
SEASONALITY DEDUCTION PLATFORM: FOR PM10, PM2.5, NO, NO2 AND O3 IN
RELATIONSHIP WITH WIND SPEED AND HUMIDITY

Shubhi Harbolaa, b ∗, Volker Coorsb

a University of Stuttgart, Stuttgart, Germany - Shubhi.Harbola@ieee.org
b University of Applied Science, Stuttgart, Germany - (Shubhi.Harbola, Volker.Coors)@hft-stuttgart.de

Commission IV

KEY WORDS: Interactive platform, agglomerative clustering, cities planning, seasonality, unsupervised classification, dendrogram,
pollution parameters, visual analytic, meteorological data, Spearman rank

ABSTRACT:

Human and ecosystem health is affected by the risk of air pollution. A comprehensive understanding of the parameters generating
pollution and governing their nature in time is essential to devise functional policies focusing on minimising the concentration of the
pollutants. The effect of pollution parameters on meteorological data and existing in between relationships, have been the focus of
the researcher’s planning of better city future. Thorough study of resources utilisation is required for contributing to framing effective,
sustainable development, government policies management, and advance public services convenience. For protecting the environmental
quality, renewable resources like solar and wind are more incorporated in techniques supporting better city planning. This paper
considers the hourly time series Particular Matter (PM) PM2.5 and PM10, Nitrogen Oxide (NO), and Nitrogen Dioxide (NO2), and
Ozone (O3) along with measured wind flow and humidity. This study’s objective is to assess the temporal seasonality patterns of these
parameters in Stuttgart, Germany. The temporal variations over the city center in Stuttgart are analysed using unsupervised approach
to perform seasonal hierarchical clustering on a series of parameters NO, NO2, O3, PM10, and PM2.5, wind speed and humidity.
Furthermore, the correlations between meteorological and pollution parameters are analysed using the Spearman rank correlation
method. Moreover, a dashboard is developed to provide the user desired time frame visualisation of these parameters. Proposed
work would provide empirical meaning and seasonality comparison among the above mentioned parameters combined with interactive
dashboard support. The analyses of the presented results clearly demonstrates the relationship between air pollutants, wind, humidity
together in combine temporal activities frame. Thus, it would help city planner and policies maker with advanced knowledge of
seasonality for meteorological and pollution parameters conditions.

1. INTRODUCTION

The human activities not only contributed to the lifestyle advance-
ment and developments, meanwhile also to pollution, and change
in the climate as byproducts. Very small aerial pollutants are dis-
charged from the chimneys, industrial waste, vehicle smokes, and
construction sites, that can be inhaled with the air leading to heart
diseases, lung and respiratory problems all over the world. The
traffic-related pollutants like Particular Matter (PM) PM2.5 and
PM10, Nitrogen Oxide (NO) and Nitrogen Dioxide (NO2), and
Ozone (O3) remain at a high level. The air quality is affected
by, NO, NO2, O3, PM10, PM2.5 and their atmospheric concentra-
tions. The lung tissue damage, cardiovascular and chronic respi-
ratory diseases, could be hassled by coming in exposure to PM10

and PM2.5 i.e., particles with aerodynamic diameters less than
10 and 2.5 µm, respectively (Chen and Zhao, 2011). Over the
urban areas, the elevated levels of pollution parameters are in-
corporated with both local emission sources and regional trans-
portation (Chen and Zhao, 2011, Jasen et al., 2013). Regional
transportation with diesel vehicles are the main sources of par-
ticular matters and contribute a significant portion to their levels
(Wallace and Hobbs, 1977, Hardin and Kahn, 1999). Many stud-
ies have been performed to discover the seasonality of the pol-
lution parameters along with the meteorological datasets, e.g.,
wind speed, wind direction, temperature, humidity, precipitation,
pressure. Some existing literature concluded that when the wind
speeds are lower than 3.5 m/s, and the temperature higher than
21.1 °C than often high concentrations of PM10, and PM2.5 were
detected with reference to a study of PM in Ohio USA (Fraser et
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al., 2003, Arthur and Owen, 2003). Moreover, some emphasised
on deriving that pollution parameters are correlated to humidity
and wind flow during winter (Elminir, 2005). Hien et al. show
that wind speed, and temperature highly control the concentration
of particulate matter (Hien et al., 2002). Few studies link pol-
lutant characteristics to the meteorological parameters as, with
wind effects and humidity again (Garrett and Casimiro, 2011).
Several above discussed studies used smoothening and filtering
techniques, ignoring the data noise and modifying the originality
of temporal dataset. The comprehensive study of meteorological
parameters and their contribution to PM10-2.5, NO, NO2, O3 are
poorly understood. Above research suggests that there is still a
number of questions that remain to be addressed such as tempo-
ral wind nature and pollution parameters correlations, how hu-
midity governs the PM10-2.5, and NO, NO2, O3 relationships for
user desired time frame, without modifying the authenticity of
the original temporal dataset, remain to be addressed. A better
insight into the system by improving human interaction with the
meteorological data (Harbola and Coors, 2018) in relationship
with pollution parameters. Thus this motivates for this proposed
research. The problem of air pollution has caused considerable
public concern in Stuttgart (Germany). Therefore, investigations
into the spatio-temporal variation of concentrations of PM and
gaseous pollutants across Stuttgart are necessary and essential.
To keep track of the mass concentrations of PM10-2.5, NO, NO2,
O3 have been monitored in all important cities of Germany. Data
from provincial and more effective center weather monitoring in
Stuttgart were selected. Temporal variations of meteorological
and pollution parameters were assessed and their trends of vari-
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ation between each other with respect to time for Stuttgart were
investigated. Thus, unsupervised hierarchical clustering and cor-
relation method which work on the original temporal datasets by
taking into consideration the above listed gaps, are still required.
Therefore the current study proposes hierarchical clustering and
Spearman rank correlation method with the following contribu-
tions: (i)in depth temporal analysis of pollution and meteorolog-
ical parameters using hierarchical clustering method, without ap-
plying any smoothing and noise removal technique on the col-
lected temporal dataset, (ii) the time-frame of analysis is user-
defined, (iii) dendrogram and heatmap temporal dataset visualisa-
tion to highlight the behavior of these parameters and to enhance
accuracy, and (iv) comparative study of the pollution parameters
and their effects with interactive dashboard view. The proposed
work would provide foreknowledge of meteorological parameters
nature in relationship to pollution parameters of an area, thereby
helping and supporting in optimal selection of green sites with
highlighting and tuning the air pollution quality. This would en-
courage more utilisation of renewable energy for safe and better
city planning, which in turn would help for efficient management
and development of the city’s green resources. The increasing air
pollution in big industrial cities would be alarmed and reduced for
the future with this analysis. The remaining paper is organised as
follows, proposed methods and datasets employed are discussed
in section 2 and section 3, respectively, section 4 demonstrates
the results and discussion, followed by conclusion in section 5.

Di,j = D(Ai, Aj) = ||Ai −Aj||2 (1)

ρ = 1−
6
∑

d2i

n(n2 − 1)
(2)

2. METHODOLOGY

The proposed method analysed seasonality in seven parameters
using hierarchical clustering and Spearman rank correlation. Ini-
tially, values of each parameter are preprocessed before apply-
ing the clustering. The preprocessing involves normalising of the
data followed by temporal filtering. The mean and standard de-
viation of a parameter are calculated. The values of a parameter
are then subtracted by mean, followed by division with standard
deviation, to get the normalised value. Further, the temporal fil-
tering is applied on these normalised values. In the current study,
the temporal filtering based on four quarters in a year is applied.
First-quarter Q1 is spring (March to May), second-quarter Q2 is
summer (June to August), third-quarter Q3 is autumn (Septem-
ber to November), and fourth-quarter Q4 is winter (December
to February). These four time quarters division help in depth
seasonality analysis of the considered seven parameters. Unsu-
pervised agglomerative hierarchical clustering is applied on the
temporal dataset (values) of a quarter (i.e. output of temporal fil-
tering). The proximity matrix in hierarchical clustering helps in
identifying the similarity of the clusters and combines most sim-
ilar clusters hierarchically until the desired number of clusters
are obtained. Ward’s method in hierarchical clustering minimises
the variance within the cluster by using the objective function
of the error sum of squares (Ward, 1963). The pair of clusters
that leads to a minimum increase in total within cluster variance
after merging is searched. This increase is a weighted squared
distance (D) between cluster centers (Ai, Aj) as shown in equa-
tion. 1 (Cormack, 1971). In order to provide more detailed com-
parison and seasonality trends analysis, each quarter is consid-
ered for all the parameters. This has been divided into two sets of
15 days starting and 15 days back in each quarter of a year. The
sum of the squares starting from the clusters found by Ward’s
method is kept minimised. This gives a hint through the merging
cost. The number of clusters is kept reducing until the merging

cost increases and then used the cluster number, right before the
merging cost increased simultaneously (Paul and Murphy, 2009).
Moreover, a dendrogram is used to obtain the final number of
clusters as k. The dendrogram is a technique of agglomerative
hierarchical clustering that gives a tree-like diagram that records
the sequences of merges or splits. In addition Spearman rank
correlation analysis between the meteorological and pollution pa-
rameters helps to derive the relationship among these parameters.
Spearman rank correlation is defined in equation. 2, where d2

represents square the difference, ρ is the correlation coefficient,
n is the number of measurements, and k is the number of clusters.

Moreover, an interactive dashboard is developed to provide an
in depth analytic and seasonality patterns clarity in between the
meteorological and pollution parameters for user desired inputs
in the four time quarters. This dashboard is called as seasonality
analysis kit. The user could select the parameters over the desired
time frame and compare the patterns interactively. The interactive
dashboard is still in the first phase and would be more refined in
future work. The developed work provides a comprehensive un-
derstanding of the relationship among the pollution parameters
like NO, NO2, O3, PM10, PM2.5, and the meteorological parame-
ters wind flow and humidity.

3. DATASET

Stuttgart pollution parameters and meteorological temporal datasets
are used in this study. In the corner of Hauptstaetter Strasse
70173 Stuttgart, the historical data from 2015 to 2019 are taken
from central Stuttgart station sensor1. This dataset contains the
wind speed and direction and humidity along with NO, NO2, O3,
PM10, PM2.5, with temporal information attached in a 30-minute
time interval. Amongst multiple values of a parameter in a sin-
gle day, the mean value is considered in this study. The areas
dataset is organised separately into an individual month by using
time information, with past data first, followed by current data
then subdivision into four considered quarters Q1, Q2, Q3, and
Q4. This helps to perform pollution parameters and meteorologi-
cal temporal datasets seasonality test and in depth analysis.

Figure 1: Annual humidity data value per day over the years
(2015 to 2019).

4. RESULTS

The proposed seasonality analysis was implemented using Python
and executed with four cores on Intel® Core TM i7- 4770 CPU
@3.40 GHz. Stuttgart’s 2015 to 2019 years of historical data
with a temporal resolution of 30 min was separated by month to
create monthly data over the years for both meteorological and
pollution parameters. Figure. 1 and Figure. 2, show the data val-
ues recorded in a day over the 2015 to 2019 years in a heat maps
representation for humidity and NO2 respectively. In these gen-
erated heat maps, the intensity of the color was governed by the

1https://www.stadtklima-stuttgart.de
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Figure 2: Annual NO2 data value per day over the years (2015 to
2019).

Figure 3: Dendrograms for selecting clusters in the temporal data
set (here humidity as a considered parameter).

magnitude of parameter values. A similar heat map display ex-
isted for other parameters as well. Selected parameter (anyone
i.e., wind speed and humidity along with NO, NO2, O3, PM10,
PM2.5), having higher values (range) over the time, had been as-
signed a darker color in the respective heat map. An unsupervised
approach was used to perform comprehensive seasonal hierarchi-
cal clustering on a series of meteorological and pollution param-
eters. The comprehensive analysis for seasonality was studied
based on four quarters (Q1, Q2, Q3, Q4) over the years. In per-
forming the hierarchical clustering, k was taken as 6. This value
of k was found empirically by performing some sensitivity tests,
like, (i) if the value of k was higher (i.e., number of clusters was
equal to the total values in a quarter) than the clustering outcome
was similar to Figure. 1 and Figure. 2, and this was not able to
represent the seasonality pattern, (ii) if the value of k was lower
(i.e., k = 1, 2, 3, 4), then also there was information loss, and iii)
the dendrograms were generated as an output from unsupervised
hierarchical clustering with the primary use to allocate objects to
clusters in the best possible way. Figure. 3 shows the obtained
dendrogram for selecting clusters (possible numbers) in the tem-
poral data set, where in this Figure. 3, e.g., the humidity was
considered. Similar parameter analyses were conducted for rest
of the parameters. Therefore k was taken as 6 in the present study.
The unsupervised hierarchical clustering here aimed at inferring
the inner structure and trends presented within the meteorological
and pollution data, trying to cluster them into six classes depend-
ing on similarities among them.

In order to provide a more detailed comparison and seasonality
trends analyses, quarter time frames were considered for all the
parameters. Further, a quarter was divided into two parts com-
prising of the first fifteen days and the last fifteen days in a month.
This helped in discovering all the possible changes in the quarter
for each of the considered parameter. The obtained outputs of
the in depth unsupervised clustering analysis performed for NO2,
where Figure. 4, and Figure. 5 give the clustering outputs for NO2

for first and last 15 days in Q1, and Figure. 6, and Figure. 7in

Figure 4: Clustering output for NO2 for first 15 days in Q1 over
2015 to 2019.

Figure 5: Clustering output for NO2 for last 15 days in Q1 over
2015 to 2019.

Figure 6: Clustering output for NO2 for first 15 days in Q2 over
2015 to 2019.

Q2 respectively. Similarly, Figure. 8, and Figure. 9 depict the
clustering outputs for NO2 for first and last 15 days in Q3, and
Figure. 10, and Figure. 11 in Q4 respectively. Like developed
hierarchical clustering, similar outputs were generated for other
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Figure 7: Clustering output for NO2 for last 15 days in Q2 over
2015 to 2019.

parameters in each respective quarters with the first and last fif-
teen days comparisons.

Further, the correlation analysis between the meteorological and
pollution parameters were done to enhance the probability of de-
riving the relationships among these parameters. Figure. 12 helps
to study the complex relationships among parameters very well.
In addition, the user could select the parameters over the desired
time frame and compare the patterns interactively with the help of
the developed dashboard. The screenshots of the proposed dash-
board are shown in Figure. 13, where wind speed (e.g., case) was
selected as a parameter with respect to Q1, Q2, Q3, Q4 over the
years to visualise seasonality. Similarly more parameters could
be selected from the seasonality analysis kit.

Figure 8: Clustering output for NO2 for first 15 days in Q3 over
2015 to 2019.

4.1 Discussion

The hierarchical cluster analyses for meteorological and pollution
parameters was to highlight the trends at which any given pair of
quarters (over the years) joined together in clustering diagram
with each class assigned specific color code. A sequential scale
of color brewer blues scale color map used for showing classes (0
to 5) with the color frequency differentiates low values class from
high values class. The blended progression using, typically of a
single hue, from the least to the most opaque shades, represents

Figure 9: Clustering output for NO2 for last 15 days in Q3 over
2015 to 2019.

Figure 10: Clustering output for NO2 for first 15 days in Q4 over
2015 to 2019.

Figure 11: Clustering output for NO2 for last 15 days in Q4 over
2015 to 2019.

low to high values. Each year dataset for the considered param-
eter over the four quarters that joined together sooner (in clus-
tering) are more similar to each other than those that are joined
together later. The total within-cluster variance is minimised dur-
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Figure 12: Correlation output between meteorological and pollu-
tion parameters.

Figure 13: Interactive dashboard for meteorological and pollution
parameters.

ing clustering. At each step, the paired clusters with minimum
between-cluster distance are merged. As a result it is observed
that NO and NO2 concentrations are high in Q3 autumn, and Q4

winter over 2015 to 2019 respectively (Figure. 8, and Figure. 9,
Figure. 10, and Figure. 11). Both are strongly correlated to each
other with similar trends over the years, also same can be seen
in the correlation graph in Figure. 12. Comparing Figure. 4 and
Figure. 5 provides that in Q1 there exits volatility in the first and
last fifteen days. From 3rd to 6th day during 2015 to 2019 there
exist a pattern with high NO2 concentrations. The same pattern
repeats again from 8th to 9th in 2016 to 2019 and on 14th in 2015
to 2018. However, in last fifteen days from 21st to 22nd, and 26th

to 27th for 2015 to 2019, low magnitudes of NO2 are measured for
Stuttgart. As shown in Figure. 6, and Figure. 7 from 12th to 15th

in Q2 NO2 concentrations are lowest during 2015 to 2017 and,
reached highest in 2018 to 2019. For last fifteen days from 16th

to 19th the concentrations reached highest during 2016 to 2019.
However, from 25th to 27th NO2 measurement was negligible in
2015 to 2018, with exceptional high concentrations during 2016
and 2019. The first and last days clustering output (in Figure. 8,
and Figure. 9) for Q3 from 8th to 10th recorded high values again
in 2017 to 2019. On the other hand from 17th to 23th NO2 concen-
trations are low for 2015 to 2018 but, measured highest in 2019.
Figure. 10, and Figure. 11 conclude that in Q4 from 8th to 10th

in 2015 to 2017 the concentrations are lowest and high in 2018
to 2019. Moreover, from 21th to 22th in 2015 to 2019 the NO2

concentrations approached highest again.

However, O3 concentrations are more in Q1 spring, Q2 summer,
and less in Q3 autumn with exceptional increase in Q4 winter dur-

Figure 14: Clustering output for O3 for first 15 days in Q1 over
2015 to 2019.

Figure 15: Clustering output for O3 for last 15 days in Q1 over
2015 to 2019.

Figure 16: Clustering output for O3 for first 15 days in Q2 over
2015 to 2019.

ing 2015 to 2019. These (above) statements also validates that
O3 and NO2 are negatively correlated to each other which also
supports the obtained correlation in Figure. 12. Further, O3 con-
centration analysis for Q1 has been shown in Figure. 14, and Fig-
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Figure 17: Clustering output for O3 for last 15 days in Q2 over
2015 to 2019.

Figure 18: Clustering output for O3 for first 15 days in Q3 over
2015 to 2019.

Figure 19: Clustering output for O3 for last 15 days in Q3 over
2015 to 2019.

ure. 15, where from from 1st to 3rd day concentrations are high-
est in 2016, 2018 and 2019. O3 concentrations approach lowest
from 27th to 29th in 2015 to 2019. As shown in Figure. 16, and
Figure. 17, in Q2 from 13th to 14th and 25th to 27th day O3 con-

Figure 20: Clustering output for O3 for first 15 days in Q4 over
2015 to 2019.

Figure 21: Clustering output for O3 for last 15 days in Q4 over
2015 to 2019.

centrations are highest in 2015 to 2019. During Q3 with reference
to Figure. 19, and Figure. 20, from 8th to 10th O3 concentrations
are lowest during 2015 to 2018 with measured highest in 2019.
From 26th to 27th the concentrations are increasing during 2015 to
2019. O3 variation in Q4 is shown in Figure. 20, and Figure. 21,
where O3 is high from 8th to 13th, 16th to 21st and 25th to 30th and
reaches highest in 2019. Moreover, humidity magnitudes are low-
est in Aug and then starts increasing from Sep i.e. in Q3 autumn,
to Q4 winter, over the years 2015 to 2019 as shown in Figure. 26,
and Figure. 27. This shows that humidity is negatively correlated
to O3 however, positively correlated to NO2 which also get justi-
fied by the correlation graph in Figure. 12. Humidity clustering
output delivered that in Q1 (in Figure. 22, and Figure. 23) from
10th to 12th, and 26 th to 27th the humidity measurements are high-
est in 2015 to 2019. As shown in Figure. 24, and Figure. 25 for
Q2 from 3rd to 4th, 9th to 11th, and 28th to 29th highest humidity
measured over 2015 to 2019. Moreover from 10th to 15th hu-
midity measured lowest in 2015 with sudden increasing spikes in
2016 to 2019 for Q3 (in Figure. 26, and Figure. 27). Similarly,
from 25th to 28th the humidity increased to highest during 2015
to 2019. With reference to Figures2, in Q4 from 10th to 14th, and
19th to 22st, respectively, measured humidity increased in 2015 to

2Due to the manuscript page limit, all the generated figures
are uploaded in the GitHub https://www.github.com/shharbola/

SDSC20_Images/
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2019.

Figure 22: Clustering output for humidity for first 15 days in Q1

over 2015 to 2019.

Figure 23: Clustering output for humidity for last 15 days in Q1

over 2015 to 2019.

Figure 24: Clustering output for humidity for first 15 days in Q2

over 2015 to 2019.

Moreover, wind datasets are highly volatile in nature over the
years 2015 to 2019. High magnitude wind speeds are recorded

Figure 25: Clustering output for humidity for last 15 days in Q2

over 2015 to 2019.

Figure 26: Clustering output for humidity for first 15 days in Q3

over 2015 to 2019.

Figure 27: Clustering output for humidity for last 15 days in Q3

over 2015 to 2019.

more during Q2 summer, Q3 autumn, to Q4 winter, with sud-
den high spikes are observed during the seasonal cycle changes
mostly in the months of Jan, Mar, Jul, Sep and Dec, as anal-
ysed with the help of figures2. These analyses devised that wind
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speed is positively correlated to NO2 however, negatively cor-
related to O3. In Q1 from 3rd to 7th, and 26th to 29th in 2015
to 2019 there exists pattern of low speed winds. Q2 first fifteen
days from 6th to 12th, and 27th to 30th wind speed keeps increas-
ing and reached highest with volatility in years 2015 to 2019.
Moreover, in Q3 wind speed frequently changes from mild to in-
creasing (also reached highest) magnitudes from 19th to 20th, and
26th to 29th in 2015 to 2019. Q4 from 8th to 14th, and 21th to
25th during 2015 to 2019 mild speed winds are measured. Fur-
thermore, PM concentrations are more in Q4 winter, and also in
Mar, May, and Jul concluded from generated clustering outputs
figures2. Analysing for Q1 from 1st to 15th, and 23th to 27th in
years 2015 to 2017 represents existence of highest PM10 con-
centrations with constantly increasing level however, with strong
ban policies for diesel and old vehicles use by the German gov-
ernment and other regulatory movement restrictions and climate
awareness, the PM concentrations are little controlled and re-
duced (comparison to earlier years) in 2018 and 2019. In Q2

from 13th to 15th PM10 concentration increased in 2015 to 2016
and reached highest during years 2018 to 2019. From 27th to 30th

high concentration measured in 2015 to 2016 and then reduced to
lowest in 2019 again during Q2. Furthermore, in Q3 first and last
fifteen days of clustering output there exists frequently chang-
ing PM10 concentration from lowest to increasing in 27th to 30th

with the concentration reached highest during 2015 to 2019. In
Q4 from 2nd to 4th, and 13th to 15th in 2015 to 2019 PM10 con-
centration measured highest. These interpretations (above analy-
ses conclusions) provide a quick facts-crosscheck supporting the
present alarming air quality situation in the Stuttgart city and re-
quirement of probable more control measures. In addition, per-
formed correlation analyses on pollution and meteorological datasets
helped to uncover the important interrelationships, and also jus-
tified clustering analyses outcomes. Figure. 12 contributes fol-
lowing important points: i) NO and NO2 are 77% positively cor-
related to each other, with 27% positively correlated to PM10-2.5,
and negatively correlated to wind speed by 53%, ii) O3 is 50%
positively correlated to wind speed, 77% negatively correlated
to NO and NO2, and 27% negatively correlated to PM10-2.5, iii)
Humidity is 27% positively correlated to NO and NO2 and 50%
negatively correlated to O3, iv) wind speed is 27% negatively cor-
related to PM10-2.5, and v) PM10, and PM2.5 are positively corre-
lated to each other with more than 87%. Moreover, the developed
seasonality analysis kit is used to provide interactive selections
of considered meteorological and pollution parameters to anal-
yse the concurred pattern in the dataset, in a time based frame
over the years. Currently, the designed dashboard is in it’s first
phase with color based clustering display for each quarter over
the years. This has helped in making the seasonality analyses
tests easy, user interactive and comparable in the time domain.

5. CONCLUSION

Meteorological data have been the attention of the researchers of
the smart city planning for thorough utilisation and management
of resources, which help in effective government management,
convenient public services, and sustainable industrial develop-
ment. Using renewable energy supply would provide a healthy
and amiable city, and increased welfare in more general terms.
To ensure incorporation into the planning process, the renovation
of the existing planning is indeed the most promising field for
climate-related intervention. From a designer’s perspective, the
authors have stressed the need to include energy-conscious strate-
gies to improve environmental quality. The integration of new
knowledge, innovative technologies in sustainable transformation
is the motive of this paper. The interpretations (above analy-
ses conclusions) provide a quick facts-crosscheck supporting the
present alarming air quality situation in the city and requirement

of probable more control measures. The interactive dashboard
seasonality analysis kit of meteorological and pollution parame-
ters would help to plan the future with more green policies. De-
signed dashboard in this work could be further improved with the
ensemble of more parameters with more historical data set. The
future focus for the authors would be to improve the analysis and
utilising the outputs on interactive visual analysis dashboard web
applications. Moreover, use of other methods like decision trees,
neural networks and association rules, would be explored in sub-
sequent research works for in-depth understanding of temporal
relationships amongst the parameters. Meanwhile, the devised
seasonality analysis of meteorological and pollution parameters
over the years has the potential for selecting better government
supported green policies and creating environmental awareness
among humankind, and moreover, provide a foreknowledge for
better city planning.
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