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ABSTRACT:  
 
With the rapid global urbanization, several multi-dimensional complex infrastructures have emerged, introducing new challenges in 
the management of the vertically stratified buildings spaces. 3D indoor cadastral spaces consist a zestful research topic as their 
complexity and geometry alterations during time, prevents the assignment of the corresponding Rights, Restrictions and 
Responsibilities (RRR). In the absence of the necessary horizontal spatial data infrastructure/floor plans their determination is weak. 
In this paper a fit-for-purpose technical framework and a crowdsourced methodology for the implementation of 3D cadastral surveys 
focused on indoor cadastral spaces, is proposed and presented. As indoor data capturing tool, an open-sourced cadastral mobile 
application for Android devices, is selected and presented. An Indoor Positioning System based on Bluetooth technology is established 
while an innovative machine learning architecture is developed, in order to explore its potentials to automatically provide the position 
of the mobile device within an indoor environment, aiming to add more intelligence to the proposed 3D crowdsourced cadastral 
framework. A practical experiment for testing the examined technical solution is conducted. The produced results are assessed to be 
quite promising.     
 
 

1. INTRODUCTION 

Over the last decades 3D Cadastre has been a major topic of 
interest, as it presents the spatial extent of ownership and 
determines the 3D property Rights, Restrictions and 
Responsibilities. Several 3D Cadastre attempts have been 
initiated world wide, as 3D information is essential for efficient 
land and property management (Gkeli et al., 2019a). 
Developments in computer graphics and 3D modelling 
techniques (McClunea et al., 2016; Köhn et al., 2016; Koeva and 
Oude Elberink, 2016; Gkeli and Ioannidis, 2018a) attracted the 
growing interest of researchers, making 3D cadastre 
technologically feasible. However, the implementation of a fully 
functional 3D Cadastre has not been achieved yet, due to the 
absence of integration between legal, institutional and technical 
parties involved (Koeva et al., 2019). 
So far, most of the ongoing research on 3D Cadastre worldwide 
is focused on interrelations at the level of buildings. The analysis 
of cadastral indoor spaces, requires intensive research. The 
delimitation of 3D indoor cadastral objects is pretty challenging, 
as the geometry of the interior buildings spaces distinguished by 
complexity and may undergo a severe change over time. To 
record the geometry of 3D indoor cadastral spaces, a common 
practice is to use 2D plans for subdivisions and assignment of the 
rights, restrictions, and responsibilities to each one of the 
building spaces. However, the availability of 2D plans does not 
constitute the case for the majority of  both new and old 
construction. With the advent of new technological achievements 
for indoor positioning, new potential opportunities arise, for the 
implementation of 3D Indoor Cadastre.  
The immidiate development of a functional 3D cadastral system 
is of a great importance for both the developed and the 
developing world, as it ensures ownership rights, reduces risks, 
time and costs in urban property markets, and enables poverty 
reduction. This perception is contended by several actors such as 
UN-Habitat and the International Federation of Surveyors (FIG) 
(Lemmen et al., 2015). A fit-for-purpose 3D crowdsourced 
cadastral surveying approach seems to be the most appropriate 

solution, in order to meet the 2030 UN Agenda SDGs and ensure 
that both developed and developing countries may develop 
functional land administration systems fast and reliable with 
affordable costs, utilizing international standards (Enemark et al., 
2014). Low-cost equipment, crowdsourcing techniques, machine 
learning techniques, automated procedures, mobile services (m-
services), web services and open-source software (OSS) as well 
as standardized international data models, sign a new era for the 
cadastral data acquisition, recording, exchange and 
dissemination procedures, reducing the cost and the time of the 
required cadastral surveying (Cetl et al., 2019). 
This paper presents a part of an on-going research project 
presented in Gkeli et al. (2019b), intended to provide a practical 
technical tool for the initial acquisition and management of 3D 
property rights mainly in urban areas. This work explores the 
opportunities for using innovative machine learning techniques 
and Bluetooth technology for Indoor Positioning in order to 
automatically acquire the position of indoor cadastral spaces, 
providing a plan-free solution, simplifying and adding more 
intelligence the 3D cadastral registration procedure. As a first 
attempt, a machine learning architecture similar with the one 
presented in Kaselimi et al. (2019b), is examined. The potentials 
and perspectives of this experiment, as well as our thoughts for 
future work, are discussed. 
 

2. RELATED WORK 

2.1 Contemporary Practices for 3D Cadastres  

Since 2012, the main international framework for 3D Cadastres 
is the Land Administration Domaim Model (LADM ISO 19152, 
2012). However, in LADM there is a lack of determinasion 
regarding the acceptable 3D geometries and representations for 
the 3D cadastral objects as well as the connection between widely 
known spatial models, such as Building Information Modeling 
(BIM) and IndoorGML (Rajabifard et al., 2019). Resolving these 
issues is pretty challenging, attracting the increasing attention of 
researchers (Ying et al., 2015). Several efforts have been 
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performed in order to set a link between the legal and physical 
counterparts of 3D cadastral objects, utilizing several different 
technologies, application schemas and technical models, such as 
CityGML, IndoorGML, BIM/IFC, LandXML, InfraGML, etc. 
(Thompson et al., 2016; Atazadeh et al., 2018; Alattas et al., 
2018; Gkeli et al., 2018b; Gkeli et al., 2019a). Furthermore, quite 
a few countries have tried to adopt the LADM standard, 
modifying and extending their local systems, aiming to develop 
a modern LADM-based 3D Cadastral Information System (Lee 
et al., 2015; Rajabifard et al., 2018; Gkeli et al., 2019a). 
However, these approaches are of high demands in terms of 
required time and financial resources.   
In the meantime, the utilization of cutting-edge technologies and 
crowdsourcing techniques in developing 2D cadastral surveying 
procedures in order to minimize the necessary time and cost, has 
already been achieved (Basiouka and Potsiou, 2014; Mourafetis 
et al., 2015; Gkeli et al., 2016; Basiouka and Potsiou, 2016; 
Apostolopoulos et al., 2018; Potsiou et al., 2020; Mourafetis and 
Potsiou, 2020). A fit-for-purpose 3D crowdsourced cadastral 
surveying approach, based on the above advances, is of 
significant value in order to establish 3D cadastres, especially in 
the densely populated and self-developed cities. Research on this 
topic has focused on the investigation of applying the existing 2D 
experience in 3D cadastral surveys. Ellul et al. (2016) proposed 
the development of a web-based application that was intended to 
be used by the general public for the identification of the various 
land and property ownership situations. The user of the 
application is asked to select his/her situation from several groups 
including different types of land ownership, which where 
sketched by the research team. In Gkeli et al. (2017) a cost 
effective and fast procedure for 3D cadastral data acquisition and 
3D visualization of the real properties, as block models (LoD1), 
on a mobile’s phone screen at real-time, is presented. The 
developed prototype application aims to generate 3D building 
models through the digitization of property units’ boundaries on 
the available basemap. As a basemap, a recent orthophoto of the 
area under cadastral survey, overlaid with 2D floor plans may be 
the best option for an Accurate, Assured and Authoritative 
(AAA) 3D cadastre (Williamson et al., 2012; Gulliver, 2015). 
Otherwise, other platforms, such as an aerial photo, may be used 
reducing the geometric accuracy significantly. In such case land 
parcel boundaries and building footprints should be visible. Gkeli 
et al. (2019a) present a similar approach that may be adopted both 
by the developed and developing countries, while the developed 
mobile application is able to manage and visualize 3D property 
models both above and below the land surface. The knowledge 
and the conclusions gained by this research are used to update the 
developed mobile application and establish a LADM-based 
database and an appropriate methodology, in order to proceed 
with 3D property unit registration and visualization exclusively 
through the developed application. The results seem to be 
promising, providing the basis for the implementation of a fit-for-
purpose 3D cadastre. However, the proposed crowdsourced 
solutions (Gkeli et al., 2017; Gkeli et al., 2018b; Gkeli et al., 
2019a; Gkeli et al., 2019b) rely on the basis of ideal conditions, 
assuming that the necessary horizontal spatial data 
infrastructure/floor plans are available. This may constitute the 
case for the majority of the relatively new constructions in the 
developed countries but is not widely applicable, as in many 
countries such plans may not be easily available. The existence 
of accurate basemaps both at ground level (land parcel 
boundaries) and at each building floor (indoor property unit 
boundaries at each floor) is necessary to achieve accurate 
geometric recording.  
In the absence of accurate basemaps for the recognition and 
digitization of the land parcel boundaries, there are several options 
to proceed with their identification, such as (a) by using the 

smartphone’s GPS sensor with an accuracy of a few meters, or (b) 
by using external support GNSS (Global Navigation Satellite 
System) tools and resources, achieving high positioning accuracy. 
Utilizing the Bluetooth capability of smart devices, different 
mobile GNSS receivers may be connected with smartphone’s 
positioning applications, providing reliable and accurate results. 
For example, Esri’s Collector Application may be connected with 
Trimble R2GPS GNSS receiver device, providing sub-meter 
accuracy for the observed points (Molendijk et al., 2018; Celt et 
al., 2019; Potsiou et al., 2020), or with EOS Arrow Gold RTK 
GNSS receiver device (EOS Arrow Gold RTK GNSS, 2020), 
providing even centimetre accuracy for the observed points. 
Furthermore, in the absence of accurate floor plans to be used as 
basemaps for digitization of the property unit boundaries in the 
indoor environment the 3D positioning problem at each floor is 
more challenging as the GPS/GNSS signal is weak and therefore 
indoor positioning relies typically on local 
infrastructure/measurements and other type of support.  
 
2.2 Machine Learning for Indoor Positioning Systems 

For indoor localization, several Indoor Positioning Systems (IPS) 
have been proposed, exploring different data sources. The most 
commonly utilized technologies use Bluetooth, ZigBee and Wi-
Fi as positioning signals. As it has been proven the hardware of 
such positioning technologies tends to be relatively cheap, 
making them preferable for low-cost location based applications 
(Zhang and Man, 2018).  
The existing indoor position solutions use several different 
measurements and techniques to derive the desired location. The 
most common technique is fingerprinting, while there are several 
other techniques are also widely used, such as lateration, dead 
reckoning (Ibrahim et al., 2018). Fingerprinting is consisted by 
two separate phases: the offline and the online phase. In the 
offline phase, reference locations in the examined area are 
measured and stored in the database. In the online phase, the new 
measurements are compared with the ones stored in the database 
and then the system provides the real location of the receiver. 
Many of the existing fingerprint-based IPS exploit the Received 
Signal Strength (RSS) of the Wi-Fi, as it constitutes a simple 
solution with low hardware requirements. RSS fingerprints are 
usually combined with different machine learning methods to 
produce models, such as k-Nearest Neighbors (KNN), Neural 
Networks and Support Vector Machines (SVM) (Ibrahim et al., 
2018).  
The first fingerprinting localization system was presented in Bahl 
and Padmanabhan (2000) and was named RADAR. Laoudias et 
al. (2009) proposed a fingerprinting technique based on clustered 
Radial Basis Functions (RBF) Neural Network named (cRBF). 
The output representing the final values of the x and y 
coordinates. Zhang and Man (2018) proposed a Convolutional 
Neural Network (CNN) based architecture for Wi-Fi fingerprint 
positioning. The proposed CNN-based architecture performs 
better on the public datasets than traditional machine learning 
methods. Furthermore, deep learning has been widely applied in 
various fields resulting in great performances. Zhang et al. (2016) 
proposed a 4-layer deep neural network (DNN) that generates 
coarse positioning estimate. The final position estimation is 
derived by a hidden Markov model (HMM) fine localizer. Wang 
et al. (2015) proposed a DBN (Deep Belief Networks) method, 
which applied the deep learning algorithm to fingerprint 
positioning for the first time. However, this implementation was 
weak, as the inappropriate parameter selection of DBN made the 
training process particularly difficult.  
Combining these approaches and technologies, positional data 
may be processed in order to obtain the missing building’s floor 
plans in a fit-for-purpose manner. The majority of current IPS 
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solutions that automatically construct indoor floor plans with 
pervasively collected data, often rely on the inertial processing to 
infer the users’ trajectories (Santos et al., 2019). Due to the man-
made environmental noise these solutions are strongly affected, 
leading to several errors. For this reason, the utilization of 
different data sources is suggested. In Shin et al. (2012) a solution 
named SmartSLAM is proposed. SmartSLAM relies on the Wi-
Fi infrastructures available in most buildings by combining the 
signal patterns with the Simultaneous Localisation and Mapping 
(SLAM) techniques (Durrant-Whyte and Bailey, 2006). The 
indoor floor plans are gradually constructed through tracking the 
user’s movement. Following a similar idea, Faragher and Harle 
(2013) proposed a smartSLAM scheme that contains Pedestrian 
Dead Reckoning (PDR), Fingerprint Extended Kalman Filter 
(FEKF), Fingerprint Extended Kalman Filter SLAM 
(FEKFSLAM) and Distributed Particle SLAM (DPSLAM). 
 

3. 3D CADASTRAL INDOOR MAPPING 

This research tends to support and upgrade the technical solution 
for the compilation of 3D cadastral surveys, presented in Gkeli et 
al. (2019b), by enhancing the localization process in indoor 
environments. Our aim is to exploit the capabilities of wireless 
networks and mobile devices to provide an intelligent 
crowdsourced procedure model for the compilation of 3D indoor 
cadastral mapping. 
 
3.1 Background Information 

The main objective of the proposed crowdsourced approach is to 
provide a cost-effective, reliable and fast solution for the initial 
implementation of 3D cadastral systems. The role of 
citizens/right holders is essential, as they are not only asked to 
declare their rights but they simultaneously undertake the 
responsibility for the initial collection of the necessary geometric 
cadastral information. The technical framework supporting this 
venture consists of two connected sub-systems: (i) the LADM-
based cadastral Database Management System (DBMS), where 
the collected data are stored and maintained, and (ii) the data 
capturing tool, that is a mobile device (e.g., smartphone) with a 
built-in cadastral application (Figure 1).  
The application interface is appropriately configured in order to 
lead and simplify the registration procedure, facilitating its use 
by non-professionals (Figure 1).  Also, provides a set of capturing 
tools for the identification and digitization of both land parcel’s 
and building unit’s boundaries on the available basemap. 
Simultaneously, allows the insertion of all necessary proprietary 
information, available documents (e.g., plans, deeds, etc.) and 
verification photos, for the declaration of the property rights. 
After inserting all the required geometric information concerning 
the building unit’s/property’s structure (height, floor, digitized 
boundaries) an automated algorithm following a model-driven 
approach, processes the declared geometric data and generates 
the 3D block models (LoD1) of both the land parcel and the 
property unit. The produced 3D property models may be 
visualized on the mobile’s phone screen, both above or below the 
ground, by selecting each one of the visualization tools.  
For the implementation of 3D cadastral surveys, a crowdsourced 
methodology is followed, consisted by five (5) main phases 
(Figure 2): (i) declaration of an area under cadastral survey by the 
government; collection of the available horizontal geospatial 
information for the preparation of a draft cadastral registration 
basemap; assignment of local team leaders to each sub-region by 
the municipality and the professional, (ii) citizens briefing, 
motivation and training by the team leaders; (iii) establishment 
of the available draft cadastral map of the area as basemap in the 
mobile application; in absence of professional floor plan, an 

orthophoto, an aerial photo or even an Open Street Map (OSM) 
may be used as a registration basemap; technical and IT 
preparation by the team leaders for each multi-story building in 
collaboration with the manager of each building, (iv) 3D 
cadastral data acquisition by the rights holders/citizens, and (v) 
data evaluation, control and submission of the missing data by 
the rights holders/citizens; compilation of preliminary 3D 
cadastral database. 
 

 
Figure 1. Architecture diagram of the 3D cadastre technical 

framework  
 

 
Figure 2. Crowdsourcing methodology for 3D cadastral surveys 

(Gkeli et al., 2019b) 
 
3.2 Proposed Cadastral System Upgrade 

The proposed upgrade aim to reform, simplify and strengthen one 
of the most demanding phases of the implementation process, 
which strongly affects the quality and reliability of the final 
product.  This is the fourth phase of the proposed methodology, 
concerning the acquisition of the necessary data by the right 
holders. As the majority of right holders are non-professionals, 
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their orientation in 3D space and therefore the correct digitization 
of their property boundaries on the basemap, consist a complex 
procedure, but of great importance for the proper and reliable 
cadastral registration.  
An Indoor Positioning System (IPS) based on low-cost Bluetooth 
technology in combination with the 3D cadastral mapping mobile 
application are the two main pillars supporting the proposed 
modification and upgrade of this framework. The main idea of 
the designed IPS solution is to gradually construct the plan of 
indoor cadastral spaces/property boundaries, through tracking the 
mobile device’s/user’s trajectory. Through the cadastral mobile 
application and the smartphone’s Bluetooth wireless sensor, right 
holders may ‘visit’ their property and delineate the boundaries of 
their indoor cadastral spaces on the basemap, utilizing the 
established IPS. By processing the received IPS signals through 
a machine learning algorithm the generation of horizontal spatial 
information, regarding the position of the mobile device in the 
indoor environment may be provided and visualized through the 
cadastral mobile application (Figure 3). Thus, right holders may 
gradually construct the boundaries of their property unit (indoor 
cadastral space), by moving towards the physical boundaries of 
their property and digitize them by selecting their corresponding 
position on the basemap. 
 

 
Figure 3. 3D cadastral indoor mapping – Framework overview 

 
 

4. PROPOSED MACHINE LEARNING 
ARCHITECTURE 

The purpose of the machine learning architecture is to estimate 
the coordinates of a space using information provided by 
bluetooth sensors. In the following, the bluetooth sensing 
interface and the proposed deep learning framework for 
processing and analysing the signals from the bluetooth sensors 
in order to estimate space coordinates are briefly described. 
   
4.1 Sensing interface  

The main sensing modality for the indoor localization are 
multiple Bluetooth signals. Bluetooth is a wireless technology, 
standardised as IEEE 802.15.1, that uses short-wavelength UHF 
radio waves. It operates between 2.402 and 2.480 GHz, including 
2 MHz wide guard bands. Bluetooth by itself has no location 
intelligence built into it; they rather act as lighthouse beacons 
transmitting signals in the area of coverage. The capturing device 
is responsible for capturing the signal and understand its 
meaning. However, by assigning these beacons with physical 
coordinates, you can compare the received signal. The spatial 
correlation can be achieved using the Received Signal Strength 
Indicator (RSSI). RSSI is an indication of the power level of the 
signal received from an antenna. An overview of the end-device 
beacon protocol profile can be viewed in Figure 4. 

 
Figure 4. Overview of the Beacon/Collector profile 

 
RSSI signal can only give a rough estimation of the distance 
between the beacon and end-device, as Bluetooth does not have 
a directional antenna. However, by multiple RSSI values from 
beacons the localisation error can be minimised and cm-level 
accuracy of position can be achieved. In this work, we utilise the 
publicly available dataset of Baronti et al. (2018), that captures 
Bluetooth signals from 8 different Bluetooth beacon to localize 
the signal for 8 different rooms and a small corridor. A more 
detailed description can be found in section 5. 
 
4.2 The deep learning framework for coordinate estimation 

The purpose of this module is to estimate the coordinates of the 
space using distortions of the signal of the bluetooth sensors. In 
particular, let us denote as 𝑏௜(𝑡) the bluetooth signal of the i-th 
sensor. In case that we have  Bluetooth available sensors, we have 
also N available distortion signals 𝑏௜(𝑡), 𝑖 = 1,2, … 𝑁. Distortions 
of signals  𝑏௜(𝑡) provides an estimation of the space coordinates. 
In particular, let us denote as 𝐬௖ a vector contains the space 
coordinates of certain space positions. Therefore, we have that 
𝐬௖ = [𝑠௖(𝑝ଵ), 𝑠௖(𝑝ଶ), … , 𝑠௖(𝑝௄)]். In this notation, 𝐾 denotes the 
number of space coordinates, the algorithm estimates and 𝑠௖(𝑝௜), 
the respective coordinate at position 𝑝௜ out of the K available 
positions. It is clear that the captured distortion signals 𝑏௜(𝑡) is 
related with the space position estimates 𝐬௖, using a non-linear 
relationship of  

𝐬𝐜 = 𝑓(𝑏ଵ(𝑡), … , 𝑏ே(𝑡)) (1) 

 
In Eq. (1) function 𝑓(∙) expresses a non-linear relationship that 
correlates the distortion signals 𝑏௜(𝑡) with the space coordinate 
vector 𝐬௖.  
The main difficulty of modelling Eq. (1) is that the non-linear 
function 𝑓(∙) is actually unknown. One way to model the 
unknown function f(∙) of Eq. (1) is by means of a Feedforward 
Neural Network (Doulamis et al., 2003). Assuming L hidden 
neurons, each of response 𝑢௝,௜   - referring to the 𝑠௖(𝑝௝) space 

location of the vector 𝐬௖ - and one linear output layer, the 
estimate 𝑠௖(𝑝௝) is given by  

𝑠௖(𝑝௜) = 𝐮௝(𝑡)் ∙ 𝐯௝  (2a) 

𝐮௝(𝑡) = ቎

𝑢௝,ଵ(𝑡)

⋮
𝑢௝ ,௅ (𝑡)

቏ = ቎

𝑡𝑎𝑛ℎ(𝐰௝,ଵ
் ∙ 𝐛(𝑡))

⋮
𝑡𝑎𝑛ℎ(𝐰௝,௅

் ∙ 𝐛(𝑡))
቏ (2b) 

𝑡𝑎𝑛ℎ(∙) refers to the hyperbolic tangent, so each element of the 
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vector 𝐮௝(𝑛) ranges between -1 and 1. The weights 𝐰௝,௜, i=1,…,L, 
connect the  input vector 𝐛(𝑡) = [𝑏ଵ(𝑡) ⋯ 𝑏ே(𝑡)]் with the i-th 
hidden neuron. Similarly, 𝐯௝  are the weights that connect the 
hidden neurons with the output neuron. Vector u(n) gathers the 
outputs of all L hidden neurons 𝑢௝,௜ and is a state vector 
expressing latent operational modes of the j-th space position 
estimate. Their values range within the [-1, 1] interval. Each 
space position estimate 𝑠௖(𝑝௝) has its own hidden states and these 
latent variables are estimated through a learning process. Since 
we assume that all the processing refers to the j-th space location, 
that is of estimate the scalar value 𝑠௖(𝑝௝)  of vector  𝐬௖, in the 
following analysis subscript j is omitted for simplicity.  
Since the space positioning 𝑠௖(𝑝௝) follows a non-causal 
relationship, the value of a state 𝑢௜(𝑡) depends not only on its 
previous values and but also on its future ones (Figure 5). 
Therefore, we have that  

𝑢௜(𝑛𝑡) =  𝑡𝑎𝑛ℎ(𝐰௜
୘ ∙ 𝐛(𝑡) + 𝐫⃗௜

୘ ∙ 𝐮(𝑡 − 1) +∙ 𝐫⃐௜
୘ ∙ 𝐮(𝑡 + 1)) (3) 

In Eq. (3), 𝐫⃗௜ is a weight vector expressing the dependencies of 
previous states, while 𝐫⃐௜ the future state dependencies (Graves, 
2013). 

 
Figure 5. The architecture of a recurrent neural network model 

with bi-directional capabities (Kaselimi et al., 2019b)    
 
4.3 Long-range bi-directional dependence  

Usually a short-range dependent, that is of one forward or 
backward pass, is not adequate for modelling the unknown 
function 𝑓(∙). For this reason, a long-range dependent modelling 
framework is adopted, having also bi-directional (i.e., non-
causal) capabilities. Therefore, a bi-directional Long-Short Term 
Memory (LSTM) network is adopted as the basic regression 
model for power load estimation (Kaselimi et al., 2019a). These 
models are of similar structure to the bi-directional recurrent 
regression models but each node in the hidden layer is replaced 
by a memory cell, instead of a single neuron. The architecture of 
a bi-directional LSTM network is depicted in Figure 6. 
  

 
 Figure 6. The architecture of a bi-directional neural network  

model used for estimating the space coordinates for the 
distrortion of the bluetooth signals 𝑏௜(𝑡)  

 
 
 

The memory cell contains three different components: i) the 
forget gate, ii) the input gate and the input node, and iii) the 
output gate. The architecture of the memory cell is presented in 
Figure 7. 
 

 
Figure 7. The architecture of the memory cell used in a bi-

directional LSTM model (Kaselimi et al., 2019b) 
 
The forget gate: The purpose of this component is to decide what 
information is throw out of the memory cell. The output ranges 
between 0 and 1, due to the sigmoid activation function (function 
“σ” in Figure 7). Values close to 0 means to dispose the incoming 
information [composed by the current power 𝐛(𝑡) and the state 
vector 𝐮(𝑡 − 1)/ 𝐮(𝑡 + 1)], while values close to 1 indicates that 
this information should be taken into consideration by the current 
memory cell. 
  
The input node / Gate: The input node performs the same 
operation as the hidden neuron of the short-range model; it 
appropriately activates the respective state (true or false output 
from the “tanH” activation). Instead, the input gate regulates 
whether the respective hidden state is “significant enough” on the 
regression model; sigmoid operation. 
  
The output gate: This regulates whether the response of the 
current memory cell is “significant enough” to contribute to the 
next memory cell. 
 
Therefore, the operation of all the aforementioned modules is 
mathematically formulated by 

{𝐹(𝑛), 𝐻(𝑛), 𝐼(𝑛), 𝑂(𝑛)} =  {𝜎, 𝑡𝑎𝑛ℎ} ( 

  𝐰்,{ி,ு,ூ,ை} ∙ 𝐛(𝑡) + 𝐫்⃗,{ி,ு,ூ,ை} ∙ 𝐮(𝑡 − 1) + 𝐫⃐௝,௜
்,{ி,ு,ூ,ை}

∙ 𝐮௝(𝑡 + 1))   (4) 

4.4 Bayesian Optimization 

A Bayesian optimization strategy is adopted for selecting the best 
parameters of the bi-directional LSTM strategy. The proposed 
methodology is similar to the approach discussed in Kaselimi et 
al. (2020). In this way, the machine learning regression approach 
in estimating the space coordinates from the distortions of the 
bluetooth signals is optimized. Therefore, the precision accuracy, 
as far as space positioning is concerned, is increased.  The scope 
of Bayesian optimization is to estimate a better configuration 
parameter regarding network classification from the current 
parameter selection. This mean that the algorithm selects a 
configuration that minimizes the regression error 𝐸 of the 
machine learning network. Since, we do not know exactly the 
mathematical form of the error 𝐸, a Baysesian strategy is 
adopted. The strategy assumes that the regression error E follows 
a Gaussian distribution. Therefore, selection of the best 
parameter values is the ones that minimizes the overall error E. 
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5. APPLICATION 

The proposed machine learning framework is benchmarked over 
the publicly available dataset of Baronti et al. (2018). The test 
environment is consisted from seven contiguous rooms and a 
connecting corridor as well as a small adjacent area. The 
overview of the area is depicted in Figure 8. The total area 
covered amounts to 185m2 with a maximum horizontal span of 
16.6m and a maximum vertical span of ca. 14.3m.  
The methodology for placing the Bluetooth beacons that was 
followed, included one Bluetooth beacon per room, placed in the 
middle of the wall on the fire side of the room’s entrance. An 
overview of the beacons and number of locations captured can be 
viewed in Figure 8 (the beacons have a 4digit ID and are colored 
yellow in the figure). 
Specifically, the survey scenario of the dataset was adapted to our 
proposed Bidirectional LSTM classifier. In our experimental 
setup, each target position label has a granularity accuracy of 
60cm, in order to simplify the data capturing and measurement 
effort. 

 
Figure 8. Overview of the test environment 

 
The proposed LSTM classifier was implemented in Python 3.6 
using the Keras (1.08) and Tensorflow (2.1.0) machine learning 
libraries, in combination with a number of other scientific and 
data management libraries. The model was trained using a Intel 
Core i7-6700K CPU (4GHz) with 2 NVIDIA GTX1080 GPUs. 
The tested LSTM classifier consisted, beyond the necessary input 
and output layers, with 2 LSTM Layers with rectified linear unit 
(ReLU) activations and 0.2 dropout between each layer. 
Performance evaluation has been performed among the Bayes 
Bidirectional LSTM network and two other approaches: a CNN 
and a unidirectional LSTM network. The time required for 
training the network is of about 8hr, with the PC setup described 
above. However, the computation time for estimating a position, 
after the model is trained, is less than 1 sec, which is appropriate 
for such an application scenario. The performance of the tested 
frameworks can be found in Table 1. For the performance 
evaluation the typical machine learning metrics, that is, accuracy, 
precision, recall and F1-score are used. The mean squared errors 
of the framework can be viewed in Figure 9.  
As observed, the LSTM frameworks outperform the CNN one. 
Between the two LSTM approached the bidirectional one attains 
the minimum error since it is capable to model non-causal 
behaviour. The average accuracy estimating a target position 
label is about 12cm. This is significantly less than the average 
accuracy of the CNN, which was approximately 22cm, and the 
unidirectional LSTM, that had a precision of approximately 

16cm. Therefore, the proposed architecture reduces the 
granularity accuracy by a factor of about 5. More precise target 
labels will further increase this frameworks accuracy. 
 

 CNN LSTM BiLSTM 

Accuracy 72.16% 79.87% 84.14% 

Precision 58.04% 71.67% 78.04% 

Recall 95.78% 88.03% 88.26% 

F1 72.28% 79.01% 82.84% 

Table 1: Performance Metrics of the tested classifiers 
 

 
Figure 9. Per epoch loss for the optimized bidirectional LSTM 

 
The overall method provides a number of advantages, as it 
achieves cm-level accuracy using a sensing framework that is 
easily deployed. This is due to the fact that Bluetooth beacons are 
relatively cheap and mobile (an off the shelf device has 
dimensions of only a few centimeters), and can be easily installed 
in the location.  
 

6. DISCUSSION AND CONCLUSIONS 

This work is part of an on-going project aiming to develop a 
technical tool and a methodology for the future collection, 
management and 3D modelling of cadastral data. The 
introduction of crowdsourcing and mobile devices as data 
capturing tools facilitate the registration procedure, allowing the 
right holders to move throughout the property, using the mobile 
device’s integrated sensors, and collect the necessary 
information/measurements. Thus, the duration of field cadastral 
surveys by professionals, is reduced significantly. So far, the 
performance of the presented mobile application and 
methodology for 3D cadastral data registration, using an 
accurate/professional basemap (such as architectural floor plans), 
has led to satisfying results, both reliable and affordable. 
However, in the absence of such an accurate basemap the 
identification and digitization of the property unit boundaries in 
the indoor environment is challenging, as the GPS/GNSS signal 
is weak, introducing large positioning errors. 
The confrontation of indoor positioning weakness, in the absence 
of an accurate basemap is of great importance. The research 
towards investigating new methods for easy and reliable property 
unit boundary coordinate measurement by the right holders is at 
an initial stage and it presents a proposal for the potential 
integration of innovative machine learning techniques and 
Bluetooth technology for Indoor Positioning, in the proposed 
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technical system for the implementation of 3D cadastral surveys. 
In this paper, using Bluetooth signal strength and a bi-directional 
LSTM network, with optimised hyperparameters, an accurate 
indoor localisation service is structured and presented. The 
performance of the proposed deep learning framework is 
compared with other popular frameworks, namely a CNN and a 
unidirectional LSTM network. The proposed Bayesian optimised 
bi-directional LSTM outperforms the other classifiers, providing 
reliably accurate space positioning which must be further 
exploited by the presented mobile application, thus expanding the 
potentials of indoor 3D cadastral mapping. For future work, more 
complex deep machine learning architectures such as multi-
channel recurrent neural networks (Kaselimi et al., 2019b) or 
deep NARMA filters (Bakalos, 2019) should be investigated. 
These structures, are capable of (i) processing simultaneously 
signals from heterogeneous sensors (e.g., Bluetooth and WiFi 
signals) in order to increase indoor localisation accuracy (multi-
channel RNNs) and (ii) of introducing an autoregressive 
behaviour to the LSTM neural network structure for further 
improvements in precision accuracy. In addition, as future work 
we can reduce the granularity of the targets positions labels in 
order to further improve the proposed architecture. Another 
extension is to incorporate in the sensing infrastructure, apart 
from Bluetooth sensors, Channel State Information of WiFi 
signals, which has been studied as an additional localisation 
modality (Bakalos, 2019). 
The next step of this research will be the integration between the 
developed indoor positioning system and the cadastral mobile 
application. A practical application of the optimized system will 
be implemented, in order to investigate potentials and 
weaknesses of the proposed solution, providing some key 
conclusions regarding the achieved geometric accuracy, system’s 
usability, registration duration and cost of the proposed system’s 
infrastructure. However, first results derived from the proposed 
system have shown promising potential for the development of a 
“plan-free” solution, simplifying the 3D cadastral registration 
procedure and speeding up the processes for the immidiate 
implementation of a fit-for-purpose 3D cadastral system. 
Another future step for this application will be the training of a 
model from multiple buildings in order to increase accuracy, as 
well as determining the minimum number of bluetooth beacons 
necessary for reaching the performance required. Finally, 
generative approaches should be studied, in order to create a 
framework that can be used even in furnished places, where the 
user does not have physical access to the borders of the room. 
Such approaches could be used to generate the ”unfurnished” 
model from a smaller model where there are obstacles in some 
areas of the room. 
 

ACKNOWLEDGEMENTS 

The contribution of Maria Gkeli to this research is part of her 
PhD dissertation, which is supported by the Onassis Foundation 
scholarship program. The authors would like to thank Ordnance 
Survey GB (https://www.ordnancesurvey.co.uk) and 1Spatial 
(https://1spatial.com/) for sponsoring the publication of this 
paper. 
 

REFERENCES 

Alattas, A., van Oosterom, P., Zlatanova, S., 2018. Deriving the 
Technical Model for the Indoor Navigation Prototype based on 
the Integration of IndoorGML and LADM Conceptual Model. 
7th International FIG Workshop on the Land Administration 
Domain Model, 245-268. 

Apostolopoulos, K., Geli, M., Petrelli, P., Potsiou, C., Ioannidis, 
C., 2018. A new model for Cadastral Surveying using 
Crowdsourcing. Survey Review, 50(359), 122-133. 
Atazadeh, B., Rajabifard, A., Kalantari, M., 2018. Connecting 
LADM and IFC Standards – Pathways towards an Integrated 
Legal-Physical Model. 7th International FIG Workshop on the 
Land Administration Domain Model, 89–102, Zagreb, Croatia. 
Bahl, P., Padmanabhan, V.N., 2000. Radar: An in-building rf-
based user location and tracking system. INFOCOM 2000. 
Nineteenth Annual Joint Conference of the IEEE Computer and 
Communications Societies, 2, 775–784. 
Bakalos, N., Voulodimos, A., Doulamis, N., Doulamis, A., 
Ostfeld, A., Salomons, E., Caubet, J., Jiménez, V., Li, P., 2019. 
Protecting water infrastructure from cyber and physical threats: 
Using multimodal data fusion and adaptive deep learning to 
monitor critical systems. IEEE Signal Processing Magazine, 
36(2), 36-48. 
Baronti, P., Barsocchi, P., Chessa, S., Mavilia, F., Palumbo, F., 
2018. Indoor Bluetooth low energy dataset for localization, 
tracking, occupancy, and social interaction. Sensors, 18(12), 
4462. 
Basiouka, S., Potsiou, C., 2014. The volunteered geographic 
information in cadastre: Perspectives and citizens' motivations 
over potential participation in mapping. GeoJournal, 79(3), 343-
355. 
Basiouka, S., Potsiou, C., 2016. A Proposed Crowdsourcing 
Cadastral Model: Taking Advantage of Previous Experience and 
Innovative Techniques. European Handbook of Crowdsourced 
Geographic Information, Eds: Capineri, C., Haklay, M., Huang, 
H., Antoniou, V., Kettunen, J., Ostermann, F., Purves, R. 
Ubiquity Press: London, UK, 419–433. 
Cetl, V., Ioannidis, C., Daylot, S., Doytsher, Y., Felus, Y., 
Haklay, M., Mueller, H., Potsiou, C., Rispoli, E., Siriba, D., 2019. 
New Trends in Geospatial Information: The Land Surveyors Role 
in the Era of Crowdsourcing and VGI - Current state and 
practices within the land surveying, mapping and geo-science 
communities. FIG Publication No 73, Copenhagen, Denmark. 
Doulamis, A, Doulamis, N, Kollias, S, 2003. An adaptable 
neural-network model for recursive nonlinear traffic prediction 
and modeling of MPEG video sources. IEEE Trans on Neural 
Networks, 14(1), 150–166. 
Durrant-Whyte, H., Bailey, T., 2006. Simultaneous localization 
and mapping: Part I. IEEE Robot. Autom. Mag. 2006, 13, 99–
110. 
Ellul, C., de Almeida, J.P., Romano, R., 2016. Does coimbra 
need a 3d cadastre? Prototyping a crowdsourcing app as a first 
step to finding out. ISPRS Ann. Photogramm. Remote Sens. 
Spatial Inf. Sci., IV-2/W1:55-62, https://doi.org/10.5194/isprs-
annals-IV-2-W1-55-2016 
Enemark, S., Bell, K.C., Lemmen, C., McLaren, R., 2014. Fit-
for-Purpose Land Administration. Joint FIG / World Bank 
publication, FIG Publication No 60, Copenhagen, Denmark. 
EOS Arrow Gold RTK GNSS, 2020. EOS Arrow Gold RTK 
GNSS receiver with SafeRTK. https://eos-
gnss.com/product/arrow-series/arrow-gold (March 2020). 
Faragher, R., Harle, R., 2013. SmartSLAM - An efficient 
smartphone indoor positioning system exploiting machine 
learning and opportunistic sensing. 26th Int. Technical Meeting 
of the Satellite Division of the Institute of Navigation, Nashville, 
TN, USA. 
Gkeli, M., Apostolopoulos, K., Mourafetis, G., Ioannidis, C., 
Potsiou, C., 2016. Crowdsourcing and mobile services for a fit-
for-purpose Cadastre in Greece. Fourth International Conference 
on Remote Sensing and Geoinformation of the Environment 
(RSCy2016), SPIE, 9688, 17 p., doi:10.1117/12.2240835. 
Gkeli, M., Ioannidis, C., Potsiou, C., 2017. VGI in 3D Cadastre: 
A Modern Approach. FIG Commission 3 - Annual Workshop 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume VI-4/W1-2020, 2020 
3rd BIM/GIS Integration Workshop and 15th 3D GeoInfo Conference, 7–11 September 2020, London, UK

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-VI-4-W1-2020-159-2020 | © Authors 2020. CC BY 4.0 License.

 
165



 

“Volunteered Geographic Information: Emerging Applications 
in Public Science”, Lisbon, Portugal, 21 p. 
Gkeli, M., Ioannidis, C., 2018a. Automatic 3d reconstruction of 
buildings roof tops in densely urbanized areas. Int. Arch. 
Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4/W10, 47-54. 
https://doi.org/10.5194/isprs-archives-XLII-4-W10-47-2018. 
Gkeli, M., Potsiou, C., Ioannidis, C., 2018b. LADM-based 
Crowdsourced 3D Cadastral Surveying – Potential and 
Perspectives. 6th International FIG Workshop on 3D Cadastres, 
Delft, Netherlands. 
Gkeli, M., Potsiou, C., Ioannidis, C., 2019a. Crowdsourced 3D 
cadastral surveys: looking towards the next 10 years. J Geogr 
Syst, 21, 61–87. https://doi.org/10.1007/s10109-018-0287-0 
Gkeli, M., Potsiou, C., Ioannidis, C., 2019b. A technical solution 
for 3D crowdsourced cadastral surveys. Land Use Policy (in 
press). https://doi.org/10.1016/j.landusepol.2019.104419 
Graves, A., 2013. Generating Sequences with Recurrent Neural 
Networks. arXiv:1308.0850 [cs]. 
Gulliver, T., 2015. Developing a 3D Digital Cadastral System for 
New Zealand. Master’s Thesis, Department of Geography, 
University of Canterbury, Christchurch, New Zealand. 
Ibrahim, M., Torki, M., El Nainay, M., 2018. CNN based Indoor 
Localization using RSS Time-Series. IEEE Symposium on 
Computers and Communications (ISCC), 1044–1049. 
Kaselimi, M., Doulamis, N., Doulamis, A., Voulodimos, A., 
Protopapadakis, E. 2019a. Bayesian-optimized bidirectional 
LSTM regression model for non-intrusive load monitoring. IEEE 
Conference on Acoustic Speech and Singal Processing 
(ICASSP), 2747-2751.  
Kaselimi, M., Protopapadakis, E., Doulamis, N., Doulamis, A., 
Voulodimos, A., 2019b. Multi-Channel Recurrent Convolutional 
Neural Networks for Energy Disaggregation. IEEE Access, 7, 
81047-81056. 
Kaselimi, M., Doulamis, N., Voulodimos, A., Protopapadakis, 
E., Doulamis, A., 2020. Context Aware Energy Disaggregation 
using Adaptive Bidirectional LSTM Models. IEEE Transactions 
on Smart Grid. 
Koeva, M., Oude Elberink, S., 2016. Challenges for Updating 3D 
Cadastral Objects using LiDAR and Image-based Point Clouds. 
5th International FIG Workshop on 3D Cadastre, Athens, 
Greece, 169–182. 
Koeva, M., Nikoohemat, S., Oude Elberink, S., Morales, J., 
Lemmen, C., Zevenberger, J., 2019. Towards 3D Indoor Cadastre 
Based on Change Detection from Point Clouds. Remote Sensing, 
11(17), 1972. 
Köhn, A., Tian, J., Kurz, F., 2016. Automatic Building Extraction 
and Roof Reconstruction in 3k Imagery Based on Line Segments. 
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B3, 
625-631. 
LADM ISO 19152, 2012. Land Administration Domain Model. 
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detai
l.htm?csnumber=51206 (December 2019). 
Laoudias, C., Kemppi, P., Panayiotou, C.G., 2009. Localization 
using radial basis function networks and signal strength 
fingerprints in wlan. Global Telecommunications Conference 
2009 (GLOBECOM 2009), IEEE, 1–6. 
Lee, B.M., Kim, T.J., Kwak, B.Y., Lee, Y.H., Choi, J., 2015. 
Improvement of the Korean LADM Country Profile to build a 3D 
Cadastre Model. Land Use Policy, 49, 660-667. 
Lemmen, C., van Oosterom, P., Bennett, R., 2015. The land 
administration domain model. Land Use Policy, 49, 535–545. 
McClunea, A.P., Millsa, J.P., Millerb, P.E., Hollandc, D.A., 
2016. Automatic 3d Building Reconstruction from a Dense 
Image Matching Dataset. Int. Arch. Photogramm. Remote Sens. 
Spatial Inf. Sci.,  XLI-B3, 641-648. 
Molendijk, M., Dukon, T., Lemmen, C., Morales, J., Endo, V., 
Rodriguez, S., Dueñas, J., Sanchez, I., Spijkers, P., Unger, E., 

Horta, I., 2018. Land and Peace in Colombia: FFP Methodology 
for Field Data Collection and Data Handling. World Bank Land 
and Poverty Conference 2018, Washington DC, USA. 
Mourafetis, G., Apostolopoulos, K., Potsiou, C., Ioannidis, C., 
2015. Enhancing Cadastral Survey by Facilitating Owners’ 
Participation. Survey Review, 47(344), 316-324. 
Mourafetis, G., Potsiou, C., 2020. IT Services and 
Crowdsourcing in Support of the Hellenic Cadastre: Advanced 
Citizen Participation and Crowdsourcing in the Official Property 
Registration Process. ISPRS Int. J. Geo-Inf. 2020, 9(4), 190. 
https://doi.org/10.3390/ijgi9040190 
Oldfield, J., van Oosterom, P., Quak, W., Veen, J., Beetz, J., 
2016. Can Data from BIMs be Used as Input for a 3D Cadastre? 
5th International FIG 3D Cadastre Workshop, Athens, Greece, 
199-214. 
Potsiou, C., Paunescu, C., Ioannidis, C., Apostolopoulos, K., 
Nache, F., 2020. Reliable 2D Crowdsourced Cadastral Surveys: 
Case Studies from Greece and Romania. ISPRS Int. J. Geo-Inf., 
9(2), 89, 23 p. 
Rajabifard, A., Agunbiade, M., Kalantari, M.M., Yip, KM., 
Atazadeh, B., Badiee, F., Isa, D., Adimin, M.K., Chan, K.L., 
Aien, A., Olfat, H., Shojaei, D., Anaraki, M.R., 2018. An LADM-
based Approach for Developing and Implementing a National 3D 
Cadastre – A Case Study of Malaysia. Land Administration 
Domain Model Workshop, 47 – 66. 
Rajabifard, A., Atazadeh, B., Kalantari, M., 2019. BIM and 
urban land administration. Taylor & Francis, CRC Press. 
Santos, R., Barandas, M., Leonardo, R., 2019. Fingerprints and 
floor plans construction for indoor localisation based on 
crowdsourcing. Sensors, 19(4), 919. 
Shin, H., Chon, Y., Cha, H., 2012. Unsupervised Construction of 
an Indoor Floor Plan Using a Smartphone. IEEE Trans. Syst. Man 
Cybern. Part C Appl. Rev. 2012, 42, 889–898. 
Thompson, R., van Oosterom, P., Soon, K., Priebbenow, R., 
2016. A Conceptual Model Supporting a Range of 3D Parcel 
Representations through all Stages: Data Capture, Transfer and 
Storage. FIG Working Week 2016, 23 p., 
https://www.fig.net/resources/proceedings/2016/2016_3dcadastr
e/3Dcad_2016_02.pdf.pdf 
Wang, X., Gao, L., Mao, S., Pandey, S., 2015. DeepFi: Deep 
learning for indoor fingerprinting using channel state 
information. 2015 IEEE Wireless Communications and 
Networking Conference (WCNC) IEEE, 1666–1671. 
Williamson, I., Rajabifard, A., Kalantari, M., Wallace, J., 2012. 
AAA Land Information: Accurate, Assured and Authoritative. 
8th FIG Regional Conference 2012 Surveying towards 
Sustainable Development, Montevideo, Uruguay, 26–29. 
Ying, S., Guo, R., Li, L., van Oosterom, P., Stoter, J., 2015. 
Construction of 3D Volumetric Objects for a 3D Cadastral 
System. Transactions in GIS, 19(5), 758–779. 
Zhang, W., Liu, K., Zhang, W., Zhang, Y., Gu, J., 2016. Deep 
neural networks for wireless localization in indoor and outdoor 
environments. Neurocomputing, 194, 279–287. 
Zhang, T., Man, Y., 2018. The enhancement of WiFi fingerprint 
positioning using convolutional neural network. Int. Conf. 
Comput., Commun. Netw. Technol. (CCNT), Wuzhen, China. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume VI-4/W1-2020, 2020 
3rd BIM/GIS Integration Workshop and 15th 3D GeoInfo Conference, 7–11 September 2020, London, UK

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-VI-4-W1-2020-159-2020 | © Authors 2020. CC BY 4.0 License.

 
166




