the laser, although 
they do not disappear either. This is because MLS is limited to 
movement in roads and following traffic regulations, so freedom 
of movement is finite. In cities, objects near to MLS trajectory, 
such as cars and trees, cause important occlusions in facades and 
on the ground. In specific ground elements, such as sidewalks, 
very relevant for pedestrian navigation, occlusions even can 
completely hide them (Balado et al., 2019a). 
 
To minimize occlusions in urban environments, the use of multi-
temporal MLS acquisition is common. Multi-temporal 
acquisition minimizes occlusions generated by dynamic objects 
(Schachtschneider et al., 2017). But occlusions caused by static 
objects are still maintained. In addition, certain dynamic objects 
have a static behaviour in the scene, such as parked vehicles. 
Given the lack of parking places in cities, these have a high 
occupancy rate, so even if the vehicles change, the parking space 
remains occupied. Therefore, successive multi-temporal 
acquisitions do not always ensure that the occluded area is 
reduced, but successive multi-temporal acquisitions multiply the 
acquisition costs. 
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There are different methods to complete occlusions in point 
clouds without acquiring more data. The most common are based 
on the same principles used in image processing (Arias et al., 
2011; Buyssens et al., 2015), therefore, for application in 3D 
vector data, point clouds are transformed into depth images 
(Doria and Radke, 2012; Salamanca et al., 2008). But these 
methods focus on very small study areas with a limited number 
of objects. Other authors focus on processes of mathematical 
morphology (Balado et al., 2019a) or interpolation (Serna and 
Marcotegui, 2013) to complete urban ground. In order to obtain 
a complete model, the point cloud of facades can be combined 
and completed with pre-generated models called SmartBoxes 
(Nan et al., 2010). In (Feng et al., 2020), the shape of the 
buildings is completed on the basis of the topological relationship 
with superimposed trees. For applications, it is important to 
classify such interpolated data as it has no properties intensity, 
and no free line-of-sight between points and the location of the 
laser emitter. However, it cannot be guaranteed that generated 
data with the abovementioned approaches coincides the true data.  
 
Very few works specialize in detecting occlusions and in finding 
which object generated them. This information is very relevant, 
since the size and shape of the occlusion is given by the object 
that generates it (Zhang et al., 2019). The occlusions in point 
clouds are represented as absence of points on the surfaces that 
form the point cloud, but these empty surfaces correspond with a 
volume that is hidden from the MLS view behind another object. 
Based on this premise, occluded areas can be detected by means 
of a visibility analysis, knowing the location of the laser emitter 
and the hypothetical occluded surface (Bonde et al., 2014; de 
Oliveira et al., 2018; Habib et al., 2009; Huang et al., 2017). 
Visibility analysis, especially in 3D, is a time computationally 
expensive technique limited by the number of points (González 
de Santos et al., 2018).  
 
The aim of this work is to design a method to detect automatically 
the existing ground occlusions of urban point clouds acquired 
with MLS, and to associate each one to the object class that 
caused it. In this way, it is possible to automatically evaluate the 
occluded ground surface, obtain statistical values of the size of 
the occlusions caused by each object, and efficiently plan 
successive multi-temporal acquisitions based on static, dynamic 
and temporary static objects. To the best of the authors' 
knowledge, no other works have been found that address this 
problem. This work starts from a segmented and classified urban 
street point cloud, and the method focuses on image processing 
techniques after rasterizing the point cloud, without the need to 
employ 3D visibility analysis. 
 
The rest of this paper is organized as follows. Section 2 explains 
how the input data is generated. Section 3 presents the designed 
method. Section 4 is devoted to analyse the results. Finally, 
Section 5 concludes this work. 
 
 

2. OVERVIEW OF SEGMENTATION AND OBJECT 
CLASSIFICATION OF URBAN POINT CLOUDS 

The proposed method employs as input data a point cloud of an 
urban street, sectioned to contain only one line of façades. The 
point cloud must be segmented into ground, building façades and 
objects. Objects must be classified in the most common urban 
classes: cars, motorbikes, vegetation, pole-like objects, 
pedestrians, waste-bins, and others. Segmentation and 
classification have been treated extensively by many authors 
(Babahajiani et al., 2015; Balado et al., 2019b; Börcs et al., 2017; 

Roynard et al., 2018; Serna and Marcotegui, 2014; Soilán et al., 
2019; Weinmann et al., 2015). 
 
In this work the method designed by (Balado et al., 2020) for 
segmentation and classification of urban objects is implemented. 
The method consists of the following processes. First, the point 
cloud is segmented into cross section along the MLS trajectory. 
Second, ground and façade planes are detected for each cross 
section. Points belonging to ground and façade planes are 
labelled. Third, remaining points are considered as objects and 
they are individualized by means of connected components. 
Fourthly, objects are transformed to image and classified by 
means of an InceptionV3 (Szegedy et al., 2016). The 
Convolutional Neural Network (CNN) training was performed 
with the training set composed of 90% of images obtained from 
online sources and 10% of images obtained from point clouds, 
and the validation set composed of images obtained from point 
clouds. Thus, these four processing steps are for segmentation 
and classification. The classification has reached an accuracy of 
86%, the errors have been corrected manually with the intention 
of not influencing the method proposed in this work. Finally, all 
points previously segmented are merged to generate the input 
data 𝑃 = [𝑋 𝑌 𝑍 𝐿], being XYZ the 3D coordinates and L the 
label: ground, building façade, cars, motorbikes, vegetation, 
pole-like objects, pedestrians, waste-bins, and others.  
 
 

3. METHOD 

The proposed method is based on the superposition and 
processing of raster images generated separately from the point 
clouds of ground, building façades and objects. The method is 
composed of three main processes: first, the clouds are processed 
to eliminate the points not relevant for rasterization; second, the 
detection and individualization of gaps; and third, the 
corresponding label assignment per gap. 
 
3.1 Point cloud processing and rasterization 

Not all points are candidates for generating occlusions on the 
ground. Only the points between the MLS and the ground can 
produce occlusions. In a cross section view, the relevant points 
are located under a line l from the location of the laser emitter to 
the height of the occluding objects and prolonged (Figure 1). This 
line l cannot be calculated without MLS trajectory. For analyzing 
ground occlusions, points with Z coordinate under MLS height 
are delimited as Region of Interest (ROI), improving processing 
time and preserving relevant points belonging to ground, 
buildings and objects. 
 
In addition, in order to overlap correctly the three raster images 
(ground, façades and objects) without geo-reference, it is not 
possible to generate the raster images directly from each point 
cloud. Hence common contour points must be added to each 
cloud that delimit common processing area for images (Figure 2). 
Once the point clouds have been converted into raster images, 
image processing techniques can be applied. 

 
3.1.1 Calculation of ground altitude: Assuming a street without 
slope, where the ground is at constant altitude, the calculation of 
the ground altitude gz is done through an average Z of points of 
the ground point cloud 𝑃 . In case sloped streets, local ground 
altitudes can be estimated segmenting the street in cross sections 
along the trajectory (Balado et al., 2017a). 
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3.1.2 Height ROI delimitation: Those points in the point clouds 
of objects 𝑃  and facades 𝑃 , with a Z coordinate greater than gz 
and MLS height h are eliminated (Eq. 1). 
 

{𝑃 : 𝑍 > ℎ + 𝑔𝑧}  ← ∅ Eq. 1 

 
3.1.3 Determination of the bounding box B: For the point cloud 
P, the maximum and minimum of X and Y coordinates are 
estimated. They are combined in four different positions to 
generate the bounding box that encloses the XY plane and, as a 
Z component, gz is assigned (Eq. 2). These four points B are 
added to the point clouds of ground 𝑃 , façades 𝑃  and object 𝑃 . 
 

𝐵 =

min (𝑋)
min (𝑋)

min (𝑌)
max (𝑌)

𝑔𝑧
𝑔𝑧

max (𝑋)

max (𝑋)

min (𝑌)

max (𝑌)

𝑔𝑧
𝑔𝑧

 Eq. 2 

 
3.1.4 Rasterization: The rasterization process reduces the 
dimensionality of the point cloud to an image, in this case on the 
Z axis (Balado et al., 2017b). Points are projected on the XY 
plane and structured on a grid (image). Each grid value (pixel) is 
associated with the mode of labels L of the points that fall on each 

pixel. The point clouds of ground 𝑃 , façades 𝑃  and object 𝑃  
are rasterized separately in 𝐼 , 𝐼 , and 𝐼 , respectively. Therefore, 
two binary images are generated (𝐼  and 𝐼 ), and a grayscale 
image 𝐼  corresponding to the object labels. 
 
3.2 Detection and individualization of occlusions 

The occlusion detection is based on the detection of gaps in the 
ground image 𝐼  (pixel value = 0). For this, it is necessary to 
know which areas of the image correspond to gaps and which 
areas correspond to the exterior of the case study. Since 
occlusions can reach the border of the ground with the façades, 
the façade image 𝐼  is used to delimit the study area (Figure 3). 
Once detected, occlusions must be individualized to analyse each 
one separately. 
 
3.2.1 Generation of ground-façade image 𝑰𝑮𝑭: For correct 
subsequent individualisation, the continuity in gaps between the 
interior and the exterior must be broken on 𝐼 . Façades can have 
discontinuities, due to openings, such as entrances, windows, 
occlusions, etc. To correct them, a morphological closing is 
applied to the façade image 𝐼 . Then, closed façade image is 
combined to ground image 𝐼  by means of the logical OR 
function. 

 
3.2.2 Occlusion detection: Gaps in an image correspond to its 
regional minima not connected to image border (Soille, 2013). 
Gaps are filled by applying a 2D geodesic transformation (Soille 
and Gratin, 1994). Gap raster image 𝐼  is obtained  by subtracting 
𝐼  to the filled image. 
 
3.2.3 Occlusion individualization: To analyse each gap 
separately, an identifier is associated to each occlusion through 
connected components (Kovalevsky, 2019). In this way, a binary 
image 𝐼  can be generated for each gap. 
 

Figure 1. Cross section view and ROI delimitation of most 
common urban scenarios with occlusions: a) occlusion 

produced by parked cars affecting to, ground, furniture and 
façades, b) occlusion produced by parked cars not reaching to 

façades, c) occlusion produced by furniture affecting to 
sidewalks and façades. 

Figure 2. Top view of images raster: a) Images generated 
without common bounding box points, b) Images generated 

with common bounding box points. 

Figure 3. Top view of border between occlusion and exterior 
of the study area: a) Confusion between both, b) area of study 

delimited by façade line. 
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3.3 Label assignment for each occlusion 

Not every object in the occlusion generates the occlusion. A 
distinction must be established between objects that cause the 
occlusion (occluding objects) and objects located in the occlusion 
without cause it. Objects that do not produce the occlusion are 
located inside and behind the occluding object (from the MLS 
perspective). These objects are partially occluded by the 
occluding object. The occluding object is overlapped with the 
occlusion at the gap border closest to the MLS trajectory and 
farthest from the façade line (Figure 4). To detect the occlusion 
objects, the hit-or-miss transform is applied to the gap raster 
image 𝐼 . Once detected, occluding object's label is associated to 
the entire occluded area. 

 
3.3.1 Border gap detection from occluding object: The hit-or-
miss transform allows detecting binary shapes in an image 
according to a direction (Bhattacharya et al., 1995). The hit-or-
miss transform uses a mask M based on a 3x3 matrix where the 
central element is fixed to 1 (occlusion exists), other element 
according to occlusion direction is fixed to 0 (no occlusion) and 
remaining elements are fixed to X value (it doesn't matter). The 
choice of direction is made on the raster image of the occlusion, 
based on the perpendicularity of the facades and with the 
activation of the most distant pixels. The choice of direction is 
made in the raster image of the occlusion, based on the 
perpendicularity of the facades and with the activation of the 
most distant pixels (Figure 5). After applying the hit-or-miss 

transform, raster binary individual images of the gap oriented 
border are obtained 𝐼 . 
 
3.3.2 Label assignment to occlusion area: Each 𝐼  is 
multiplied pixel per pixel by the raster image of objects 𝐼 . Pixels 
with a value different from 0, resulting from the multiplication, 
contain the label of the occluding object. Then, that label is 
associated to the individualized occlusion 𝐼 . Finally, all 𝐼  with 
label are merged, generating an image of all occlusions with 
corresponding labels. 
 
 

4. RESULTS AND DISCUSSION 

4.1 Data 

The proposed method has been tested in four real case studies in 
the cities of Vigo (Spain) and Paris (France). Figure 6 shows 
point clouds of the four case studies. The Vigo datasets have been 
acquired with the LYNX Mobile Mapper of Optech (Puente et 
al., 2013). The Paris datasets are available in IQmulus & 

Figure 5. Mask generation based on façade normal and 
border gap detection of occluding object. 

Figure 6. Datasets: a) Alfonso XII street (Vigo), b) Elduayen 
street (Vigo), c) Madame street (Paris), d) Madame street 

(Paris). Colour code: ground and façades in grey, cars in dark 
blue, motorbikes in light blue, pedestrians in rose, pole-like 

objects in orange, trees in light green, waste bins in yellow and 
others in dark green 

Figure 4. Top view of difference between occluding 
object (car) and not occluding object (pole-like) and 

location of gap border. 
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TerraMobilita Contest (Vallet et al., 2015). Dataset 1 
corresponded to a 50 meter of a façade line on Alfonso XII street 
in Vigo, the point cloud had 3.5 million points and several 
objects, including four parked cars. Dataset 2 corresponded to a 
50 meter of a façade line on Elduayen street in Vigo, the point 
cloud had 6.3 million points and a large variety of objects, 
including motorbikes parked on the sidewalk and small trees. 
Dataset 3 corresponded to a 90 meter of a façade line on Madame 
street in Paris, the point cloud had 1.5 million points and a large 
number of parked cars and some pedestrians. Dataset 4 
corresponded to a 67 meter of a façade line on Madame street in 
Paris, the point cloud had 1 million points and a large number of 
motorbikes and four cars. 

 
4.2 Results and analysis 

In the tests a h = 2 m and a raster grid size = 0.1 m have been 
assigned. This grid size ensures the existence of ground points in 
each no occluded cell, being the lowest point density 1 point 
every 0.05 m, located in the intersection of sidewalk and facade 
(area farthest from the MLS trajectory). The code was run on an 
Intel Core i7 CPU 2.8 GHz with 16 GB RAM using MATLAB. 
The processing time for each dataset was 4.4 s, 7.7 s, 4.2 s, 4.3 s, 
respectively. 
 
The results of applying the method are shown in Figure 7. In the 
images, it can be seen that small gaps (approximately those 
represented by pixels without continuity) are not assigned any 
class. This is caused by the assignment via the gap border, if the 
edge resulting from applying the hit-or-miss transform does not 
coincide with any object, the gap is discarded and considered not 
relevant. These small occlusions can be caused by thin objects or 
by an acquisition density failure. Table 1 accounts for acquired, 
occluded and classified areas. On average, only 4 m2 were not 
allocated in all datasets due to small occlusions, only 1% of total 
occlusions. Table 2 lists the number of objects per class, the 
detected as occluding objects, and the total area assigned to each 
class. It can be seen that, even though tree and pole-like objects 
exist, the occlusions of these were not counted due to their small 
size. In Figure 7 and Table 2, it can be seen that, even though tree 
and pole-likes exist, their occlusions were not counted due to 
their small size. The most relevant occlusions, produced by larger 
objects, were detected and correctly labelled with an accuracy of 
99.6%. The only error occurred in dataset 2. A gap generated by 
a pedestrian was assigned to the class others (bollard) because the 
pedestrian shadow had discontinuities that broke the continuity 
with the pedestrian.   
 
 

 

 
 
 

 
 
 

Figure 7. Results of dataset 1: a) top view of object colorized 
by class, b) ground occlusions, c) occlusions labelled by object 
class. Colour code: cars in dark blue, motorbikes in light blue, 
pedestrians in rose, pole-like objects in orange, trees in light 

green, waste bins in yellow. 

Figure 8. Results of dataset 2: a) top view of object colorized 
by class, b) ground occlusions, c) occlusions labelled by object 
class. Colour code: cars in dark blue, motorbikes in light blue, 
pedestrians in rose, pole-like objects in orange, trees in light 

green, waste bins in yellow, others in dark green. 

Figure 9. Results of dataset 3: a) top view of object colorized 
by class, b) ground occlusions, c) occlusions labelled by object 

class. Colour code: cars in dark blue, pedestrians in rose. 

Figure 10. Results of dataset 4: a) top view of object colorized 
by class, b) ground occlusions, c) occlusions labelled by object 
class. Colour code: cars in dark blue, motorbikes in light blue, 

pedestrians in rose. 
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A clear correlation has been found between the number of objects 
per class and the amount of occluded area. Cars produced 80.6% 
of the occlusions in all the case studies and motorbikes 16.7%. 
Smaller objects (pedestrian, waste and others) produced 1.6%, 
and tree and pole-like occlusions were neglected. Although the 
number of cars and motorbikes is similar, the area occluded by 
cars is much larger. In these four case studies, each car occluded 
an average of 11.9 m2, each motorbike only occluded 2.3m2. 
Pedestrians and wastebaskets only 1.1 m2 and 1.3 m2. 
 

Dataset 
Acquired 

ground area 
Gaps 

Labelled 
gaps 

Not 
assigned 

gaps 
1 403.3 m2 76.1 m2 75.3 m2 0.8 m2 
2 443.2 m2 43.5 m2 41.4 m2 2.1 m2 
3  297.4 m2 192.2 m2 192.0 m2 0.3 m2 
4 330.9 m2 87.3 m2 86.3 m2 1.0 m2 

TOTAL 1474.8 m2 399.2 m2 395.0 m2 4.2 m2 

Table 1. Accounting of acquired ground and occluded area by 
case study. 

 

Class 
Number of 

objects 
Occluding 

objects 
Total area 
occluded 

Area per 
object 

Car 27 27 321.8 m2 11.9 m2 
Motor. 30 29 66.8 m2 2.3 m2 
Pedes. 15 3 3.3 m2 1.1 m2 
Pole 12 0 0.0 m2 0.0 m2 
Tree 6 0 0.0 m2 0.0 m2 
Waste 3 2 2.7 m2 1.3 m2 
Other 4 1 0.4 m2 0.4 m2 

Table 2. Accounting of objects by class and occluded area. 
Note: error produced in the misclassification (pedestrian as 

others) is represented corrected. 
 
4.3 Discussion 

The raster resolution influences directly the results. Higher 
resolution allows for more accurate gap detection, as small 
occlusions could maintain continuity and would not be 
eliminated. But a higher resolution of the raster also requires a 
higher point density acquisition. If the resolution of the raster is 
increased maintaining point density, pixel voids non-occlusion 
related may appear between the points and the size of the 
occlusions would be falsified. 
 
In addition, the gap detection depends on the existence of a line 
of façades to separate occlusions and the exterior of the study. In 
the case of no façade line, the gap detection would not be 
performed correctly. An alternative would be to implement a 
convex hull (Feng et al., 2020; Wang et al., 2017) on the ground 
binary image, to delimit the study area. However, urban ground 
is usually delimited by buildings. 
 
With regard to the label assignment, most relevant urban object 
classes were selected. However, the class cars (and motorcycles) 
allows a differentiation between parked cars and cars in motion 
(dynamic objects). This differentiation can be performed based 
on  geometric features, as point clouds of both are notably 
different (Balado et al., 2019a), or on location, as these vehicles 
are usually on parking slots. In datasets 1 and 2, two moving cars 
were acquired. Therefore, not all vehicles can always be 
considered as temporary static objects. This differentiation would 
allow the correct calculation of the area occluded by static, 
dynamic and temporary static objects. 

As mentioned in the introduction, most authors opt for automatic 
occlusion correction without focusing on what produced the 
occlusion. In papers where there is a detection phase, detection 
and correction is usually based on visibility analysis (Friedman 
and Stamos, 2012), for which it is necessary to know the exact 
3D TLS position or MLS trajectory. In this work, trajectory has 
been not necessary as input data, since many times this data is not 
available. The MLS position has been determined with respect to 
façades. In addition, while visibility analyses are performed in 
3D, which implies a higher computational cost, in this work, 
point cloud processing has been used only to remove non-
relevant information. After rasterization, image processing takes 
advantage of well-known and optimized mathematical 
morphologic techniques and matrix operations. 
 
However, with respect to a visibility analysis, the proposed 
method has some limitations. It is only applicable to the ground, 
as each gap has been assumed as an occlusion generated by an 
object. Although with a change of perspective in the rasterization, 
a façade image can be obtained. In the façades there are numerous 
gaps that do not correspond to occlusions generated by objects. 
Some gaps are occlusions generated by the façade geometry, 
entrances or windows. Furthermore, there may be several 
occluding objects per occlusion, although it has not been 
observed in any of the four case studies. The present method has 
not been designed for such a situation. The algorithm should be 
improved to divide each gap according to each occluding object. 
 

 
5. CONCLUSIONS 

In this work, an automatic method for the detection and labelling 
of existing occlusions in urban ground of point clouds acquired 
with MLS has been presented. The input of the method is a point 
cloud segmented into ground, trees and objects, which classified. 
The method has correctly detected the number of occlusions 
corresponding to the largest occluding objects and has correctly 
assigned the 99.6% of the labels. The proposed method has 
enabled to measure the occluded area per object class, confirming 
numerically that cars and motorbikes, in the case of appearing on 
the urban scene, are the objects that cause the greatest number of 
occlusions, occluding each one an average ground area of 11.9 
m2 and 2.3 m2. 
 
As future work, the method will be adapted for application to 
façades and improved to divide gaps generated by various 
occluding objects. It will also be studied how estimate occlusions 
generated by static non occluding objects, when these are part of 
gaps generated by parked objects, to estimate the percentage of 
gap that would persist in case of removing temporary static 
objects, such as parked cars. 
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