ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume VI-4/W1-2020, 2020
3rd BIM/GIS Integration Workshop and 15th 3D Geolnfo Conference, 7-11 September 2020, London, UK

A MULTI-PERSPECTIVE APPROACH TO INTERPRETING SPATIO-SEMANTIC
CHANGES OF LARGE 3D CITY MODELS IN CITYGML USING A GRAPH DATABASE

Son H. Nguyen!* Thomas H. Kolbe!

! Chair of Geoinformatics, Department of Aerospace and Geodesy, Technical University of Munich (TUM), Germany -
(son.nguyen, thomas.kolbe) @tum.de

KEY WORDS: CityGML, Spatio-semantic Comparison, Change Detection, Edit Operations, Graph Database, Analysis

ABSTRACT:

In the age of virtualization, rapid urbanization and fierce competition, more and more “digital twins” of real cities are being created as a
time, cost-efficient and especially user-oriented solution to many problems in urban planning and management. One prominent task is
to efficiently detect progresses made by a city based on their virtual 3D city models recorded over the years, and then interpret them
accordingly with respect to different groups of users and stakeholders involved in the process. The first half of the problem, namely
automated change detection in city models, has been addressed in recent studies. The other half of the problem however, namely a
user-oriented interpretation of detected changes, still remains. Thus, based on the current findings, this research extends the conceptual
models and definition of different types of edit operations between city models using a graph database, where the graph representations
of city models are also stored. New rules and conditions are then provided to further categorize these changes based on their semantic
contents. Considering the different expectations and requirements of different groups of users and stakeholders, the research aims to

provide a multi-perspective interpretation of such categorized changes.

1. INTRODUCTION

In the age of virtualization, rapid urbanization and fierce competi-
tion, more and more “digital twins” of real cities are being created
and maintained not only by private companies and sectors, but
also by numerous cities and countries all around the world. Man-
aging digital twins should be time and cost-efficient and especially
user-oriented, since a number of different users and stakeholders
that have different interests and expectations are often involved
in the process. As a result, one often-stated problem is how to
automatically detect progresses made by a city based on its virtual
city models recorded over the years. This should be done not
only in a time and cost-efficient but also in a user-oriented manner.
This question is interesting both due to its technical challenges and
many possible interpretations of detected changes with respect to
different groups of users and stakeholders.

Progress or change detection in virtual semantic 3D city models
(mostly encoded in CityGML) is not new but due to its technical
difficulties, only a few studies have been published so far, such as
by (Bakillah et al., 2009) and (Redweik and Becker, 2015). The
technical challenge of this problem can basically be explained by
understanding the key concepts and characteristics of CityGML
itself. Firstly, CityGML is an official open standard for the storage
and exchange of virtual 3D city models. The OGC standard is ca-
pable of describing most common urban objects such as buildings,
bridges, tunnels, water bodies, vegetation, traffic, etc. Applica-
tion areas of CityGML vary widely ranging from urban planning
and architectural design to environmental and traffic simulation
(Groger et al., 2012). Secondly, in contrast to other conventional
virtual 3D city models that are purely graphical or geometrical,
CityGML combines both spatial and semantic information in one
place. This enables not only object visualization, but also analysis
of the enriched thematic data. Thirdly, CityGML represents 3D
city objects in five different levels of details (LODs 0 - 4) capable
of describing different geometric details of complex objects. And

*Corresponding author

finally, CityGML is known (and also debated) for its high level of
syntactic flexibility by allowing multiple syntactic representations
of the same object. For instance, boundary surfaces of a solid
can either be defined “in-line” directly, or referenced to existing
surfaces that are e.g. shared with other neighbouring solids using
their identifiers (i.e. XLinks). Additionally, each surface can either
be defined as a single polygon or as a composite surface consisting
of smaller surface patches.

In a recent study, (Nguyen et al., 2017) addressed the posed com-
plexities and technical difficulties in detecting changes between
CityGML datasets by considering them as graphs due to the graph
nature of CityGML datasets. The authors then provided both a
detailed concept and a working open-source implementation of
how to map CityGML datasets onto graphs as well as how to
match them using a graph database.

The work presented by (Nguyen et al., 2017) however only solved
the first half of the problem, namely the automated approach to
change detection between virtual city models. The second half
of the problem, namely to provide a multi-perspective interpreta-
tion of detected changes with respect to different groups of users
and stakeholders, still remains. Expectations and interests vary
vastly among users and stakeholders. For instance, developers and
programmers are interested in every detected change between the
city models, from updated identifiers of polygons, lines, etc. to
deletion of entire buildings. Surveyors and data administrators
are mostly concerned about how to update and maintain 3D city
models continuously and efficiently. In contrast, municipalities
and city administrators are rather interested in the large-scale pro-
gresses that occurred in the city, including changes of top-level
features such as the number of buildings with “real” detected
changes, the number of buildings that are “unchanged”, and what
the most frequent changes are, etc.

Therefore, although equally challenging, this part of the problem
requires an understanding of how detected changes are represented
in the graph database as well as of how relevant each of these

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-VI-4-W1-2020-143-2020 | © Authors 2020. CC BY 4.0 License. 143

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume VI-4/W1-2020, 2020
3rd BIM/GIS Integration Workshop and 15th 3D Geolnfo Conference, 7-11 September 2020, London, UK

A . i
| I 1
i Insert 3 Procedural |
1 Property i Changes |
! I |
| i Thematic |
3 City- ! Changes 1
N GML Update i i
| Delete Property 1 - Syntactic !
I I
i Property Changes :
! map match]
| ; Geometric i
i ! Changes !
| Insert ! !
! itv-
! gll\t/)lll_ EE— [')\lelete Node | Structural i
‘ e | Changes i
! I |
! I |
! I 1
| | Top-level i
i ! ’ Changes |
‘ | i
! I |
i Mapping & Detected changes as i Categorization i
i Matching process Edit Operations based on functions 3 based on semantic contents i
O

Figure 1. An overview of the workflow presented in this research. Based on the concepts and implementation proposed by (Nguyen et al.,
2017), the mapping and matching process are extended to better produce edit operations from detected changes. Each coloured petal in
the middle stage represents a type of edit operations. Each category in the last stage can therefore contain all five types of edit operations.

changes is to the stakeholders. This plays a vital role in connecting
the technical implementation with users and stakeholders in the
real world. Achieving this may open up new opportunities and
possibilities on a better understanding of cities’ evolution and
developing new strategies and ideas accordingly.

Thus, this paper proposes: 1) enhancing the mapping and matching
process of CityGML datasets based on the methods and imple-
mentation provided by (Nguyen et al., 2017) to enable complex
analysis and querying of detected changes, 2) extending the con-
ceptual models and definition of edit operations representing such
detected changes, and 3) developing new methods and rules to fur-
ther categorize edit operations in a user-oriented way. An overview
of this workflow is illustrated in Figure 1. Section 2 discusses
studies and research work that are most relevant to the concepts
and methods proposed in this paper. Section 3 covers the first two
steps of the above-mentioned workflow, while Section 4 explains
the last step. Then, Section 5 introduces and classifies users and
stakeholders in different groups and shows the relationships be-
tween them and the different categories of changes. In Section 6,
test results and findings are presented. Finally, Section 7 concludes
the paper and discusses some future work.

2. RELATED WORK

Most virtual 3D city models are encoded in CityGML, which
is an application schema of the Geography Markup Language
3 (GML3). GML is an XML application for expressing spatial
and geographical data issued by the Open Geospatial Consortium
(OGCO) (Groger et al., 2012). CityGML datasets are therefore
stored as text documents. In this regard, conventional diff tools
such as the Hunt—Szymanski algorithm (Hunt and Szymanski,
1977) and Myers’ algorithm (Myers, 1986) are well-known for
their capability of comparing and displaying differences between
two plain text files. However, despite being text files, CityGML
datasets contain highly structured information and thus cannot
simply be compared using conventional diff tools designed only
for plain texts.

Since XML documents can be conceptually interpreted as a tree
data structure (i.e. XML tree), (Redweik and Becker, 2015)

proposed an approach to detecting changes between CityGML
datasets using their tree representation. The authors employed the
algorithm “X-Diff” (Chawathe et al., 1996; Wang et al., 2003),
which could compare two unordered XML trees using standard
tree-to-tree corrections. One major advantage of the methods pro-
posed by (Redweik and Becker, 2015) is that they considered both
the geometric and semantic information available in CityGML
documents. However, due to the fact that CityGML allows the us-
age of XLinks, which enable linking between elements that could
form potential cycles or cause a node to have multiple parents,
CityGML documents are generally not structured as a tree, but as
a cyclic graph instead. Thus, due to the graph nature of CityGML
datasets, this approach is often not expressive enough.

(Falkowski and Ebert, 2009) presented a graph-based schema for
integrated models of urban data in CityGML using the TGraph
technology. They defined an explicit graph representation of geo-
metric, topological, semantic and appearance objects and showed
how they can be stored in one integrated graph model. The authors
explained the vital role of such graph representations in various
efficient processing algorithms, including model creation, im-
provement, transformation, analysis and export of city objects. In
another relevant research, (Agoub et al., 2016) showed limitations
of storing and managing highly complex data structures such as
CityGML in a relational database management system (RDBMS)
such as PostgreSQL/PostGIS or Oracle Spatial. They argued that
mapping object-oriented data models with well-defined objects,
attributes and relations into compact relational schemas without
causing information loss is a challenging task. The research sug-
gested employing a NoSQL database, particularly a graph database
such as Neo4j, to “help dealing with this problem as the underlying
data model of nodes and edges can natively represent a conceptual
UML diagram”. Both the concepts provided by (Falkowski and
Ebert, 2009) and (Agoub et al., 2016) were promising as they
showed the potential of using graphs to represent highly complex
hierarchical objects in CityGML. However, their methods were
either rather a proof of concept or light-weight. They did not
explain in details how hierarchical information (like inheritance)
and cross-referencing (as in XLinks) of CityGML objects can be
fully and automatically mapped onto graphs without losing data
during the process.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-VI-4-W1-2020-143-2020 | © Authors 2020. CC BY 4.0 License. 144

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume VI-4/W1-2020, 2020
3rd BIM/GIS Integration Workshop and 15th 3D Geolnfo Conference, 7-11 September 2020, London, UK

In this context, (Nguyen et al., 2017) proposed an approach to
mapping, matching and updating CityGML datasets using a graph
database. By taking advantage of the available inheritance rela-
tions defined in the object-oriented model, the presented mapping
methods were able to transform complex hierarchical CityGML
objects fully onto corresponding graph components with no infor-
mation loss. XLink references between objects were also taken
into account and reflected in the resulting graphs. Then, based
on the mapped graphs, the matching progress ensured only the
most likely sub-graph candidates are compared based on their e.g.
thematic, geometric or semantic information. Detected changes
were also represented as graph nodes attached to the sources and
could be applied to generate edit operations and queries to update
the old CityGML datasets using e.g. the Web Feature Service
(WES).

Furthermore, the above-mentioned papers such as (Chawathe et al.,
1996; Wang et al., 2003; Redweik and Becker, 2015) and (Nguyen
et al., 2017) provided a classification of detected changes as the
so-called edit operations. For instance, (Redweik and Becker,
2015) divided them into three groups: inserting a child node to a
parent node, deleting an existing node from the tree and updating
the value of a leaf node. On the other hand, (Nguyen et al., 2017)
classified the detected changes as five edit operations: inserting
a child node or a sub-graph to a parent node or graph, deleting
an existing child node or a sub-graph from the database, inserting
a new simple property (that can be stored as texts) to a node,
deleting an existing simple property from a node, and updating
the old value of a simple property with a new one. However,
these studies did not further explain how such edit operations
can be interpreted. They left the question open as how to further
classify edit operations based on not only their functionalities
in the underlying concepts, but also how relevant they were to
specific groups of users.

Thus, this research further focuses on filling this gap between
technical realization of change detection concepts and how to
better interpret them for different groups of users and stakeholders.
Since the work presented in (Nguyen et al., 2017) was one of
the first that actually provided a detailed concept of mapping and
matching CityGML datasets using graphs as well as a working
open-source implementation that scales well with very large data
sizes, the implementation of this study was based on and extended
from the findings of that work.

3. EXTENDING AND MANAGING EDIT OPERATIONS
IN THE GRAPH DATABASE

In this section, the detected changes are classified as five types
of edit operations based on their functionalities. These classes
are InsertProperty, DeleteProperty, UpdateProperty, Insert-
Node and DeleteNode.

3.1 Extended Definition and Conceptual Model

To compare two arbitrarily large CityGML datasets, a graph
database such as Neo4j can be employed, where both the mapping
and matching process take place. In Neo4j, a graph contains a set
of nodes and edges. Each node and edge can have an arbitrary
number of simple properties (e.g. texts, numbers, dates, etc.),
whose names must however be unique within that node or edge.
For any detected change, a node is created and attached to the
source via an edge in the graph database on the fly every time a
deviation is found. Conceptually, these changes are divided into

five different types called edit operations. (Nguyen et al., 2017)
provided a hierarchical modelling of such edit operations but did
not explicitly define how they could be manipulated for complex
queries in the graph database. Since edit operations play a central
role in analysing and understanding the evolution of cities, this
research proposes an extension of the definition and classification
of these edit operations.

The five types of edit operations operate on two levels described
as follows:

e Property level (representing edit operations on simple values):

— insert(p,v, T): insert a simple property p into the target
node T with the value v;

— delete(p, T): delete the simple property p from the target
node T;

— update(p, v, T): replace the old value of the simple property
p from the target node T with new value v.

e Node level (representing edit operations on complex objects):

— insert(C, T,r): insert a child node C to the target node T
with an edge or relation r between the nodes (in direction
from T to C);

— delete(T): delete the target node T.

Note that the child node C and target node T can be either a leaf
node or a root node representing a sub-graph (in the sense that
the whole sub-graph is reachable from this root node). Since
edit operations are generated with the older city model as the
basis, the target node T always points to a node from the older
dataset. Moreover, with the exception of edit operation nodes,
neither new nodes are created nor existing nodes are deleted from
the database. Both C and T are solely references pointing to an
already existing node in the graph database (either from the older
or newer city model). These pointers can be thought of as the tags
“to be inserted”, “to be deleted” or “to be updated” attached to the
detected changes. Figure 2 gives an overview of how these edit
operations are stored in the graph database.

The above-mentioned parameters such as p, v, C, T are required
to define edit operations. However, to further allow their cate-
gorization and interpretation in a meaningful way (as presented
in Section 4), some additional information may be needed. For
instance, a unique ID id shall now be assigned for each edit op-
eration. This can be the node ID assigned in the graph database
or regenerated using customized patterns. Furthermore, the prop-
erty topLevelId indicating the GMLID of the top-level feature
(such as building), to which the target node T belongs, shall also
be stored in each edit operation. This particular useful piece of
information allows efficient grouping of edit operations per top-
level feature later on in Section 4. The value topLevelId can be
determined by traversing starting from the node T upwards in the
graph until a node representing a top-level feature (e.g. a building
or a road feature) has been reached. In Neo4j, although edges are
directional, they can be traversed in both directions. Finally, the
node type (or label) TType of the node T also plays an important
role in categorizing changes and shall be added to each edit op-
eration. Although TType can easily be retrieved by querying the
type of node T, not all applications have direct access to the graph
database. Thus, storing TType in an additional simple text value
ensures this information can also be shared to other tools outside
of the graph database. The same can be applied to C and its node
type CType.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-VI-4-W1-2020-143-2020 | © Authors 2020. CC BY 4.0 License. 145

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume VI-4/W1-2020, 2020
3rd BIM/GIS Integration Workshop and 15th 3D Geolnfo Conference, 7-11 September 2020, London, UK

Insert
Property

<old new> <old

(a) Insert Property

-
<old news '

(d) Insert Node

Delete
Property

(b) Delete Property

Update
Property

cold new> w

(c) Update Property

=
<old news '

T Delete
/noe D

(e) Delete Node

Figure 2. An illustration of how the five different types of edit operations (circles with filled label) are represented in the graph database.
Each empty circle represents a node in the graph representation of the older (left) or newer (right) city model.

Therefore, based on the UML class diagram given in (Nguyen
et al., 2017), this research further extended it with the above-
mentioned modifications shown in Figure 3.

InsertProperty

DeleteProperty

PropertyOperation

+ p: String

EditOperation UpdateProperty

InsertNode
+ C: Node
+ CType: String

+id: String
+ topLevelld: String <
+ T: Node
+ TType: String

NodeOperation +r: String

DeleteNode

Figure 3. An extended UML class diagram of all edit operations.
3.2 Querying Edit Operations in the Graph Database

In order to allow efficient queries on the created edit operations
on a graph level, some tweaks may be needed. In Neo4j for
instance, to reduce the number of unnecessary database hits caused
by each query, unique indexes are created for all edit operation
nodes. Alternatively, a single unique indexed node named e.g.
Root Matcher (which is not shown in Figure 3) can be created and
connected to all edit operation nodes via the relationship contains.
This allows fast and efficient queries on all edit operations. For
example, using Cypher (the official graph query language used in
Neod4j), Listing 1 and 2 show how the total number of all generated
InsertNode operations can be calculated.

MATCH (i:INSERT_NODE)
RETURN COUNT (*)

Listing 1. An example Cypher query for counting all generated
INSERT_NODE operations. Here all edit operations are indexed.

MATCH (m:ROOT_MATCHER)
RETURN SIZE((m)-[:contains]->(i:INSERT_NODE))

Listing 2. An example Cypher query for counting all generated
INSERT_NODE operations. Here a single indexed root node is
used to retrieve all connected edit operations.

3.3 Exporting Edit Operations

As mentioned before, not all applications have direct access to
the graph database. As a result, the generated edit operations and
their information should be exported to some common exchange
formats that other programs can make sense of. For instance,
tables can be used to provide a relational overview of all edit
operations and thus are more attractive towards most Relational
Database Management Systems (RDBMS). Comma-Separated
Values (CSV) tables are a good way to capture some important
data extracted from the edit operations stored in the graph database
(see Table 1). These include all basic property values defined in
Figure 3 (except the complex node objects C and T, which shall
then be replaced by the corresponding text values CType and
TType mentioned before in Section 3.1). This suffices for edit
operations on the property level. Edit operations on the node level
like InsertNode and DeleteNode are however more difficult to
handle. In fact, if C and T refer to graph representations of
complex objects, it is impossible to store such data as plain texts
without losing information. Therefore, tables can represent some
information of the edit operations stored in the graph database, but
not completely. Nonetheless, they should provide sufficient data
for most analysis and statistics processes on the metadata level.

ID | Top-level ID | T-Type C-Type Relationship
- Bounding- bounded-
1 BLDG_1 Building Shape By

Table 1. An example of a table containing information exported
from all InsertNode operations stored in the graph database.
Each table row represents an edit operation.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-VI-4-W1-2020-143-2020 | © Authors 2020. CC BY 4.0 License. 146

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume VI-4/W1-2020, 2020
3rd BIM/GIS Integration Workshop and 15th 3D Geolnfo Conference, 7-11 September 2020, London, UK

4. CATEGORIZING DETECTED CHANGES BASED ON
THEIR SEMANTIC CONTENTS

Section 3 extended the definition and classification of detected
changes as five classes of edit operations based on their function-
alities. These are required to e.g. update the older city model to
a newer one. However, such edit operations focus on the literal
contents and do not explicitly differentiate between the semantic
contents stored within the detected changes. These semantic con-
tents are needed to enable detailed analyses on detected changes.
Moreover, to the majority of users, it is difficult to identify “real”
changes from e.g. syntactic changes in an often overwhelming
number of generated edit operations. Hence, this section shall
address these problems and explain how to further categorize
changes in a more user-oriented manner. Based on the semantic
contents, the changes detected by the change detection tool can fur-
ther be divided into the following categories: procedural, thematic,
(purely) syntactic, complex geometric, structural, and top-level
changes. Most of the element and class names used in this section
are defined in the CityGML specification (Groger et al., 2012).

4.1 Procedural Changes

Modifications that were made due to change in programs, methods
and procedures while handling CityGML datasets (e.g. import or
export) are categorized as “procedural changes”. These include:

e Changes in identifiers (e.g. those of top-level features such as
buildings, bridges, tunnels, etc. as well as geometric elements
such as polygons, lines, etc.);

e Changes in creationDate and terminationDate;

e Changes related to coordinate reference systems, such as srs-
Name, srsDimension, etc.

Procedural changes mostly occur in simple properties and hence
can be identified by comparing the property name p in each edit
operation (see definition in Section 3.1) with the property names
listed above. The value p can be retrieved either by using simple
queries on the property names p similar to those shown in Sec-
tion 3.2, or by searching for the values in the column p in each
table exported in Section 3.3. The same also applies for the cate-
gorization of other types of changes in the next sections, except
when a direct access to the graph database is required (as in the
case of syntactic and geometric changes in Section 4.3 and 4.4).

4.2 Thematic Changes

One major advantage of CityGML is that it also includes thematic
data in its encoding. Such can be stored as plain texts or numeric
data. Note that due to limited space, not all properties or elements
defined in CityGML are listed here.

4.2.1 Thematic Changes in Text Data Thematic text ele-
ments in CityGML are listed as follows:

e Simple text properties defined in CityGML such as class,
function, roof Type, etc.;

e Simple text properties defined in GML such as location,
description, name, etc.;

o Generic attributes stringAttribute and uriAttribute;

e Properties and objects used to store address of the city object
such as country, postalCode, thorough fare, etc.;

e Properties and objects related to the appearance of the city
object such as imagellri, theme, etc.

Note that, according to the mapping rules, while most simple the-
matic properties are stored directly as a text property within their
parent node (which is often a node representation of a top-level fea-
ture, such as in the case of the property class in a building node),
some other thematic objects such as address and appearance are
more complex and cannot be represented by a single text, but
a series of nodes or a sub-graph. However, regardless of their
complexity, such thematic elements can always be represented
by a limited number of text nodes and are thus all considered as
thematic text data. Therefore, an edit operation is classified as
“thematic text change”, if its property name p is equal to one of the
simple thematic text property names, or if its node representation
is attached to a sub-graph belonging to one of the more complex
thematic elements listed above.

4.2.2 Thematic Changes in Numeric Data The following
list contains numeric thematic elements defined in CityGML:

e Simple numbers containing natural or real values such as sto-
reys AboveGround, storeysBelowGround, storeyHeights A-
boveGround, storeyHeightsBelowGround, relativeToTer-
rain, relativeToWater, etc. as well as generic intAttribute
and real Attribute;

e Numeric values with explicit unit of measurement such as mea-
suredHeight;

e Date values such as yearOfConstruction, yearO fDemo-
lition, etc. and generic date Attribute.

Such thematic elements should be handled numerically. This
means that e.g. only when the absolute difference between two
numbers exceeds a certain threshold or an error tolerance, an
edit operation shall then be created. This also must take units of
measurement and date values (if available) into account. Numeric
changes that are too small (i.e. within an error tolerance) shall be
considered as (purely) syntactic changes instead (see Section 4.3).

4.3 (Purely) Syntactic Changes

The same object sometimes can be represented in different ways.
This is due to the syntactic ambiguity allowed in (City)GML.
These changes are categorized as “(purely) syntactic changes” in
this section, which means that only the syntactic representation of
an object has been changed, while the object is semantically con-
sidered the same. Such changes are flagged as optional meaning
that the corresponding edit operations are not required to be exe-
cuted while updating. This includes syntactic ambiguities allowed
in XML such as:

e Changed order of sibling elements of the same XML parent
node, this is already taken into account while reading CityGML
input datasets and shall not be further considered;

e Objects that are defined “in-line” or by using XLinks to link to
other existing elements (e.g. a Solid can have a list of XLinks
referring to other surfaces already declared somewhere in the
dataset), this was also already solved by representing CityGML
documents as graphs and shall not be further considered.

In addition, different syntactic representations of geometrically
equivalent elements are also considered as (purely) syntactic
changes. Such geometric elements include:

e Points: Two Points are considered geometrically equivalent
if their coordinates are given within a small error or distance
tolerance. Points can also be represented in many different
syntactic ways, such as using Point, Coord, Coordinates, etc.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-VI-4-W1-2020-143-2020 | © Authors 2020. CC BY 4.0 License. 147

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume VI-4/W1-2020, 2020
3rd BIM/GIS Integration Workshop and 15th 3D Geolnfo Conference, 7-11 September 2020, London, UK

o Line Segments (LineStrings): Two LineStrings are consid-
ered geometrically equivalent if their control points are also
geometrically equivalent, where no three consecutive control
points are collinear. This can be extended for Curves.

e 3D Rings (LinearRings): A LinearRing can be thought of
as a closed LineString (here only co-planar control points are
considered), thus two LinearRings are considered geometri-
cally equivalent if the shapes bounded by their LineStrings are
geometrically equivalent. This is true if the two shapes contain
each other’s control points within an error or distance tolerance.

e Polygons: Two polygons are considered geometrically equiva-
lent if the LinearRings bounded by their exteriors and interiors
are also geometrically equivalent. This can be extended for Sur-
faces, MultiSur faces, etc.

e Solids: Two solids can be matched using their polygon footprint
or their minimum bounding box. In the latter case, two min-
imum bounding boxes are considered potentially matched, if
the ratio of their overlapping volume over their volume satisfies
a reasonable lower limit, preferably close to 1. However, since
different 3D objects could have the same minimum bounding
box, solids matched by this method need to be further compared
by successively matching their boundary polygons.

In contrast to simple thematic properties, identifying syntactic
changes requires direct access to the graph database in order to
retrieve their entire graph representations.

4.4 Complex Geometric Changes

Changes in geometric objects that are not purely syntactic (as
described in Section 4.3) shall be categorized as “complex geo-
metric changes”. In contrast to (purely) syntactic changes that are
optional, complex geometric ones are “real changes” (such as an
enlargement of wall, door and window surfaces due to building
renovation) and must be considered. These include:

o lodXSolid, lodXTerrainIntersection and lodXMultiSur-
face with (X =1,2,3,4);

o lodXMultiCurve with (X = 2,3,4);

o lodORoofEdge and boundedBySur face.

4.5 Structural Changes

Changes reflecting structural modifications of city objects in the
real world (such as a new constructed building part or a wall
surface removed from an existing building) are considered as
“structural changes”, these include the following elements:

o BuildingPart;
e The boundary surfaces such as RoofSur face, WallSur face,
GroundSur face, etc.

4.6 Top-level Changes

This last category covers changes that occur on the scale of top-
level features, such as:

e Deletion of existing top-level features (such as buildings);

e Insertion of new top-level features (such as buildings).

Only the target node type TType and the child node type CType
of the InsertNode and DeleteNode edit operations are required.
These node types are then compared with the class name of the top-
level features (such as Building). Both the options using graph
queries shown in Section 3.2 and exported tables in Section 3.3
can be employed to determine top-level changes.

5. RELEVANCE OF CHANGE CATEGORIES WITH
RESPECT TO USERS

The different edit operations and categories defined in Section 3
and 4 give an overview of both the literal and semantic aspect
of the detected changes. They provide the key information to
help better analyse and understand how cities progress. This
can however be interpreted differently depending on the different
needs, requirements and expectations of users and stakeholders.
This section introduces three groups of most relevant users and
stakeholders as follows :

o City administrators and municipalities: These stakeholders are
in charge of planning and important decision making. They
are mostly interested in large-scale changes such as the number
of buildings that have been inserted or deleted from the city
models, the number of buildings that are unchanged, as well as
which buildings have been recently renovated and received new
walls and windows, etc.

e Data administrators and surveyors: These stakeholders manage
and maintain virtual city models on a regular basis. Some of
their concerns include e.g. the minimum number of which edit
operations should be executed in order to keep the datasets
up-to-date, as well as how to keep track of real changes, etc.

e Developers and programmers: These stakeholders are in charge
of the technical development and implementation of new con-
cepts and methods. They are interested in understanding,
analysing and experimenting on changes found. This includes
questions such as whether the coordinate reference system
(CRS) in a dataset has been changed, how a change in software
used to manage datasets can have an impact on all types of
changes in the datasets, etc.

An example of the relevance and interest levels of different cat-
egories of changes with respect to different groups of users and
stakeholders is illustrated in Table 2. Note that there are generally
different methods, factors and criteria to consider while classifying
the interests and concerns of users and stakeholders. The example
grouping of users presented above as well as the relevance lev-
els shown in Table 2 should therefore be considered as an initial
attempt to provide a better overview of how users interact with
different types of changes.

City Data Developers/
Administrators Administrators Programmers
Procedural
rocedura 00 oe o0
Changes
Thematic
o] J (1] (1]
Changes
Syntacti
yntachie 00 00 o0
Changes
G tri
eometric ce o0 P
Changes
Structural
o] J (1] (1]
Changes
Top-level
op-eve o0 o0 o0
Changes

OO notrelevant O@ less relevant @@ very relevant

Table 2. An example of the relevance of different categories of
changes with respect to different groups of users and stakeholders.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-VI-4-W1-2020-143-2020 | © Authors 2020. CC BY 4.0 License. 148

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume VI-4/W1-2020, 2020
3rd BIM/GIS Integration Workshop and 15th 3D Geolnfo Conference, 7-11 September 2020, London, UK

6. APPLICATION RESULTS

The proposed extended concepts of edit operations in Section 3 and
different categories of changes in Section 4 shall be tested against
two different use cases. In the first test case with smaller CityGML
datasets from the district Moabit of the city of Berlin, the relations
between the edit operations and categorized changes along with
other findings shall be discussed. In the second test case with
much larger CityGML datasets covering the entire German state
of North Rhine-Westphalia, the scaling abilities of the proposed
concepts shall be evaluated. Both the test cases were performed on
a machine running SUSE Linux Enterprise Server 12 SP1 (64 bit)
equipped with Intel® Xeon® CPU E5-2667 v3 at 3.20GHz (16
CPUs + Hyper-threading), a PCle Solid-state Drive Array (SSD)
and 1 TB of main memory.

6.1 Test Case Berlin Moabit

Two input CityGML datasets of the same area of the district
Moabit of the city Berlin shall be tested. The older and newer
CityGML dataset were recorded in 2008 and 2015, are 12 MB

and 17 MB in size and contain 642 and 653 buildings respectively.

Both datasets are given in LOD2.

Thematic changes - l 14,044

Geometric changes |

Procedural changes 6,308

Structural changes 2,000

| 8,565

Top-level changes | 37

Syntactic changes - 0

0 2 4 6 8 10 12 14
No. changes per category .1(3

Delete node l 14,105

Update property | l 12,434

Insert node 4,415

Delete property -|

o O

Insert property -| ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 0 12 14
No. changes per edit operation.j(3

(a) Number of detected changes per category and edit operation

Procedural changes Thematic changes

0 Update property
O Insert node

O Delete node

Geometric changes Structural changes Top-level changes

P S

(b) Distribution of edit operations per category

Figure 4. Applications results in the test case of Berlin Moabit.

A total number of 237,222 nodes and 30, 954 edit operations were
created in the graph database. The matching process took 93
seconds. The application results summarized in Figure 4 show
that 80% (24, 646) of all detected changes are considered as “real”
changes. These include thematic, geometric, structural and top-
level changes. Deleted thematic data account for 12,603 (41%) of
all changes and are therefore the most common type of changes in
this test case. Changes in generic attributes account for 99% of all
thematic changes. In addition, no syntactic changes were found.
This could be due to the fact that both the datasets were exported
using the same software. Stakeholders such as city administrators
can make use of the top-level changes to determine the number
of buildings inserted to the newer city model (24) as well as the
number of buildings deleted from the older city model (13).

Interestingly, as shown in Figure 5, a height difference of about
40 meters between all buildings of the older and newer dataset
was found by manual inspection. Due to this significant difference
in height, instead of using (3D) bounding boxes, (2D) footprints
of buildings were used to determine the best matching candidates
for each building. Such systematic changes are currently not
categorized and captured by the implementation.

Figure 5. The systematic height difference of almost 40 meters
between the older (upper) and newer city model of Berlin Moabit.
Visualized by the 3DCityDB Web Map Client (Yao et al., 2018).

6.2 Test Case North Rhine-Westphalia

In the second test case, the scaling capabilities of the extended
implementation shall be tested against very large amount of data.
Two input city models in LODI1 recorded in 2016 and 2018 of
the entire German state of North Rhine-Westphalia shall be tested.
The older and newer city model are 79 GB and 89 GB in size and
contain 10, 132,245 and 10, 459, 646 buildings respectively. Since
each of the dataset is provided in 35, 022 tiles, the implementation
was also extended accordingly to detect, map and match each pair
of the tiled datasets of the same area in a multi-threaded manner.
The generated edit operations for each pair of tiles were then
totalled up. The results are shown in Table 3.

A total number of 1,798, 612,970 nodes and 338, 335, 694 edit op-
erations were created in the graph database (see Table 3) occupying
1.4 TB of disk space. The matching process took approximately
30 hours including the time needed to initialize a graph database
instance and fill it with CityGML objects for each of the 35,022
tile pairs. The test results show that 61% of all detected changes
are procedural, 94% of which are caused by modified identifiers.
A total number of 123,879,652 or 37% of all changes are con-
sidered “real” changes, most of which are geometric. 294, 877
buildings have been deleted from the older dataset and 622,678
have been inserted to the newer dataset.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-VI-4-W1-2020-143-2020 | © Authors 2020. CC BY 4.0 License. 149

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume VI-4/W1-2020, 2020
3rd BIM/GIS Integration Workshop and 15th 3D Geolnfo Conference, 7-11 September 2020, London, UK

Insert Property | Delete Property | Update Property Insert Node Delete Node

Procedural Changes 0 194,315,795 13,737,194 0 0 | 208,052,989
Thematic Changes 2,060,189 0 14,265,699 10,210,495 4,195,900 | 30,732,283
Syntactic Changes 0 0 6,351,626 3,465 47,962 6,403,053
Geometric Changes 0 0 85,567,419 1,198,427 3,043,357 89,809,203
Structural Changes 0 0 0 2,380,944 39,667 2,420,611
Top-level Changes 0 0 0 622,678 294,877 917,555
2,060,189 194,315,795 119,921,938 14,416,009 7,621,763 | 338,335,694

Table 3. Number of detected changes per edit operation (columns) and category (rows) in the test case of North Rhine-Westphalia. The
last column and row contain the total number of all cells of the respective rows and columns.

7. CONCLUSION AND FUTURE WORK

This paper extended the conceptual model and definition of edit
operations to enable efficient querying and analysing on real de-
tected changes. In addition, a new concept was proposed to further
divide edit operations in categories based on their semantic con-
tents, namely procedural, thematic, syntactic, geometric, structural
and top-level changes. This set of different types of categories and
edit operations enables a multi-perspective approach to interpret-
ing detected changes in a more user-friendly and oriented manner.
The concepts and implementation! presented in this paper are
initial attempts at providing a better overview of how users could
interact with different types of edit operations and categories of
changes. This should allow for more quantitative testing in this
field and shall be further discussed in the future.

The current implementation is capable of detecting and classifying
changes efficiently in large CityGML datasets. However, as ob-
served in Section 6.2, the tool slows down when it is applied to a
large number of small input tile datasets. This could be improved
by, given enough hardware resources, mapping all tiles onto a
single graph database before executing the matching process. Ad-
ditionally, the implementation could be customized for a specific
group of stakeholders by only targeting relevant changes.

On the other hand, systematic changes, such as an elevation in
height of all buildings observed in Section 6.1, could not be de-
tected automatically in the current implementation. This is due to
the fact that in which form such systematic changes may occur in
the datasets and to which extent these may have an impact on other
elements (e.g. a systematic height elevation of all buildings also
results in a series of changed height coordinates of all geometric
elements of those buildings) are not yet fully studied. Therefore,
the current methods and implementation could be extended to
detect such systematic changes automatically in the future.

ACKNOWLEDGEMENTS

We acknowledge the company CADFEM and the Leonhard Ober-
meyer Center (LOC) of the Technical University of Munich
(TUM) for supporting this work. We also would like to thank
the Bavarian Agency for Digitisation, High-Speed Internet and
Surveying (LDBV) and the state government of North Rhine-
Westphalia for providing the input datasets. We would like to thank
Ordnance Survey GB (www.ordnancesurvey.co.uk) and 1Spatial
(www. Ispatial.com) for sponsoring the publication of this paper.

IThe software developed in this research is open source and available
under https:// github.com/tum- gis/citygml-change-detection.

(1]

(2]

(4]

[5]

(6]

(71

9]

[10]

[11]

References

A. Agoub, F. Kunde, and M. Kada. “Potential of graph
databases in representing and enriching standardized Geo-
data.” In: Tagungsband der 36 (2016), pp. 208-216.

M. Bakillah, Y. Bédard, M. A. Mostafavi, and J. Brodeur.
“SIM-NET: A View-Based Semantic Similarity Model for
Ad Hoc Networks of Geospatial Databases.” In: 7. GIS
13.5-6 (2009).

S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J.
Widom. “Change Detection in Hierarchically Structured
Information.” In: SIGMOD Rec. 25.2 (June 1996).

K. Falkowski and J. Ebert. “Graph-based urban object
model processing.” In: City Models, Roads and Traffic
(CMRT’09): Object Extraction for 3D City Models, Road
Databases and Traffic Monitoring-Concepts, Algorithms
and Evaluation, Paris, France 9 (2009).

G. Groger, T. H. Kolbe, C. Nagel, and K.-H. Hifele.
OpenGIS(R) City Geography Markup Language (CityGML)
Encoding Standard. Version: 2.0.0. OGC. Apr. 4, 2012.

J. W. Hunt and T. G. Szymanski. “A Fast Algorithm for
Computing Longest Common Subsequences.” In: Commun.
ACM 20.5 (May 1977), pp. 350-353.

E. W. Myers. “AnO (ND) difference algorithm and its
variations.” In: Algorithmica 1.1-4 (1986), pp. 251-266.

S. H. Nguyen, Z. Yao, and T. H. Kolbe. “Spatio-Semantic
Comparison of Large 3D City Models in CityGML Us-
ing a Graph Database.” en. In: Proceedings of the 12th
International 3D Geolnfo Conference 2017. Vol. IV-4/W5.
ISPRS Annals of the Photogrammetry, Remote Sensing
and Spatial Information Sciences. University of Melbourne.
Melbourne, Australia: ISPRS, 2017, pp. 99-106.

R. Redweik and T. Becker. “Change Detection in CityGML
Documents.” In: 3D Geoinformation Science: The Selected
Papers of the 3D Geolnfo 2014. Springer, 2015.

Y. Wang, D. J. DeWitt, and J. Y. Cai. “X-Diff: an effec-
tive change detection algorithm for XML documents.” In:
Data Engineering, 2003. Proceedings. 19th International
Conference. Mar. 2003.

Z. Yao, C. Nagel, F. Kunde, G. Hudra, P. Willkomm, A.
Donaubauer, T. Adolphi, and T. H. Kolbe. “3DCityDB -
a 3D geodatabase solution for the management, analysis,
and visualization of semantic 3D city models based on
CityGML.” en. In: Open Geospatial Data, Software and
Standards 3.5 (2018), pp. 1-26.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-VI-4-W1-2020-143-2020 | © Authors 2020. CC BY 4.0 License. 150

www.ordnancesurvey.co.uk
www.1spatial.com
https://github.com/tum-gis/citygml-change-detection

	Introduction
	Related Work
	Extending and Managing Edit Operations in the Graph Database
	Extended Definition and Conceptual Model
	Querying Edit Operations in the Graph Database
	Exporting Edit Operations

	Categorizing Detected Changes Based on their Semantic Contents
	Procedural Changes
	Thematic Changes
	Thematic Changes in Text Data
	Thematic Changes in Numeric Data

	(Purely) Syntactic Changes
	Complex Geometric Changes
	Structural Changes
	Top-level Changes

	Relevance of Change Categories with respect to Users
	Application Results
	Test Case Berlin Moabit
	Test Case North Rhine-Westphalia

	Conclusion and Future Work

