
CITYJSON + WEB = NINJA

S. Vitalis1∗, A. Labetski2∗, F. Boersma, F. Dahle, X. Li, K. Arroyo Ohori, H. Ledoux, J. Stoter

3D Geoinformation Group, Delft University of Technology, the Netherlands -
1 s.vitalis@tudelft.nl, 2 a.labetski@tudelft.nl

KEY WORDS: Visualisation, 3D City Modelling, CityJSON, Web application, Versioning

ABSTRACT:

As web applications become more popular, 3D city models would greatly benefit from a proper web-based solution to visualise and
manage them. CityJSON was introduced as a JSON encoding of the CityGML data model and promises, among several benefits,
the ability to be integrated with modern web technologies. In order to provide an implementation of a web application for CityJSON
data, that can be used as a reference for other applications, we developed ninja. It is a web application that allows the user to easily
load and investigate a CityJSON model through a web browser. In addition, it offers support for a complex feature of CityJSON:
the experimental versioning mechanism. In this paper, we describe the motivation, requirements, technical aspects and achieved
functionality of ninja. We believe that such a web application can facilitate the adoption of 3D city models by more practitioners
and decision makers.

1. INTRODUCTION

As web applications become increasingly popular, 3D city
models’ usage would greatly benefit from the existence of such
applications with support for 3D city model files. That is be-
cause the ability to view, investigate, and edit 3D city models
through a web browser, without the need to first convert them to
other formats or to use specialised tools, could greatly simplify
their usage for domain experts and decision makers.

CityGML is a commonly studied data model to represent 3D
city models (Open Geospatial Consortium, 2012), and it is also
a GML encoding for the storage and exchange of such data.
While the CityGML data model has been extensively used in
academia (Giovanella et al., 2019; Park et al., 2019; Braun
et al., 2018), there is limited software support for the data
format (Noardo et al., 2019). One of the main reasons for this
is GML’s complexity and verbosity which makes implement-
ation challenging for software developers. More specifically,
for web applications, CityGML files must be first loaded into a
database and converted to other intermediate formats (e.g. 3D
Tiles) in order to make their web dissemination possible (Yao et
al., 2018), which results in a complicated and time-consuming
process.

In order to solve this issue, CityJSON1 was introduced as a
JSON encoding for the CityGML data model (Ledoux et al.,
2019). It focuses on maintaining the majority of features of
CityGML through a simpler file structure that can be easier
mapped to modern programming languages’ data structures.
One of the main reasons for implementing a JSON encoding
was the fact that it is considered today the most used informa-
tion exchange mechanism for web applications2.

CityJSON’s web-friendly encoding promises to be a solid
foundation for implementing such web applications. We de-
veloped ninja3 as a reference implementation of a web ap-
plication that can handle CityJSON files. We set the follow-
ing requirements regarding the application’s functionality: 1)

∗Corresponding author

a 3D geometric viewer with support for the main geomet-
ric types (from ISO 19107:2003: Geographic information—
Spatial schema (2003)); 2) a clean way to investigate the
model’s semantics (e.g. city objects’ hierarchy and attributes);
3) an easy way to show and edit information for specific city
objects; and 4) a straightforward viewer for versioning inform-
ation stored in a dataset, based on the data structure proposed
by Vitalis et al. (2019).

2. BACKGROUND

2.1 CityGML

CityGML is the “Open” Geospatial Consortium’s standard for
the representation, storage, and exchange of 3D city models
(Open Geospatial Consortium, 2012). It is the name of both
the data model and the XML encoding, which is an important
distinction to emphasise as it pertains to CityJSON. CityGML
consists of 13 modules which include Buildings, Bridges,
Transportation, Relief, etc. CityGML also uses the concept
of Level of Detail (LoD) which indicates the level of abstraction
that a model has in comparison to its real-world counterpart
(Biljecki et al., 2016).

In the realm of 3D model visualisation there exist several frame-
works to support the web distribution of common graphics
formats such as COLLADA, OBJ or X3D; but direct support
for CityGML is limited (Blut et al., 2019). There are several
commercial software packages for CityGML visualisation, in-
cluding ArcGIS (ESRI), Bentley Map (Bentley Systems) and
the CityEditor (3DIS GmbH) and freeware/open source soft-
ware such as FZKViewer (KIT Karlsruhe) (Blut et al., 2019).
Nevertheless, there is no direct support for CityGML visual-
isation and dissemination through the web, without the use of
additional tools (such as 3DcityDB) and intermediate formats
(such as GLTF) (Ledoux et al., 2019; Noardo et al., 2019).

2.2 CityJSON

CityJSON is the JSON encoding for the majority and most-used
features of the CityGML data model (Ledoux et al., 2019). It

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume VI-4/W1-2020, 2020
3rd BIM/GIS Integration Workshop and 15th 3D GeoInfo Conference, 7–11 September 2020, London, UK

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-VI-4-W1-2020-167-2020 | © Authors 2020. CC BY 4.0 License.

167

is easier to read and renders the files more compact (on aver-
age six times more compact than their CityGML equivalents).
All of the CityGML modules are mapped to CityJSON objects,
but for the sake of simplicity and efficiency, some modules and
features were omitted and/or simplified4. Furthermore, several
features that are absent in CityGML are included in CityJSON.
These include: a refined concept for the LoDs (Biljecki et al.,
2016) and structured support for metadata, which is lacking in
CityGML. Table 1 summarises the extent of software support
for visualising, editing, generating, etc. CityJSON files, includ-
ing the focus of this paper, ninja.

2.3 Versioning for 3D City Models

Versioning is utilised for the management of changes in inform-
ation, and is well established in the realm of computer pro-
gramming where it can be used to track changes in source code
(Spinellis, 2005). In the realm of 3D city models, new ver-
sions are regularly created due to the fact that cities themselves
are constantly changing, the modelling aspect of a project may
change, or certain maintenance processes may cause changes to
a dataset (Vitalis et al., 2019).

There is no mechanism to manage different city model ver-
sions in the current version of CityGML (2.0), but there ex-
ists a proposal for CityGML 3.0 as developed by Chaturvedi
et al. (2017). The proposal has versions as aggregations of
timestamped features, which also store the reason for the trans-
ition as well as the type. At the same time, the proposed
CityGML versioning module conflates versioning with life-
cycle modelling, which adds complexity to the solution by ad-
dressing two different issues simultaneously. More specifically,
this is due to the fact that the module implies that the order of
real-life operations matters, although that is outside the context
of versioning. In addition, there is currently no software imple-
mentation for the versioning mechanism of CityGML files.

Vitalis et al. (2019) proposed and implemented a framework
that focuses specifically on solving the problem of storing the
versions of multiple city objects in a semantic-agnostic way.
In their methodology, all versions of all objects are stored in a
single file where a CityJSON file acts as a repository, referred
to as “versioned CityJSON” (vCityJSON). A vCityJSON file
has a structure that is similar to a regular CityJSON file, simply
with the addition of a “versioning” property which also con-
tains version metadata. There is also an open versioning pro-
totype19 CLI that supports many common versioning functions
including drawing a log graph of commits, finding the differ-
ence between commits, creating and merging branches, etc.

3. REQUIREMENTS

We have developed ninja with the intention to provide a refer-
ence implementation for a web application using the CityJSON
file format. From a technical standpoint, our purpose was to
evaluate the suitability of CityJSON for modern web technolo-
gies, such as JavaScript front-end frameworks. To make the ap-
plication relevant for practitioners, we focused on certain points
of usability.

First, the application must be able to show all common geomet-
ric types found in real-world datasets. Those are, basically, all
surfacic and volumetric types (i.e. MultiSurface, Solid and
their composite counter-parts). That functionality includes the

ability to display inner boundaries (i.e. holes for surfaces and
inner-shells for solids).

Second, we wanted ninja to provide a comprehensive and
clean way for the user to easily perceive the semantic aspects
of the city model. This means that the user must be able to
understand the structure of the model based on the hierarchical
relationship between the city objects (parent and child). In ad-
dition, we want the application to present basic information for
every city object (i.e. its object type and geometric types) in a
concise way.

Third, there must be a way to view as much detailed informa-
tion as possible for an individual city object, if prompted by the
user. All basic properties of a city object (e.g. the id, type, and
parent/children objects) and its attributes must be accessible to
the user upon request. This also includes the ability for the user
to access and edit the raw JSON information of the city object.

Finally, the application must have some basic support for ver-
sioning. When a file contains information about multiple ver-
sions, as described in Section 2.3, then it must be possible to
see the history of the city model and select a specific version to
investigate.

4. IMPLEMENTATION

ninja is written in JavaScript using the Vue20 framework.
We chose Vue for two reasons: first, it allows for the encap-
sulation of logic in reusable components, which reduces code
redundancy and enables flexibility; and second, it promotes the
use of data binding, which significantly improves the quality of
code reducing the amount of code required for the manipulation
of data in a web application.

In order to make ninja responsive to variable screen sizes we
built its user interface through Bootstrap21. For 3D visualisa-
tion purposes, we chose to use threejs22 due to its simplicity
and comparably solid performance when used in web applica-
tions.

4.1 Architecture

The application is composed of a main Vue component, which
acts as an orchestrator for multiple individual components (such
as those described in Section 4.2). The main component stores
the CityJSON data and holds the information of the applica-
tion’s state in memory. It passes the information to the indi-
vidual components, which offer respective interactions to the
user.

4.2 CityJSON Vue components

ninja is composed of Vue components that offer individual
functionality with CityJSON data. We have isolated those com-
ponents in a library, so that they can be used to develop other
web applications. This library is distributed through the npm

registry23 so that other developers can easily access it.

4.2.1 ThreeJsViewer is a 3D viewer implemented in
threejs. The component takes as input a complete city model
(in CityJSON) and is responsible for rendering its geometries
in 3D. For this, a triangulation of the prescribed boundary sur-
faces of every geometry is computed, which is done using the
earcut24 library. The component can track a user’s selection of

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume VI-4/W1-2020, 2020
3rd BIM/GIS Integration Workshop and 15th 3D GeoInfo Conference, 7–11 September 2020, London, UK

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-VI-4-W1-2020-167-2020 | © Authors 2020. CC BY 4.0 License.

168

Software Viewer Generator Editor Transformer Parser Validator Versioning*

� 3dfier5 �
 � azul6 �
 � Blender7 plugin8 � �
./ citygml-tools9 �
� citygml4j10 �
./ cjio11 � � �
 � FME12 reader/writer13 � �
 � ninja � � �
 � QGIS14 plugin15 �
G# ./ val3dity16 �
./ Versioning Prototype17 �
 � Web-viewer18 �

*Experimental
- Command Line Interface (CLI) ; - Graphical User Interface (GUI) ; G# - Both CLI & GUI
� - Application ; � - Library ; ./ - Both Application and Library

Table 1. Software Support for CityJSON.

a geometry, which can be invoked by a parent component in or-
der to handle the selection for its purposes. For instance, ninja
uses this event so that when it is triggered, the respective ob-
ject’s information is then shown on the screen (see Section 5.3).

4.2.2 CityObjectsTree is a tree view component which
shows the hierarchical structure of the city objects in a city
model. The main input of the component is an array of city ob-
jects. The component builds the tree structure, where first-level
objects are the items of the array provided and their children are
shown as leaves. Every object is shown with the symbology, as
described in Section 5.2.

4.2.3 CityObjectCard is a card component which shows
details of a city object and allows the editing of its JSON data.
The component takes as input a city object and is responsible
for rendering its details, as described in Section 5.3. It also
offers an option to allow editing for the specific object, which
the parent component can enable through a respective property.
When changes to JSON are saved, an event is triggered that
can be used by the parent component to act accordingly (e.g. to
refresh the information of other components).

5. FUNCTIONALITY

In this section we iterate through the four main aspects of func-
tionality that we focused on in the development of ninja.

5.1 Visualisation

Visualisation in ninja is provided through the respective 3D
viewer, as can be seen in Figure 1. The viewer shows
all geometries of every object and supports all ISO 19107
surfacic and volumetric geometric types (MultiSurface,
CompositeSurface, Solid, MultiSolid, CompositeSolid).
The inner boundaries of surfaces and solids are fully suppor-
ted. The geometries are coloured according to the respective
city object’s type (e.g. Building or Terrain). The mapping
between city object types and colours can be altered by the user
through the settings of the application. The user can, also, nav-
igate through the model using typical functions (pan, zoom, and
rotate) and can double click to select an object for further in-
formation (see Section 5.3).

5.2 Model semantics investigation

The left sidebar in ninja provides a clean way to interpret the
semantic aspect of the city model (see Figure 1). Mainly, this
is done through the tree-view, which visualises the hierarchical
relationships between the city objects. The first-level city ob-
jects are listed as root nodes and their children city objects can
be collapsed/expanded accordingly.

For each city object, there is a symbology that is associated
with its type (e.g. Building, Terrain, Transportation). A
symbol also appears to indicate the LoD of the geometries of an
object or whether it utilises a geometric template. The tree-view
can be filtered using the respective search bar, where users can
search for objects based on their id, type, or attributes. Finally,
the user can select a city object by double-clicking on it to show
further information (see Section 5.3).

5.3 Displaying and editing object information

Upon selecting a city object through the 3D viewer or the tree-
view, ninja displays the details of the selected city object. This
is done through an info box which displays all semantic inform-
ation of the object. This includes: the city object’s type and its
respective symbology; the id of the selected object; and the list
of attributes or geometries of the object.

Through the respective button, the user can switch to editing
the object. This is done by allowing the user to alter the city
object’s raw JSON data (see Figure 2). When the data is saved,
the new data is stored in memory in the browser, while the tree-
view and 3D viewer are refreshed automatically to reflect the
changes. The edited version can then be easily downloaded and
saved for future use.

5.4 Versioning

ninja supports parsing versioning information for files created
through the versioning prototype, as described in Section 2.3.
When a CityJSON file that contains versions is loaded in ninja,
a second sidebar option is enabled for interacting with the dif-
ferent versions.

The versioning sidebar lists the branches in the file through a
drop-down list, and the list of versions that compose the se-
lected branches history, as can be seen in Figure 3. For each

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume VI-4/W1-2020, 2020
3rd BIM/GIS Integration Workshop and 15th 3D GeoInfo Conference, 7–11 September 2020, London, UK

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-VI-4-W1-2020-167-2020 | © Authors 2020. CC BY 4.0 License.

169

Figure 1. Once a CityJSON file is loaded, the user will see the viewer on the right and the tree-view on the left.

version, the main metadata is shown: the author, the time of
submission, and the version’s commit message. The list can be
used to select or download an individual version. When a ver-
sion is selected, the tree-view and 3D view is updated to show
only the version-specific objects.

6. DISCUSSION

We have developed ninja to provide a reference implement-
ation for web software using CityJSON. This process has al-
lowed us to further evaluate the suitability of CityJSON for web
development, which was our initial goal. We can confirm that
manipulating a JSON-encoded 3D city model was a simple pro-
cess in JavaScript, and that building a relatively complex applic-
ation to manipulate 3D city models was possible. Unlike with
an XML-based encoding, no additional libraries were required
to manipulate and edit the model. We would like to point out
that ninja is by itself an achievement for 3D city modelling,
as there is no JavaScript library to parse/edit/manipulate XML-
encoded CityGML files.

Nevertheless, certain details of the CityJSON specifications
could be further refined to make the implementation simpler.
From our implementation, we have realised that the use of a
global list of vertices is not necessarily ideal for applications
where geometry and semantics should be bound together. This
is because a global vertex list can only benefit the rendering
process when all geometries are handled as one big mesh. This
is not efficient, though, when city objects need to exist as indi-
vidual meshes in order to preserve their semantics.

Regarding the use of a browser as the underlying platform of a
complete 3D city model tool, we have identified both advant-
ages and disadvantages. From a user’s perspective, having to
use a simple browser in order to navigate through a model is
a significant benefit. Nevertheless, using a browser to process
big datasets can be problematic, given that JavaScript and other
related web technologies are bound to the performance limita-
tions that their nature implies (i.e. high-level programming lan-

guages, garbage collection, etc.). As expected, when bigger
or more complex data models needed to be handled by ninja,
the responsiveness of the interface and the performance of the
3D viewer would deteriorate. That is further underpinned by
the specific implementation of the browser’s JavaScript engine:
from our tests, V8 (used by Google Chrome) had a noticeably
better performance than SpiderMonkey (used by Mozilla Fire-
fox), for example.

From a technical perspective, we found certain aspects of web
development easier, in company with CityJSON, than they
would have been with native applications. Especially through
the use of assisting frameworks, such as Vue and Bootstrap,
building a complete and feature-rich user interface was a rel-
atively easy task. However, certain elements of data manipu-
lation would require more intricate development techniques in
order to ensure that there are no performance trade-offs. For
example, two-way data binding had to be explicitly avoided, in
certain cases, to obviate the problem of reloading the whole city
model when small changes were made.

While designing the user interface, we concluded that there
are certain limitations to the amount of information we could
present without causing confusion to the user. While showing
more information in a structured and well-formatted way was
not a technical issue, users sometimes prefer to have less in-
formation about the model displayed.

Incorporating the prototype versioning mechanism in ninja

was done deliberately in order to assess the potential use of
such a concept. We can conclude that certain aspects of ver-
sioning manipulation can be easily implemented with web tech-
nologies, such as parsing the versioning metadata, showing the
list of versions, and extracting a version as CityJSON through
JavaScript. Nevertheless, implementing more complex func-
tions, such as comparing individual objects and showing differ-
ences between versions is more difficult than in programming
languages with more powerful mechanisms for data processing
(e.g. Python).

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume VI-4/W1-2020, 2020
3rd BIM/GIS Integration Workshop and 15th 3D GeoInfo Conference, 7–11 September 2020, London, UK

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-VI-4-W1-2020-167-2020 | © Authors 2020. CC BY 4.0 License.

170

Figure 2. With ninja, it is possible to edit the raw JSON and
save it via the info box on an object-by-object basis.

Due to the architecture of the application, it is possible to eas-
ily swap components in the future. For instance, currently
the viewer is based on threejs, but it could be easily pos-
sible to have another implementation for other 3D libraries (e.g.
Cesium).

We believe ninja can be used extensively by researchers, prac-
titioners, and decision makers as a tool to easily access and in-
vestigate a 3D city model. That is due to its balance between
simplicity and the amount of information displayed to the user.
Furthermore, we believe that showing versioning information
through a web user interface can further assist in convincing
the community about the usefulness and added value of such
functionality.

7. FUTURE WORK

Work in ninja is ongoing and in an open development. We host
everything on a GitHub repository25 and we encourage users
to report back to us on how we can continue to make ninja

better. We discuss below some ideas that are either already in
development or at least on our horizon.

We are actively working on adding support for geometry in-
stances/templates, points, and lines, as well as the ability to
visualise textures (Figure 4). For files that contain multi-LoD
representations of the same objects, a way to handle these cases
will need to be explored. Users will also be able to have even
more control over visualisation by extending the 3D view col-
ouring schemes to include categories beyond the object type,
e.g. by semantic surface instead.

We also plan to allow ninja to load 3D city models not only by
uploading a file, but by accessing an OGC API—Features com-
pliant web service (Open Geospatial Consortium, 2019). This

is the newer and completely revamped standard formally known
as a WFS, which is a RESTful service. We are currently work-
ing on a best practices document for CityJSON to be served as a
WFS (this requires a few modifications given that in CityJSON
some properties like “vertices” and “textures” are global), and
we will test it first with ninja. One advantage that we see from
this is the capability to stream large datasets.

In a similar fashion, to address scalability, we are planning
to add support for loading multiple CityJSON files in ninja.
More importantly, we are interested in investigating the use
of metadata as the main definition file to define a tileset of
CityJSON files that could be loaded in parallel. The main use
case we would like to tackle, in this case, is visualisation and
management of tiled datasets.

In the future the tree-view will exist independently from the
viewer. It will have further tools that will assist in understand-
ing the semantic data better. The ability to group objects by
module will be one such tool. Filtering the tree-view based on
module, attribute, or relationship (parent, child) will be a fur-
ther tool. This means that users who wish to only interact with
the tree-view are also not forced to load the viewer.

Given the importance of metadata for understanding informa-
tion about the entire model, there will be support for viewing
the metadata of a model and inserting/editing it. This will also
be organised as a tree-view. Further metadata can also be added
to the info boxes of individual features with information about
the presence or absence of textures and/or materials.

It is also important to emphasize that developing ninja will
always be about finding an equilibrium between effectiveness,
usability, and simplicity. We will continue to focus specific-
ally on balancing the editing capabilities versus the versioning
capabilities.

ACKNOWLEDGEMENTS

We would like to thank Balázs Dukai and Ravi Peters for their
insightful remarks after extensively testing ninja.

This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 re-
search and innovation programme (grant agreement No 677312
UMnD).

A. SOFTWARE VERSION

At the time of writing this paper this is the status of the versions:

ninja - 0.3

cityjson-vue-components - 0.3.2

References

Biljecki, F., Ledoux, H., Stoter, J., 2016. An improved LOD
specification for 3D building models. Computers, Environment
and Urban Systems, 59, 25–37.

Blut, C., Blut, T., Blankenbach, J., 2019. CityGML goes mo-
bile: application of large 3D CityGML models on smartphones.
International journal of digital earth, 12(1), 25–42.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume VI-4/W1-2020, 2020
3rd BIM/GIS Integration Workshop and 15th 3D GeoInfo Conference, 7–11 September 2020, London, UK

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-VI-4-W1-2020-167-2020 | © Authors 2020. CC BY 4.0 License.

171

Figure 3. An example of versioning in ninja. The image at the top demonstrates the ability to toggle between different branches. It
also has the the model at the state in which it was first versioned. The image below shows a different version of the model, in this case

a building was deleted.

Figure 4. Demo of our work-in-progress support for textures in ninja’s 3D viewer.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume VI-4/W1-2020, 2020
3rd BIM/GIS Integration Workshop and 15th 3D GeoInfo Conference, 7–11 September 2020, London, UK

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-VI-4-W1-2020-167-2020 | © Authors 2020. CC BY 4.0 License.

172

Braun, R., Weiler, V., Zirak, M., Dobisch, L., Coors, V., Eicker,
U., 2018. Using 3D CityGML models for building simulation
applications at district level. 2018 IEEE International Confer-
ence on Engineering, Technology and Innovation (ICE/ITMC),
IEEE, 1–8.

Chaturvedi, K., Smyth, C. S., Gesquière, G., Kutzner, T., Kolbe,
T. H., 2017. Managing versions and history within semantic 3D
city models for the next generation of CityGML. Advances in
3D Geoinformation, Springer, 191–206.

Giovanella, A., Bradley, P. E., Wursthorn, S., 2019. Evaluation
of topological consistency in CityGML. ISPRS International
Journal of Geo-Information, 8(6), 278.

ISO 19107:2003: Geographic information—Spatial schema,
2003. International Organization for Standardization.

Ledoux, H., Ohori, K. A., Kumar, K., Dukai, B., Labetski, A.,
Vitalis, S., 2019. CityJSON: a compact and easy-to-use encod-
ing of the CityGML data model. Open Geospatial Data, Soft-
ware and Standards, 4(4).

Noardo, F., Arroyo Ohori, K., Biljecki, F., Krijnen, T., El-
lul, C., Harrie, L., Stoter, J., 2019. GeoBIM benchmark 2019:
Design and initial results. G. Vosselman, S. J. Oude Elberink,
, M. Y. Yang (eds), ISPRS Geospatial Week 2019, Interna-
tional Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, XLII-2number W13, ISPRS,
1339–1346. ISSN: 2194–9034 (Internet and USB), 1682–1750
(Print), 1682–1777 (CD-ROM).

Open Geospatial Consortium, 2012. OGC City Geography
Markup Language (CityGML) Encoding Standard 2.0.0.

Open Geospatial Consortium, 2019. OGC API—Features—
Part 1: Core. Document 17-069r3, version 1.0.

Park, S. H., Jang, Y.-H., Geem, Z. W., Lee, S.-H., 2019.
CityGML-Based Road Information Model for Route Optimiza-
tion of Snow-Removal Vehicle. ISPRS International Journal of
Geo-Information, 8(12), 588.

Spinellis, D., 2005. Version control systems. IEEE Software,
22(5), 108–109.

Vitalis, S., Labetski, A., Arroyo Ohori, K., Ledoux, H., Stoter,
J., 2019. A Data Structure to Incorporate Versioning in 3D City
Models. 14th 3D GeoInfo Conference 2019, ISPRS Annals of
the Photogrammetry, Remote Sensing and Spatial Information
Sciences, IV-4number W8, ISPRS, 123–130.

Yao, Z., Nagel, C., Kunde, F., Hudra, G., Willkomm, P.,
Donaubauer, A., Adolphi, T., Kolbe, T. H., 2018. 3DCityDB —
a 3D geodatabase solution for the management, analysis, and
visualization of semantic 3D city models based on CityGML.
Open Geospatial Data, Software and Standards, 3(1).

Notes

1. https://www.cityjson.org
2. https://twobithistory.org/2017/09/21/the-rise-and-rise-of-js
on.html

3. https://ninja.cityjson.org
4. https://www.cityjson.org/citygml-compatibility
5. https://github.com/tudelft3d/3dfier
6. https://github.com/tudelft3d/azul
7. https://www.blender.org
8. https://github.com/cityjson/Blender-CityJSON-Plugin
9. https://github.com/citygml4j/citygml-tools

10. https://github.com/citygml4j
11. https://github.com/cityjson/cjio
12. https://www.safe.com
13. https://github.com/safesoftware/fme-CityJSON
14. https://qgis.org
15. https://github.com/cityjson/cityjson-qgis-plugin
16. https://github.com/tudelft3d/val3dity
17. https://github.com/tudelft3d/cityjson-versioning-prototype
18. https://viewer.cityjson.org
19. https://github.com/tudelft3d/cityjson-versioning-prototype
20. https://vuejs.org
21. https://getbootstrap.com
22. https://threejs.org
23. https://www.npmjs.com/package/cityjson-vue-components
24. https://github.com/mapbox/earcut
25. https://github.com/cityjson/ninja

Revised July 2020

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume VI-4/W1-2020, 2020
3rd BIM/GIS Integration Workshop and 15th 3D GeoInfo Conference, 7–11 September 2020, London, UK

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-VI-4-W1-2020-167-2020 | © Authors 2020. CC BY 4.0 License.

173

