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ABSTRACT: 

 

Ambient air pollution continues to be a major human health burden around the world. Cities with existing smart data infrastructure, 

and those with smart city aspirations, would benefit from the integration of real-time data from an air quality sensor network. 

AirSENCE™ is one such sensor which monitors eight common pollutants at low cost. It has been deployed in Canada in cities of the 

Greater Toronto Area, e.g. the City of Oshawa, to augment the existing urban data network and study the impacts of traffic flow and 

land usage on air quality. Results reveal that distributed sensors are highly useful for detecting localized pollution events that would 

otherwise go undetected, providing policymakers with a valuable, actionable data for protecting public health. Coupling air quality 

sensors with other smart city data (traffic monitors in this case) was shown to provide a more comprehensive representation of how 

air pollutant levels are affected by human activity, which can better inform city planning decisions.  
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1. BACKGROUND 

1.1 Air Pollution Today 

Although great strides in air emissions mitigation technologies 

have been made in recent decades, air pollution remains a 

serious threat to public health around the world. Estimates of 

the number of premature deaths attributable to particulate matter 

less than 2.5 µm in diameter (PM2.5) in outdoor air worldwide 

vary between 4.2 million for 2016 (WHO, 2018) to 8.9 million 

for 2015 (Burnett et al., 2018). Out of these numbers, roughly 

nine-tenths are believed to have occurred in low- and middle-

income countries (WHO, 2018). Other studies point out that 

PM2.5 does not fully account for the apparent mortality risk 

correlated with ambient pollution exposure, and that nitrogen 

dioxide (NO2) and ozone (O3) also contribute significantly 

(Crouse et al., 2015; Turner et al., 2016; Lelieveld et al., 2020). 

All three of these pollutants are well-known to contribute to 

cardiovascular and respiratory illnesses, as well as cancer. A 

growing body of research indicates that these may just be the 

most conspicuous health effects, and that air pollution can 

potentially impact many of the body’s organs and affect 

everything from fertility rates to cognitive development to how 

well we sleep (Graff Zivin, Neidell, 2018; Schraufnagel et al., 

2019). Perhaps even more distressing in light of recent world 

events, there is evidence that air pollution may not only increase 

our susceptibility to communicable pathogens (Cui et al., 2003) 

but can also potentially enhance the infectivity of virus particles 

(Groulx et al., 2018). The need for governments to measure air 

pollution accurately and proactively disseminate the results to 

the public is thus readily apparent.  

 

1.2 Motivation for More Sampling Sites 

Most cities in the developed world have at least one ambient air 

monitoring station which continuously samples and analyses air 

for locally relevant pollutants. While these stations use 

standardized sensors that are up to the task, their initial and 

operational costs and level of sophistication can restrict how 

widely they are deployed.  

 

Studies of the sources, effects, and mitigation strategies of 

urban air pollution are only as good as the data they rely upon. 

Regulators attempting to introduce intervention strategies to 

control pollutant levels must be assured that the information 

they are provided is as reliable and accurate as possible, thus the 

sparseness of monitoring stations becomes problematic. While 

various dispersion models exist that can be used to predict 

pollutant levels at specific locations (Beelen et al., 2013; 

Siemens, 2013) their reliability is only as good as their input 

data. Real-world applications must rely on real-world 

measurement data (Berkowicz et al., 2006). In particular, a lack 

of roadside data introduces uncertainty for regulatory bodies 

attempting to introduce pollution mitigation strategies and 

makes it virtually impossible for them to evaluate the efficacy 

of regulations already in place (HEI, 2010). 

 

1.3 Application of Actionable Air Quality Data 

Sensor-network based assessment of air quality is growing 

rapidly but application of the resulting data is lagging. The 

literature contains much speculation and forecasting with 

regards to potential uses for this data, but discussion of tangible 

applications that have been implemented or are currently 

underway are lacking. Those that have been reported tend to 

consist of promoting public awareness for informed decision 

making. Clements et al. (2017) reported on a program in 
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California’s Imperial County in which a network of 40 low-cost 

air quality sensors are used to create a publicly accessible web-

platform called IVAN (Identifying Violations Affecting 

Neighborhoods). The program provides real-time measurements 

of PM2.5 and particulate less than 10 µm in diameter (PM10) and 

makes recommendations regarding outdoor activity levels based 

on this data (IVAN, 2020).  

 A number of comparable citizen science projects have been 

initiated in Europe. Citi-Sense-MOB utilized low-cost sensors 

mounted on bicycles, automobiles, and public transit vehicles in 

Oslo, Norway to continuously transmit air quality data to 

servers (Castell et al., 2016; Schneider et al., 2016). This data 

was then combined with that obtained from models and 

monitoring stations to provide citizens with detailed air quality 

information via web and mobile applications. In Zurich, 

Switzerland, Mueller et al. (2016) similarly used data from low-

cost PM sensors to produce models that generate minimal 

exposure routes for cyclists. This study was part of the 

OpenSense project, which is a community-based initiative to 

monitor urban air pollutants using wireless sensors. In several 

European countries, EveryAware was introduced as a means of 

engaging citizens to help collect real-time data for 8 pollutants 

(Loreto, 2014). The sensors were housed in a box which fits 

inside a small pack along with a battery for power; results were 

coupled to the user’s Smartphone via Bluetooth, then sent 

automatically to a central server for public access. 

  

Actionable air quality data refers to that which can be directly 

applied by industries, governments, and regulatory bodies to 

develop strategies, aid in decision making, and invoke reactive 

measures. One example is the use of distributed air quality 

sensor network data for intelligent traffic control. Siemens 

(2013) initiated the Sitraffic Scala/Concert system in Potsdam, 

Germany in 2013. Incorporating meteorological data and 

measurements of NO2 and PM10 into the city’s traffic 

management system, traffic flow can be optimized in such a 

way as to reduce levels of NO2 and PM10. A similar European 

Space Agency development project called the Urban Traffic 

Management and Air Quality project (uTRAQ) has been 

demonstrated at three sites in England (Kettel et al., 2015). This 

project also incorporated earth observation to assess the impact 

of non-traffic sources and non-local “imported” air pollution. 

Both of these projects could stand to benefit greatly from the 

increased real-time data made available through a network of 

comprehensive air quality sensors distributed across their 

respective testing sites. The input of comprehensive real-world 

measurements would enhance the reliability of the traffic 

control strategies while helping to verify the efficacy of the air 

pollution models. 

 

This study evaluated the performance of low-cost ambient air 

pollutant sensors by comparison with reference monitoring 

stations. The efficacy of distributed sensor networks for 

detection of local-scale air pollution events was evaluated, as 

was the interdependence of air pollution data with other Smart 

City data. The overall objective was to illustrate how distributed 

air quality monitoring can aid municipalities in obtaining 

actionable data for informed decision making. 

 

 

2. AIRSENCE™: A CANADIAN APPROACH 

2.1 Introduction to AirSENCE™ 

AirSENCE™ (Air SENsor for Chemicals in the Environment) 

is a compact and low-cost air monitoring product conceived of 

by the Southern Ontario Centre for Atmospheric Aerosols 

Research (SOCAAR) at the University of Toronto and jointly 

developed with A.U.G. Signals Ltd. (AUG). It incorporates a 

multi-parameter sensor array with machine learning-based 

signal processing and data fusion to provide an industrial 

Internet of Things (IIoT) sensor network.  

 

AirSENCE™ actively draws air from the surrounding 

environment through a chamber in which an array of pollutant 

sensors is housed. The sensors take measurements continuously 

and average them every 2 minutes, at which point the results are 

transmitted to a host server for processing and online display. 

This system was designed for measurement of typical ambient 

air pollutants, i.e. NO2, O3, PM2.5, and PM10, as well as nitric 

oxide (NO), carbon monoxide (CO), sulphur dioxide (SO2), and 

carbon dioxide (CO2). Integrated metrics such as Air Quality 

Index (AQI) and Air Quality Health Index (AQHI) are also 

computed based on the user’s geographic location.  

 

Each AirSENCE™ unit is pre-configured with the operational 

coefficients provided by the manufacturer for every individual 

air pollutant sensor. The devices are then rigorously tested in an 

outdoor environment alongside industry standard air monitoring 

equipment for a period of no less than two weeks. Final 

calibrations are done based on comparison of sensor output data 

with that of reference instruments. After field installation, 

machine learning algorithms on the server side facilitate 

hardware maintenance by actively correcting for sensor drift 

and issuing alerts for abrupt changes that are interpreted as 

possible sensor failures.  

 

2.2 GTA Satellite Smart City Project 

One of the GTA satellite cities—a municipality of more than 

720 thousand inhabitants in the Greater Toronto Area (GTA)—

was chosen for this study because of its commitment to 

engaging the community, citizens and industry leaders to its 

Smart City endeavour, which uses data and communication 

technologies to create sustainable economic development, 

increase operational efficiency, improve the quality of 

government services and make improvements to community 

life. In 2018, the city initiated a pilot project with AUG and 

SOCAAR to deploy AirSENCE™ units in strategic locations 

throughout the city as part of the City’s recently installed smart 

city infrastructure to inform residents of air quality at the 

regional level with higher spatial resolution. Data gathered from 

across the city during this project is beneficial for assessing air 

quality impacts as well as reforming health, land use, 

transportation and other policies. 

 

Six sites were selected to represent a variety of land uses and 

strategic monitoring areas (Figures 1 and 2). Among these are: a 

busy intersection near a cement plant, two school pick-up/drop-

off zones, an intersection nearby to a major airport, a city- 

 

  
  

Figure 1. AirSENCE™ units in the GTA Satellite Smart City. 
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Figure 2. Locations of AirSENCE™ devices S1–S6 in the GTA 

Satellite Smart City, Ontario. 

 

operated public event space, and near a regional air monitoring 

station. At each site, the AirSENCE™ unit was installed on an 

existing light or traffic signalling pole at a height of 3 m. Raw 

sensor data was transmitted via Ethernet and wireless 

infrastructure previously installed by the Satellite City to 

provide capacity for Smart sensors.     

 

2.3 TeachingCity Oshawa Initiative 

TeachingCity Oshawa is a collaborative effort between the City 

of Oshawa and its education and research partners focused on 

addressing urban issues with real-world, sustainable solutions 

while fostering innovative educational projects. AUG and 

SOCAAR are working with the Oshawa to better understand the 

relationship between air quality and traffic movement in the 

city’s downtown centre. Analysis of these data will help the 

City assess the impact of traffic priorities in the downtown core 

and how changes affect both air quality and traffic patterns. 

Findings will also help the City identify opportunities to 

improve the pedestrian experience in the downtown. 

 

Four AirSENCE™ units were installed around the perimeter of 

a city block in downtown Oshawa (Figures 3 and 4). Co-located 

with these devices were four North Line FOX radar systems to 

quantify passing vehicles and characterize them based on 

length. Each pair of AirSENCE™ and FOX units is located on a 

one-way street to facilitate the analysis of traffic flow and 

pollutant levels. The devices were installed at a height of 3 m on 

light or traffic signalling poles, and the sensor readings were 

transmitted to the server via 3G cellular network. 

 

  
  

Figure 3. AirSENCE™ units in downtown Oshawa. 

 
 

Figure 4. Locations of AirSENCE™ devices O1–O4 in Oshawa, 

Ontario. 

 

 

3. ANALYSIS OF AIR QUALITY SENSOR READINGS 

3.1 Observations from the GTA Satellite Smart City 

Sensors 

Figures 5 and 6 show hourly averaged diurnal patterns for O3 

and NO2 concentrations from the six AirSENCE™ devices 

across the GTA Satellite City for weekdays during the month of 

August 2019. Hourly averaged reference measurements from 

the nearest ambient air monitoring station are overlaid. 

Weekend periods were not included in the averaging calculation 

as the intention was to capture the normal weekday cycles of O3 

and NO2 due to rush hour traffic. 

 

Figure 5 indicates that AirSENCE™ measurements across the 

city substantially capture the daily trends of O3 concentration as 

measured by the reference station. O3 is a secondary pollutant 

produced through reaction of other pollutants in the atmosphere 

in the presence of UV light, thus it is generally well-dispersed 

on a regional scale. This is demonstrated by the general 

agreement in O3 measurements observed, although differences 

across the AirSENCE™ and reference measurements can be 

seen, particularly at the daily peaks and valleys, and are 

quantified as relative mean absolute error (RMAE) as defined in 

Equation 1: 

 

 𝑅𝑀𝐴𝐸 =

1
𝑛
  𝑋𝑖 − 𝑅𝑖 
𝑛
𝑖=1

𝑅𝑚𝑒𝑎𝑛
=
𝑀𝐴𝐸

𝑅𝑚𝑒𝑎𝑛
 

 

(1) 

 

Where Xi = measured pollutant concentration at time i 

 Ri = reference pollutant concentration at time i 

 Rmean = mean reference pollutant concentration 

 n = number of data points 

 MAE = mean absolute error, 

 

These differences are in part be due to measurement errors 

stemming from the inherent difficulties of measuring O3 with 

low-cost sensors, and recent developments have effectively 

mitigated these. 
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Considerably greater divergence is seen for AirSENCE™ NO2 

measurements in different parts of the city (Figure 6). This is 

consistent with NO2 being more heterogeneous, generally 

peaking in cities near busy roadways and industrial sources, and 

diminishing rapidly with distance (Beckerman et al., 2008; 

Gordon et al., 2012; Baldwin et al., 2015). This is evident 

through the higher RMAE values of NO2 as compared with 

those of O3. Even Device S1, which is located a relatively short 

distance of 320 m from the reference station, shows a high 

difference with the reference NO2 data. Greater variability in 

NO2 concentration are expected across urban areas, which 

highlights the need for distributed air quality sensor networks 

where localised pollutant measurements are needed.  Of note are 

the higher morning rush hour concentrations at sites S3 and S5 

which are located on busy roads. 
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Figure 5. Hourly averaged O3 concentrations based on AirSENCE™ and reference measurements for weekdays in the month of 

August 2019 in the GTA Satellite Smart City, Ontario. Relative mean absolute errors are indicated for each AirSENCE™ device. 
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Figure 6. Hourly averaged NO2 concentrations based on AirSENCE™ and reference measurements for weekdays in the month of 

August 2019 in the GTA Satellite Smart City, Ontario. Relative mean absolute errors are indicated for each AirSENCE™ device. 

 

Even for pollutants which tend to vary on a regional level, local 

hotspots can occur at or near point sources of emissions. These 

events, which may or may not be short-lived, often go 

undetected by ambient air quality monitoring stations. Examples 

of this are illustrated by Figures 7 and 8, which show levels of 

PM2.5 and CO for the six AirSENCE™ installations in the GTA 

Satellite Smart City. Device S4 is located nearby to the city’s 

open-air public venue used for many festivals and events. In the 

month of July 2019, this device detected notable spikes in local 

air pollutant levels that were otherwise unobserved. The timing 

of these pollution events coincided with events known to have 

occurred at this location. In these cases, the sources of 

pollutants can be traced to fireworks (as in the Canada day 

celebrations on July 1), food trucks and diesel generators (a 

cultural festival on July 6–7), and the use of small combustion 

engines (a timbersports competition on July 25–27). In other 

locations primary factors may include construction projects, 

heavy truck traffic, and industrial activities. 

 

Municipalities often have limited control over the usage of 

public infrastructure like major roadways and privately owned 

parking lots; decisions on how these are used tend to be the 
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jurisdiction of different authorities. The public events square, on 

the other hand, is an example of where the City has the ability to 

take actions based on data obtained by Smart City technologies. 

Data clearly indicating the presence of locally significant 

pollutant plumes originating from particular events can readily 

be used by policymakers to implement regulations in the 

interest of public safety. Examples might include stipulations 

regarding the placement of diesel generators or heightened 

enforcement of idling bylaws. 

 

3.2 Observations from Oshawa Sensors 

In Figure 9, levels of PM2.5 are compared with reference data 

measured at the nearest ambient air quality monitoring station, 

located approximately 7 km north of the AirSENCE™ sensors. 

  

0

10

20

30

40

50

60

70

80

90

P
M

2
.5

C
o

n
ce

n
tr

a
ti

o
n

, 
µ

g
/m

3

S1 S2 S3 S4 S5 S6 Reference

 

 

  

Figure 7. PM2.5 concentrations based on AirSENCE™ and reference measurements for the month of July 2019 in the GTA Satellite 

Smart City, Ontario. 
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Figure 8. CO concentrations based on AirSENCE™ measurements for the month of July 2019 in the GTA Satellite Smart City, 

Ontario. (CO measurements unavailable from the reference station) 

 

 

The four AirSENCE™ units located in downtown Oshawa 

agree extremely well with one another and—in general—with 

the reference instrument at the ambient air quality monitoring 

station. It can be seen that all four AirSENCE™ readings 

occasionally display peaks which were not observed by the 

reference. Unlike the instances shown in Figures 7 and 8, these 

peaks do not correspond with any known man-made sources or 

events in Oshawa that could explain their presence. These peaks 

do, however, tend to coincide with stormy and/or foggy 

conditions, which illustrates a known shortcoming of the optical 

sensors used: they tend to overshoot under high-humidity 

conditions. Similar instances of high PM2.5 readings that were 

consistent among AirSENCE™ units but not observed by the 

reference station can be seen in Figure 7 for the GTA Satellite 

Smart City during the month of July. AUG and SOCAAR are 

currently working to implement humidity compensation to 

improve the PM2.5 readings using humidity measurements of 

AirSENCE™. 

 

Traffic data obtained using North Line’s FOX systems were 

compared at three locations with average hourly levels of CO2 

monitored by the AirSENCE™ units for weekdays during the 

Canada Day 

celebration 

Timbersports 

competition 

Cultural festival 
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period of August 12 to September 25, 2019 (Figure 10). At each 

location, CO2 levels spiked between 8 and 9 AM on weekdays, 

consistent with the morning rush hour. Traffic levels were not 

observed to diminish throughout the day in the downtown core 

of Oshawa, thus it might be expected that pollutants associated 

with vehicle exhaust would remain at elevated concentrations. 

This was not the case, though, as CO2 was found to decrease to 

concentrations even lower than those measured overnight.  

 

Pollutant concentrations also depend greatly upon local 

meteorology. Figure 10 compares the same weekday CO2 trends 

with averaged hourly windspeed over the same time period. It 

can readily be seen that, on average, windspeeds increased to 

nearly double their overnight levels in the early afternoon then 

diminished by late evening, inversely to CO2 concentration. It is 

thus apparent that higher average windspeeds during daytime 

hours prevent emitted pollutants—which, for the case of 

vehicular exhaust, include CO, NO, and NO2 in addition to 

CO2—from concentrating near the point of emission. 
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Figure 9. PM2.5 measurements based on AirSENCE™ and reference measurements for the period between August 1 and October 31, 

2019 in Oshawa, Ontario 
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Figure 10. Comparison of average hourly CO2 levels with total observed hourly traffic density (left) and averaged hourly windspeed 

(right) for weekday periods for device O1 during the period of August 12–September 25, 2019. Highly similar results were found at 

each of the four monitoring sites. 

 

These findings demonstrate that predicting when and where air 

pollution events occur is not necessarily a simple matter of 

identifying potential sources, e.g. rush hour traffic, festivals, etc. 

Based on traffic counting data alone, a city such as Oshawa may 

determine that the best course of action to reduce pollution 

exposure in the downtown area is to restrict vehicular access 

throughout the day—this would be burdensome for both 

commuters and local businesses. Combining real-time air 

monitoring sensors along with traffic counters would empower 

decision makers to assess the optimal times of day to enforce 

traffic controls without subjecting the public to excessively 

strict guidelines.  

 

 

4. CONCLUSIONS 

Distributed air quality sensor networks were installed in two 

cities within the Greater Toronto Area in Ontario. For the case 

of the GTA Satellite Smart City project, good agreement was 

generally found between the six installed devices and the City’s 

ambient air monitoring station for regional scale pollutants, 
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effectively demonstrating the validity of the sensor 

measurements. From the standpoint of actionable air quality 

data, however, the more beneficial measurements are those of 

local-scale pollutants (e.g. NOX) and pollution events that 

cannot be reliably monitored with sparsely distributed 

monitoring stations. Given the known impacts of air pollution 

on human health, detection of such events should be an 

important component of a smart city’s data usage strategy.  

 

The example of Oshawa showed that air monitoring data can 

readily supplement that of other widely used smart city sensors 

such as traffic counters. Conventional data provides very useful 

information, but this is just a piece of a larger puzzle; with 

localized air quality data, city planners and regulatory agencies 

can make better-informed decisions for projects that involve 

public health considerations such as traffic mitigation, heavy 

construction, and urban renewal efforts.  

 

The studies discussed here demonstrate the effectiveness of 

AirSENCE™ as a tool for providing cities with actionable air 

quality data, however there are areas for improvement. Current 

research efforts are effectively mitigating the measurement 

issues described above, such as disagreement with reference 

measurements for regional-scale pollutants and positive 

interferences in PM readings due to high humidity levels. These 

improvements are being implemented and fine-tuned as of the 

writing of this paper and will be incorporated into all future 

iterations of AirSENCE™.  

 

There exists great potential for enhanced geospatial 

visualization of air pollutant locations and patterns based on 

AirSENCE™ data. Forthcoming research will incorporate this 

data into time-average land use regression models to enable 

interpolation of concentrations surfaces based on parameters 

such as traffic density, population, green space, and industrial 

activity. This modelling will not capture day-to-day temporal 

variability such as the episodes noted in Figures 7 and 8. 

Predictions of ambient pollutant levels will also become 

possible using machine learning techniques as more historical 

data is accumulated by the AirSENCE™ units. The adoption of 

open source data platforms, such as OGC SensorThings API, 

will be investigated to facilitate easier interoperability with 

complementary Smart City data.      
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