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ABSTRACT: 
 
Vacant housing detection is an urgent problem that needs to be addressed. It is also a suitable example to promote utilisation of smart 
data that are stored in municipalities. This study proposes a vacant housing detection model that uses closed municipal data and 
considers accelerating the use of public data to promote smart cities. Employing a machine learning technique, this study ensures high 
predictive power for vacant housing detection. The model enables us to handle complex municipal data that include non-linear feature 
characteristics and substantial missing data. In particular, handling missing data is important in the practical use of closed municipal 
data because not all of the data are necessarily absorbed to a building unit. Consequently, the model in this analysis showed that the 
accuracy and false positive rate are 95.4 percent and 3.7 percent, respectively, which are high enough to detect vacant houses. However, 
the true positive rate is 77.0 percent. Although the rate is not low to some extent, selection of features and further collection of extra 
samples may improve the rate. Geographic distribution of vacant houses further enabled us to check the difference between the actual 
and estimated number of vacant houses, and more than 80 percent of 500-meter grid data are with below 10 errors, which we think, 
provides city planners with informative data to roughly grasp geographical tendencies. 
 
 

1. INTRODUCTION 

With the advent of population decline in Japan, an increasing 
number of vacant dwellings has been emerging. According to the 
Housing and Land Survey conducted by the Ministry of Internal 
Affairs and Communications, approximately 13.6 percent of total 
housing units are vacant across Japan. The geographic tendency 
of vacant dwellings varies between urban and suburban areas, 
which makes the decay of depopulated suburban areas distinctive 
(Baba, Asami, 2017). The existence of vacant houses impedes the 
efficient use of available land; and once houses are dilapidated, 
they sometimes give a negative impact on adjacent neighbours 
(Han, 2014).  
 
Cities worldwide, therefore, have concerned about the existence 
of vacant dwellings, and in particular depopulated cities carry out 
policy measures. Detroit, USA, is exemplified as active user of 
vacant properties that employ a land bank (Alexander, 2005). 
Eastern Germany implemented physical reconstruction of the 
city form, which contributed to the reduction in vacant housing 
stock (Bernt, 2019; Radzimski, 2016). Despite active policy 
measures to prevent housing vacancy, the number of vacant 
houses is likely to increase as long as cities are shrinking. We, 
therefore, need an efficient way to conduct a survey that detects 
vacant houses. 
 
A frontier approach in dealing with the problem is to use open 
public data (Bourne, 2019; Cheshire et al., 2018). Spontaneous 
detection of vacant houses enables municipalities to implement 
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efficient plans and guidelines in dealing with the problem. For 
example, Bourne (2019) estimated the extent and value of low-
use domestic properties using publicly available data. Although 
researchers using open data afford to collect and update them, the 
data sometimes fail to estimate the model accurately due to too 
many aggregate units that reflect various characteristics such as 
building, household and so forth. 
 
To improve the accuracy of vacant housing detection, researchers 
draw attention to take advantage of closed municipal information 
such as resident and building registrations. Akiyama et al. (2020) 
took advantage of closed municipal data and estimated the 
vacancy rate in Japanese cities. Nevertheless, there is a room for 
improving the accuracy of vacant housing detection, because the 
model simply sets the thresholds of featured variables and takes 
an average vacancy rate per grid area. 
 
This study proposes a vacant housing detection model using 
closed municipal data and considers accelerating the use of 
public data for promotion of smart cities. Employing a machine 
learning technique, this study ensures high predictive power for 
vacant housing detection, and the model enables us to handle 
complex municipal data, which include substantial missing data. 
Since the analysis in this study separates the test samples from 
the obtained ones, the model may contribute to the spatial 
extrapolation of vacant housing distribution. 
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2. PREVIOUS STUDIES AND TARGET AREA 

2.1 Emergence of vacancy 

Increase in vacant properties is, in many cases, triggered by urban 
shrinkage (Couch, Cocks, 2013; Hollander et al., 2018; 
Radzimski, 2016). Championed by Oswalt (2006), urban 
shrinkage has appeared to be the main concern in the field of 
urban planning and policy (Audirac, 2018; Großmann et al., 
2013; Hoekstra et al., 2018). Urban shrinkage occurs mainly on 
cities in developed countries such as Germany (Bontje, 2004), the 
United States (Schilling, Logan, 2008) and Japan (Hattori et al., 
2017). Most studies define population decline as a primary 
indicator for urban shrinkage (Blanco et al., 2009). Together with 
the increase in vacant properties, population change has a 
negative impact on downtown decline (Hollander et al., 2018). 
 
The emergence of vacant properties is fundamentally determined 
by the excess in supply versus shrink in demand. Since even in 
populated cities competitive supply yields structural vacancy 
(Wheaton, 1990), cities with population decline accelerate the 
situation (Couch, Cocks, 2013). Some cities in Japan represent 
the shrinking ones that suffer from an increase in vacant houses 
due to long-term population decline (Mallach et al., 2017). 
Although the phenomenon is gradually proceeding, neglecting 
this issue may result in serious hollowing out of population in 
cities. 
 
Deteriorated vacant properties might exert negative externalities 
on adjacent neighbourhoods (Baba, Hino, 2019; Whitaker, 
Fitzpatrick, 2016), and city planners have attempted to control 
the number of vacant properties (Dol et al., 2017; Radzimski, 
2016). In the case of the United States, Detroit Land Bank 
Authority, an organization that promotes the active use of vacant 
properties, plays a prominent role in regulating vacancies 
(Alexander, 2005). In contrast, eastern Germany physically 
regulates the number of vacancies through demolition of 
deteriorated buildings (Nelle et al., 2017). Nevertheless, proper 
intervention on vacant housing regulation is difficult, because the 
emergence of vacant housing is not fully understood, and 
geographic distribution may be associated with negative 
externalities (Han, 2014). We, therefore, need to identify the 
geographic distribution of vacancies as a first step. 
 
2.2 Detection of vacant houses 

In response to the increasing demand for vacant housing 
detection, researchers try to detect vacancies using various data 
such as satellite images, GPS tracking data and public survey 
results. Du et al. (2018) examined census-level vacancy rate 
using night time satellite images. Bourne (2019) took advantage 
of public data by examining the value of low-use domestic 
properties. The above studies provide us the possibility of 
estimating vacancy rate per census tract level. However, housing 
vacancy is associated with various factors such as household 
condition, building characteristics, geographic constraints and so 
forth, which are difficult to obtain from open data sources. 
 
Recent pieces of research have taken advantage of closed data 
such as mortgage deeds (Fisher et al., 2015) and building 
registration (Baba, Hino, 2019), which articulate the 
characteristics of vacant housing. Some significant data sources 
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Zenrin Co. LTD and Digital Map (Basic Geospatial 
Information) by Geospatial Information Authority of Japan. 

include closed municipal information stored in all municipalities, 
which enable us to extract important attributes such as household 
age, year when a building is constructed and amount of water 
consumption. A frontier research employing closed municipal 
information is the study by Akiyama et al.(2020), who took 
advantage of resident registration, building registration and 
monthly amount of water consumption. While the method is a 
combination of cross tabulations, the authors indicated the 
possibility of actively using closed municipal data. 
 
Building upon previous research, recent analyses have tried to 
include machine learning methods to improve predictive powers 
and infer causal effects (Athey, 2017). The methods range from 
health inspector allocation problem (Glaeser et al., 2016) to 
economic well-being prediction using mobile data (Blumenstock 
et al., 2015). The results obtained from such machine learning 
techniques help city planners implement policies smoothly via 
evidence-based policy making (Howlett, 2009). We try to use a 
machine learning method to detect the location of vacant houses 
utilising closed municipal information. Although the aim is 
similar to that of several pieces of previous research, our method 
extends the traditional way by exploring a modern method and 
considers how results can be interpreted to advance a smart city 
framework. 
 
2.3 A case study area: Wakayama city, Japan 

The city of Wakayama, which is the case area for this study, is 
located in the outskirts of the Osaka metropolitan area and is 
embraced by mountains and an ocean bay (Figure 1 1 ). The 
population as of 2020 amounts to 355,514. Because of the 
suburban setting of the city, inhabitants in Wakayama move to 
the central districts of Osaka, resulting in population decline of 
approximately 15,000 inhabitants in this decade. The number of 
vacant houses as of 2013 accounted for 15.8 percent, which is 2.3 
percent higher than the national average. 
 
In response to the increasing number of vacancies, the city 
conducted a vacant housing field survey to understand the overall 
quantity and geographical distribution of the vacant houses. 
While the field survey brings city planners many informative 
cues to deal with the problem, conducting field surveys is 
basically an expensive and laborious task. It is true that city 
planners require precise locations of vacant houses in a specific 
term, but they also figure out the estimated locations in a timely 
manner. Therefore, not overly accurate but affordable ways of 
detecting vacant houses have been desired. 

  
 

Figure 1. Geographic location of Wakayama city 
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The number of vacant housing for a geographic location and the 
result of field survey from 2016 to 2017 are illustrated in Figure 
22. The centre of the city is located along the bay area wherein a 
substantial number of vacant houses is observed. There is a 
residential district located in the north of the centre of the city in 
which the number of vacant houses tends to be high. A piece of 
coastal settlement exists along the coastline of the northern part 
of the city. Because of restricted land availability, the residential 
density of the settlement is high, and the number of vacant houses 
also indicates the same trend. The eastern part of the city is a 
mountainous area wherein small settlements are sparsely located. 
Although the number of vacant houses is not high in the 
mountainous area, the vacancy rate is still high because of low 
building density.  
 

3. DATA AND METHOD 

3.1 Closed municipal data 

The closed municipal data that we utilised are resident 
registration, building registration and monthly water 
consumption information, which include pieces of information 
that are significant to improve the accuracy of the vacant housing 
detection model. Resident and building registration and water 
consumption information were retrieved as of April 2019, 
October 2018 and May 2019, respectively. The building 
registration data is half a year older than the other data. However, 
since changes in the features of building registration should be 
sluggish, the time lag of data collection does not affect analysis. 
 
First, resident registration includes basic information such as 
residents who live in the jurisdiction. When a resident registers 
the place where they live, they fill out name, birthday, sex, family 
relationship and address. Since these pieces of information are of 
importance to jurisdiction, all of them are securely archived. 
Second, building registration particularly explains the 
                                                             
2 Unlike the number of vacancies, vacancy rate expresses how 

vacant houses are distributed in an area. However, we assume 
that an increase in the density of vacant houses would have a 

information on a building such as registration date, address, 
building use, structure, building age and floor area. This derives 
from a register that establishes the current condition and rights on 
a target property. In the case of Japan, buildings and lands are 
exclusively registered so we only use building registration. Third, 
monthly water consumption information literally indicates the 
amount of water consumed by a household. In addition to 
consumption, information on whether a hydrant is open or not is 
stored. In the case where water is drawn from a well, the amount 
of water consumed may be underestimated. 
 
Data synthesis was based on a building unit extracted from a 
digital residential map by Zenrin Co. LTD. If any of the closed 
municipal data was absorbed to a building unit, we used it as a 

negative effect on adjacent neighbours. We thus show the 
number of vacant houses to easily understand the 
agglomeration of vacancies. 

 
 

Figure 2. Geographic distribution of vacant houses per 500-meter grid cell 

 
 Table 1. Summary of data processing  

RR BR WU VH

(A) Number of original data 173,769 142,401 160,230 5,510

(B) Uniquely geocoded 141,719 96,451 122,035 5,510

Ratio of available data ((B)/(A)) 81.6% 67.7% 76.2% 100.0%

(C) Available data per building 67,616 68,330 69,915 4,494

Ratio of data for analysis ((C)/(B)) 47.7% 70.8% 57.3% 81.6%

RR＼(BR∪WU)

BR＼(RR∪WU)

WU＼(RR∪BR)

RR∩BR

RR∩WU

BR∩WU

RR∩BR∩WU

RR∪BR∪WU
(Total samples for analysis)

3,229

7,659

5,160

Note: RR = Resident registration, BR = Building registration, WU = water use
information, VH = Vacant housing field survey

55,046

55,414

59,130

88,363

49,789
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sample data. When we added latitude and longitude to the closed 
municipal data, we used the CSV address matching service 
provided by Center for Spatial Information Science, the 
University of Tokyo 3. Once we obtained the coordinates, we 
intersected them and the building polygons and specified the 
building in which the data is stored. 
 
Table 1 illustrates how the closed municipal data are involved in 
the data set for analysis. From the original data source, 
approximately 70–90% of the data was geocoded. Out of the 
geocoded data, the ratio of the data for analysis ranged from 50% 
to 90%. Although this seems to be a low ratio for the used data, 
we only focus on detached housing and omit all apartments, 
factories, stores and so forth. Moreover, we conducted pre-
processing to omit outliers so the number of inhabitants, building 
age and floor area ranged from 0 to 20, 0–100 and from 10 to 
1,000, respectively. 
 
To show the feature variables, descriptive statistics are 
summarised in Table 2. We further added land use zoning to the 
data set after the identification of urban, suburban and rural 
areas4. We roughly divided the land use zoning into 4 types: 
exclusively residential, residential, commercial and industrial 
zones. This category follows the Japanese City Planning Act and 
generally corresponds to the designated floor area ratio. We 
extracted the maximum and minimum ages in a household, 
number of inhabitants and a dummy of resident registration from 
the resident registration data. We included the dummy in resident 
registration because it signals that no residents are supposed to 
live in a house. Building registration is associated with structure 
dummies, building age, floor area and floor number. These data 
provide us with the durability and expected value of a building. 
Out of the water consumption information, we use the average 
consumption of water in 2018, a dummy whether a hydrant is 
open or not and the time length that the hydrant is closed. 
 
                                                             
3http://newspat.csis.u-tokyo.ac.jp/geocode/ 

In this study, all municipal data were modified in order to not 
specify individuals, so resident’s names, birthdays and so forth 
are omitted from the data for analysis. Moreover, although we 
employ geospatial point data with coordinates which enable us to 
specify the any kinds of data resolution, we aggregate the 
attributes per 500-meter grid data, due to protection of personal 
information. 
 
3.2 XGBoost: a machine learning method 

We used eXtreme gradient boosting (XGBoost), which is 
developed by Chen and Guestrin (2016), for vacant housing 
detection. XGBoost is a type of ensemble learning method that 
generates many weak learners based on a decision tree, and node 
weights are readjusted through gradient boosting. Advantages of 
this method include high degree of accuracy and ability to deal 
with missing values although general performance is not high 
compared with other machine learning methods. 
 
Let us denote the 𝑡𝑡-th decision tree as 𝑓𝑓𝑡𝑡, a simple form of error 
function is described as ∑ 𝑙𝑙 �𝑦𝑦𝑖𝑖 ,𝑦𝑦𝚤𝚤�

(𝑡𝑡−1) + 𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖)�𝐼𝐼
𝑖𝑖=1 , where 𝑥𝑥𝑖𝑖 is 

the 𝑖𝑖-th feature and 𝑦𝑦𝑖𝑖 is the 𝑖𝑖-th output. This means that the error 
function adds 𝑡𝑡-th decision tree 𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) on the baseline of (𝑡𝑡 − 1)-
th decision trees, which contributes to the decrease in the error 
value of the function. However, the error function above may 
lead to an overfitting problem, so we need to modify the function 
by adding penalty terms. Error function 𝐿𝐿(𝑡𝑡) at the 𝑡𝑡-th iteration 
is described as: 

𝐿𝐿(𝑡𝑡)(𝑓𝑓𝑡𝑡) = �𝑙𝑙�𝑦𝑦𝑖𝑖 ,𝑦𝑦𝚤𝚤�
(𝑡𝑡−1) + 𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖)�

𝐼𝐼

𝑖𝑖=1

+ 𝛾𝛾𝛾𝛾 +
1
2 𝜆𝜆
‖𝑤𝑤‖2 (1) 

where 𝛾𝛾 and 𝜆𝜆 are the tuning parameters, 𝑇𝑇 indicates the number 
of leaves in the tree, and 𝑤𝑤 is a set of final prediction values. This 
means that the more the number of leaves and final prediction 

4 Land use zoning information is retrieved from National Land 
Numerical Information: https://nlftp.mlit.go.jp/ksj/. 

 
 Table 2. Descriptive statistics 

Sample Mean S.D. Min Median Max

VH Vacant house dummy 88,363 0.051 0.220 0 0 1

Exclusive residential area dummy 88,363 0.114 0.318 0 0 1

Residential area dummy 88,363 0.115 0.319 0 0 1

Commercial area dummy 88,363 0.027 0.163 0 0 1

Industrial area dummy 88,363 0.022 0.148 0 0 1

Designated floor area ratio 24,613 203.427 58.444 50 200 600

maximum age in a household 65.665 16.097 17 68 109

minimum age in a household 42.559 26.438 0 43 108

Number of inhabitants 2.932 1.769 1 3 19

Resident registration dummy 88,363 0.765 0.424 0 1 1

Type of housing dummy 0.973 0.163 0 1 1

Wood structure dummy 0.712 0.453 0 1 1

Steel structure dummy 0.161 0.367 0 0 1

Reinforced concrete dummy 0.038 0.192 0 0 1

Building age 28.790 14.432 0 30 94

Floor area 110.983 47.669 10.07 104.49 999

Floor number 1.909 0.360 1 2 6

Average use of water in 2018 214.798 364.353 0 205 63373

Hydrant is open 0.950 0.218 0 1 1

Month of hydrant closed 3.753 23.394 0 0 349.5
Note: RR = Resident registration, BR = Building registration, WU = water use information, VH = Vacant housing field survey, LU =
Land use regulation

Feature

LU

RR

BR

67,616

68,330

WU 69,915
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values increase, the more the value of the error function increases, 
which contributes to the prevention of overfitting.  
 
In estimating ∑ 𝑙𝑙 �𝑦𝑦𝑖𝑖 ,𝑦𝑦𝚤𝚤�

(𝑡𝑡−1) + 𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖)�𝐼𝐼
𝑖𝑖=1 , XGBoost, since it is a 

kind of gradient booster, conducts a second-order approximation 
employing the Taylor series. As a consequence of the 
minimization of 𝐿𝐿(𝑡𝑡), we obtain 𝑖𝑖-th optimal output value 𝑤𝑤𝑗𝑗∗. 
 
XGBoost is able to deal with missing data for the following 
manner. It firstly computes the split of trees by ignoring the NA 
features, and then decides to allocate all the data with missing 
data so that the loss function is minimised. This algorithm is, 
therefore, beneficial when the missing data is not dispersed at 
random, because the allocation of the missing data is associated 
with reducing the value of the loss function. It is true that other 
methods such as Markov logic network are potentially able to 
handle missing data that are not at random, but XGBoost pursues 
high predictive power handling with missing data, which fits to 
our primary purpose. 
 
Since XGBoost requires parameter tuning, we performed a grid 
search technique to identify the parameters. The maximum depth 
of a tree ranged from 2 to 8, the minimum child weight, which 
means the minimum sum of instance weight for the further tree 
partition step, was between 1 and 3, and the sub-sampling ratio 
of the training instances and columns were 0.5 and 1, respectively.  
 
To determine the tuning parameters, we defined error ratio 𝑒𝑒𝑖𝑖 by 
the following: 

𝑒𝑒𝑖𝑖 =
1
𝑁𝑁�

|𝑦𝑦𝑖𝑖 − [𝑦𝑦𝚤𝚤� ]|
𝐼𝐼

𝑖𝑖=1

(2) 

where 𝑦𝑦𝑖𝑖 is a vacancy dummy whether a building is vacant or not, 
𝑦𝑦𝚤𝚤�  is an estimated probability of vacancy, | ∙ |  indicates an 
absolute value in the parentheses, [ ∙ ] is a function that returns 1 
if the value is above 0.5 and otherwise 0, and 𝑁𝑁 is the number of 
examples. Every time we changed the parameter set, a cross 
validation was conducted between the train and test data sets, and 

validation was continued until the error ratio was converged. 
Consequently, we obtained the optimal values of the tuning 
parameter set. 
 

4. RESULTS 

We first conducted a grid search to determine the tuning 
parameters. We divided the analysing data into 70 percent train 
data and 30 percent test data. For each selected tuning parameter 
set, we calculated the error ratio and the optimal tuning parameter 
set is as follows: maximum depth = 6, minimum child weight = 
2, sub-sampling ratio = 0.9 and sub-sampling of columns = 0.8. 
We also set the learning rate as equal to 0.01.  
 
As a result of parameter tuning, we were able to check the model 
accuracy using the test data shown in Table 3. Overall, the 
accuracy rate was 95.4 percent, which we think is a fair number 
for predictive power. We also checked both true positive and 
false positive rates. True positive rate is the rate of a number of 
estimated vacancies that are also found as “vacant” to the total 
number of vacancies by field survey. In contrast, false positive 
rate is the rate of a number of estimated vacancies whose 
buildings are actually not vacant to the total number of “not 
vacant” buildings by field survey. These are the indicators that 
show the accuracy of the actual vacant housing detection and the 
extent of error. In this model, true positive rate is marked at 77.0 
percent, while false positive rate was 3.7 percent. This means that 
the model could properly differentiate occupied dwellings from 
all other houses. Whereas it may be difficult for this model to 
perfectly detect an actual vacant house as a vacant one, the 
existence of confounding and hidden factors is assumed to make 
the improvement of the model more difficult. 
 
We subsequently illustrated the geographic distribution of 
estimated vacant houses to check how spatial tendencies differ. 
We noticed that the estimated probabilities of vacant houses are 
attached to each building. We, however, visualised the number of 
vacancies per 500-meter grid because of protection of personal 
information. By our observation of Figure 3, if a geographical 

 
 

Figure 3. Geographical distribution of vacant houses subtracted from estimated ones per 500-meter grid cell 
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distribution of vacant houses is subtracted from the estimated 
ones, the number of vacant houses was likely to be higher in the 
estimated ones. This means that some of the occupied houses are 
incorrectly estimated as vacant ones. We, nevertheless, confirm 
that the estimation result provides us with both hot and cool spots 
of vacant houses. Since the values in Figure 3 are equally divided 
into 20 percentiles, more than 80 percent of the grid data are with 
below 10 errors. We, therefore, think that the estimated vacant 
housing distribution provides city planners with informative data 
to roughly grasp geographical tendencies. 
 
To explore how the error is varied, we defined grid-based error 
ratio 𝑒𝑒𝑗𝑗 by modifying equation [2]: 

𝑒𝑒𝑗𝑗 =
1
𝑛𝑛𝑗𝑗
�|𝑦𝑦𝑘𝑘 − [𝑦𝑦𝑘𝑘�]|

𝑛𝑛𝑗𝑗

𝑘𝑘=1

(3) 

where 𝑛𝑛𝑗𝑗  is the number of housing units in the 𝑗𝑗–th grid cell. 
Figure 4 shows the distribution of error ratios per 500-meter grid 
cell. The high value of the error ratio indicated that the validity 
of the model in the grid cell was relatively low compared to 
others. Overall, since the thresholds were equally set at 20 
percentile, the error ratios in the 80 percent of grid cells were 
below 5 percent, which confirmed that regardless of geographical 
differences, the accuracy of the model was high. According to 

Figure 4, some areas in the city centre, the coastal settlement and 
the mountainous area are marked with high error ratios. 
Nevertheless, the difference between the actual and estimated 
number of vacant houses as shown in Figure 3 was relatively 
lower than the error ratio. It is conceivable that prediction 
accuracy is associated with the number of examples. It is 
exemplified that although the absolute error is one out of two 
examples, the error ratio is 0.5. One of the possible factors for the 
error would be the existence of farmhouses in the mountainous 
area, which are composed of distinctive features such as large lot 
size, wood structure, and so forth, making the prediction more 
difficult. 
 

5. CONCLUDING REMARKS 

Vacant housing detection is an urgent problem that needs to be 
addressed. It is a suitable example to promote utilisation of smart 
data that are stored in municipalities. We examined the 
estimation of geographical distribution of vacant houses 
employing the XGBoost technique. As a result of model 
estimation, we obtain the following findings: 
 
We developed a model which enables us to handle missing data 
and non-linearity problems. Particularly, handling missing data 
is of importance for the practical use of closed municipal data 
because not all of the data are necessarily absorbed to a building. 
The XGBoost technique could solve these problems, since the 
method is non-parametric and able to consider missing values, 
employing a decision tree as a weak learner. However, the causal 
relationship between features and vacancy is unknown, and it 
needs to be addressed further. 
 
Moreover, in the analysis, the model held an accuracy rate of 95.4 
percent, which is high enough to detect vacant houses. The false 
positive rate was 3.7 percent, indicating that the model 
significantly detects houses in which residents live. However, the 
true positive rate was marked as 77.0 percent. Although the rate 
was not low to some extent, selection of features and further 
collection of extra samples may improve the true positive rate. 

 
Table 3. Result of cross validation 

Yes No Total

Yes 1,044 312 1,356

No 918 24,235 25,153

Total 1,962 24,547 26,509

Test data

Number of vacant
housing units from
field survey result

Estimated number of
vacant housing units

Note: Accuracy rate = 95.4% (25,279/26,509); true positive rate
= 77.0% (1,044/1,356);  false positive rate = 3.7% (918/25,153)

 
 

Figure 4. Geographical distribution of error ratio per 500-meter grid cell 
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Geographic distribution of vacant houses further enabled us to 
check the difference between the actual and estimated number of 
vacant houses. Although the estimated number of vacant houses 
was likely to be higher than the actual ones, 80 percent of the grid 
cells keep the differences up to 10 and are below 5 percent of the 
error ratio. 
 
For further improvement in promoting a smart city framework, 
we think of changing the ratio between training and test data sets, 
site specific training data extraction and extrapolation to other 
municipalities. In this study, we put 70 percent of the original 
data set as training data and the rest, which is 30 percent, as test 
data. While this study achieves high accuracy in vacant housing 
detection, it can be done by decreasing the ratio of training data. 
City officers can reduce the extent of field surveys if a small 
amount of supervised data is sufficient. Moreover, in case the 
model achieves high accuracy using the restricted area as training, 
field survey can be further simplified. By conducting a survey of 
specific areas in the city, we can extrapolate the geographic 
distribution of vacant houses. Lastly, once the model is built, we 
consider applying it to other municipalities. To confirm the extent 
of the model’s prediction accuracy in other jurisdictions, a more 
generic model can be built, which would allow us to expand the 
model geographically. With the increasing use of closed 
municipal data, we expect that similar models will be developed 
for efficient execution of public works. 
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