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ABSTRACT: 

 

Extreme rainfall events pose an ever increasing threat to cities due to the potential for surface water flooding resulting in damage to 

properties and major disruption of transport systems. Modern sensor networks offer enormous potential for the real-time monitoring 

of urban systems and potentially allow improved situational awareness of impeding hazards and their impacts such as flooding. 

However, monitoring in itself is not enough if we are to be able to adapt in in real-time to hazards. Systems are required that allow 

analytics and models, that feed of real-time observations, to make predictions of impacts and suggest adaption options ahead of the 

hazard event. The Flood-PREPARED project is developing a system for real-time adaption to surface water flooding. The system 

comprises of advanced spatiotemporal models of rainfall, surface water flooding and road traffic impacts. These models are linked 

and orchestrated within into a Big Data workflow that allows events to be simulated using emerging rainfall data recorded by a short 

range weather radar. This approach allows nowcasting to be undertaken where predictions of surface water inundation and impacts 

on the road network can be predicted ahead of the rainfall event reaching the city; thus providing the ability for an improved 

adaptive response to the actual event. 

 

 

1. INTRODUCTION 

There is an increased awareness of the risks faced by cities from 

surface water flooding due to intense rainfall events (Kendon et 

al. 2014). For example, in the UK alone 2 million people live 

within a 1-in-200 year pluvial flood zone; a figure expected to 

increase to 3.2 million by 2050 with population growth and 

climate change (Houston et al. 2011; Committee on Climate 

Change, 2016). Surface flooding in cities is primarily a result of 

high intensity rainfall that can lead to severe disruption, damage 

to property and infrastructure, and potentially loss of life. For 

example, pluvial floods in Istanbul in 2009 resulted in 30+ 

deaths and in excess of $70million in damage, and annually in 

the UK it is estimated that the cost of surface water flooding 

could be as high as £2.2bn (DEFRA, 2011). 

 

The accurate spatial prediction of surface water flooding within 

cities remains a significant challenge; due to the highly dynamic 

temporal and spatial variability of intense rainfall. This is 

further compounded by the spatially complex and 

heterogeneous configuration of urban conurbations in terms of 

their buildings, roads, kerbs, drainage networks and topography, 

resulting in complex surface water run-off patterns and urban 

hydrology. Alongside the difficulty of predicting urban surface 

water flooding from intense rainfall is the challenge of 

understanding the subsequent impacts of this in real-time (Cole 

et al. 2013). Traditionally, impact assessment is undertaken 

post-event. However, first responders (emergency services), 

estate and site managers, and civil authorities require forecasts 

and real-time updates on both the spatial pattern of surface 

water flooding and also the impact of this (DEFRA, 2014). 

Moreover, certain impacts, such as transport disruption, power 

failure, damage to key infrastructure, are themselves inherently 

dynamic and can rapidly cascade and diffuse spatially through a 

city, amplifying the initial magnitude of the impact (DfT, 2014). 

In order to develop real-time and ahead-of-event risk mitigation 

to surface water flooding it is critical to be able to monitor and 

understand the spatiotemporal interactions between the 

dynamics of the surface water flood hazard and its impacts. 

 

Modern multi-scale multi-source sensing and monitoring 

approaches potentially allow cities to move from being reactive 

to proactive with regards to surface water flood risk and 

mitigation; providing a mechanism by which better informed 

decisions can be made to minimise disruption and damage, and 

protect citizens. However, to achieve this, new analytics and 

models are required to improve the prediction and response to 

urban surface flooding from intense rainfall events. Moreover, 

these need to be combined in such a manner that monitoring 

and prediction of the urban system can be achieved in real-time 

and at scale (i.e., across the entire urban system at an 

appropriate spatial and temporal level of granularity). 

 

Flood-PREPARED (Predicting Rainfall Events by Physical 

Analytics of REaltime Data) is an example of such a systems-

based approach to the real-time prediction and mitigation of 

surface water flooding from intense rainfall events. It aims to 

provide a step change in the management of surface water 
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flooding; allowing earlier and more geographically precise 

warning, operational decisions in real-time, and continuous 

situation awareness and intelligence. 

 

2. FLOOD-PREPARED REQUIREMENTS 

A ‘systems’ approach to surface water flooding in cities requires 

a start-to-end analytical and computational framework that 

rigorously evaluates and integrates real-time data and 

information from across the flooding system – including the 

sources of flooding (e.g. rainfall radar), pathways of flooding 

(e.g. sewer flow data, CCTV images of flooded locations), and 

flooding impacts (e.g. traffic disruption).  Moreover, advanced 

analytics and methods for uncertainty handling are required to 

process and assimilate this data into state of the art 

hydrodynamic surface water flood modelling and flood risk 

models to provide spatial-temporal impacts forecasting and 

estimation. With regards to surface water flooding a systems 

approach requires the following features: 

 

1. The ability to combine local high frequency weather radar 

observations, with regional/national monitoring and 

forecasts, along with geospatial social messaging tracking 

(e.g., tweets of events occurring) to provide improved early 

warning of potential intense rainfall trajectories and its 

impact; 

2. The use of real-time data feeds from local weather stations, 

rainfall gauges and sewer gauging to undertake real-time 

data assimilation within hydrodynamic surface water flood 

models for improved prediction; 

3. The ability to employ CCTV data feeds of surface water 

locations and social media feeds to validate in real-time the 

emergent patterns of hydrodynamic surface water flood 

models; 

4. Integration of spatially heterogeneous sensor data feeds on 

flows and movements (e.g., traffic) with CCTV data for 

improved understanding of the temporal dynamics of 

impacts; 

5. The ability to couple CCTV monitoring with social media 

data feeds, such as twitter and bespoke citizen science 

apps, to understand better citizen reaction and response to 

emerging impacts for improved future hazard mitigation; 

and, 

6. The ability, via statistical or machine learning data 

assimilation approaches, to use knowledge from previous 

events, including modelling result-sets of both flooding 

and impacts, to improve ‘ahead of event’ response from the 

site to the city-scale for future ‘events’. 

 

Within Flood-PREPARED these specific requirements are 

being addressed by the development of a real-time data 

monitoring and management framework that seamlessly 

integrates heterogeneous quantitative sensor measurements 

(e.g., weather radar, weather stations, sewer gauging) with real-

time monitoring (e.g., CCTV, traffic flows, pedestrian 

movements) and qualitative social media feeds. These sensor 

data flows will be used to parameterise (i) highly granular 

spatiotemporal hydrodynamic surface water flood models for 

cities, that use physical analytic principles (integrated physical 

models with statistical analytics) to incorporate real-time data 

for improved surface water flood prediction, and (ii) new 

analytical tools for the enhanced spatiotemporal recognition, 

assessment and understanding of surface water flood impacts 

for improved real-time decision making and risk mitigation. 

These new analytics and modelling approaches will be 

embedded within ‘big data’ computational workflows that 

integrate the data monitoring and management, modelling and 

analytical components to enable a full ‘systems’ modelling 

capability for real-time surface water flood risk in cities. 

 

3. ANALYTICS AND MODELS 

3.1 Rainfall Model 

In Flood-PREPARED a spatiotemporal rainfall model is used to 

generate a spatial field of rainfall intensity ahead of the actual 

event reaching the city. The model is parametrised and 

calibrated using weather radar and a high density sensor 

network of ground based rain gauges. Rain gauges are also used 

to evaluate the performance and re-calibrate the inferred rainfall 

field in real-time. The model works on a 36Km2 area centred on 

the weather radar location and can generate a regular lattice grid 

of rainfall intensity at a spatial resolution of 500m. 

Spatiotempoarl rainfall dynamics are derived using a numerical 

(forward-centred finite difference) solution to a collection of 

Stochastic (Partial) Differential Equations, where advection and 

diffusion are the main driving forces behind the evolution of the 

system (Stroud et al. 2010). Observations, both weather radar 

and the rain gauge, are assumed to be noisy, and potentially 

biased observations of the latent rain field. Within the model 

parameters are introduced to define this relationship and their 

values inferred using an ensemble Kalman smoother (Evensen 

and Van Leeuwen, 2000). The accuracy of forecasts are 

evaluated using the Energy Score (Gneiting and Raftery, 2007) 

to tune algorithm performance in real-time. 

 

3.2 Surface Water Flood Model 

HiPIMS (High-Performance Integrated hydrodynamic 

Modelling System) is a two-dimensional (2D) physically-based 

flood model. In a flood event, water depth is generally much 

smaller than horizontal inundation extent and the flow 

hydrodynamics can be mathematically described using the 2D 

depth-averaged shallow water equations (SWEs) (Liang and 

Marche, 2009). In order to predict the transient and complex 

flow hydrodynamics across different flow regimes that may 

occur during a flood event, HiPIMS solves the governing 

equations using a Godunov-type finite volume numerical 

scheme (Liang, 2010; Xia et al., 2017; Xia and Liang, 2018). 

The numerical scheme has been applied in accurate and stable 

simulations of rainfall-induced overland flows of urban areas 

(Xia and Liang, 2018; Xing et al., 2019). In order to 

substantially improve the computational efficiency for large-

scale simulations and real-time forecasting, HiPIMS is 

implemented on multiple GPUs. Parameters considered in the 

model include friction and infiltration rates, which are estimated 

from a land cover map of the model domain. Figure 1 shows the 

output generated by HiPIMS for the city of Newcastle upon 

Tyne UK. The resulting surface water flood inundation and 

depth map has a spatial resolution of 2m. The map shows the 

depth of surface water flooding for a 53mm rainfall event that 

occurred over 90 minutes. The resulting spatial locations of 

flood were verified against a similar magnitude event that 

occurred in Newcastle upon Tyne in 2012. 
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Figure 1. Example output of the HiPIMS surface water flood 

model for a convective rainfall event of 53mm over the city of 

Newcastle upon Tyne UK. 

 

3.3 Road Transport Impact Analytics 

Currently two forms of real-time monitoring of road transport 

impacts are assessed within Flood-PREPARED. The first is the 

use of Deep Learning (DL) methods applied to CCTV data 

feeds to capture and predict current and future disruption at 

fixed locations across the urban domain. The second is the use 

of spatial network modelling to simulate how the impacts of 

surface water flooding propagates across the entire urban road 

network. 

 

3.3.1 CCTV Analysis of Vehicle Disruption 

 

Traffic flow analysis and prediction consists training and fine-

tuning a convolution neural network (R-CNN) to recognize 

vehicles under different weather conditions from existing 

CCTV images (Peppa, et al. 2017; Figure 2). The trained R-

CNN is then used to estimate vehicle counts. In Flood-

PREPARED multi-scale temporal training data has been 

employed where 24-hour and 7-day vehicle counts are used to 

estimate vehicle numbers for (i) weekend or weekday; (ii) day 

of the week; (iii) period of the day before; and (iv) whether 

before or after midnight (Figure 3). The R-CNN prediction also 

incorporates spatial dependencies from neighboring CCTV 

sensors into traffic predictions by using an OD matrix between 

CCTV locations. The OD matrix is constructed by calculating 

the shortest routes along the road network between all CCTV 

locations. This is then imported into the data preparation and 

training step to select traffic data from the four closest CCTVs 

that are as evenly distributed as possible to the north, east, south 

and west directions of a target camera. 

 

 
Figure 2. CCTV vechicle recognition using a Convolution 

Neural Network (R-CNN) for (a) raining conditions, (b) dry 

conditions. 

 

 
Figure 3. Vehicle count model values compared to measured 

values for four CCTV locations across the city of Newcastle 

upon Tyne UK. 

 

3.3.2 Spatially Modelling Flood Impacts 

 

The CNN approach to vehicle count estimation allows Flood-

PREPARED to evaluate surface water flooding impacts and 

traffic disruption at discrete locations across the urban road 

network. However, it does not allow an estimation of how the 

impacts of surface water flooding will propagate over the road 

network. To evaluate this, Flood-PREPARED uses a 

‘nowcasting’ network modelling approach to estimate the 

potential impacts across the entire road network in real-time. 

Surface water depths from the surface water flood model are 

used to recognise sections of the road network which are 

impassable due to flooding, and parts of the road network which 

are still passable but where surface water flooding impacts free-

flow traffic speeds. 

 

A threshold of 300mm is applied to recognise roads within the 

network which will be impassable by cars (Pregnolato, et al. 

2017b). This is achieved by intersecting the surface water flood 

depths at a particular time interval, extracting footprints of 

surface water above 300mm and then spatially assessing if their 

footprint is sufficiently large to prohibit any vehicle movement 

along that part of the road (Figure 4). However, surface water 

depths below 300mm can have a significant impact on the road 

network due to reductions in speed and potential build-up of 

congestion. To account for this within the ‘nowcasting’ 

framework, surface water flood depths are derived for each road 

segment across the entire road network. These depths are then 

used to statistically derive the passable safe free-flow speed for 

any road segment using the approach developed in Pregnolato 

et al. (2017a) and refined in  Pregnolato et al. (2017b). 
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The final output of this processing is a road status map which 

shows which roads will be impassable and the reduced speed 

(compared to free flow speeds) of other parts of the road 

network due to the presence of surface water (Figure 4). 

 

 
Figure 4. Flooded roads predicted by the HiPIMS surface water 

flood model and resultant impacts on free-flow traffic speeds for 

part of the city of Newcastle upon Tyne UK. 

 

The real-time road speed impacts resulting from the surface 

water flood model predictions can be further utilised within the 

modelling framework. For example, Figure 5 shows the 

implementation of a dynamic real-time generalised least cost 

path analysis between the current location of a hypothetical 

vehicle and the destination it wishes to reach (Ford et al. 2015). 

As the surface water flood model produces time-stamped 

predictions of surface water, this can be used to update 

dynamically the road status map; updating closed roads, free 

flow speeds and the least cost path to the destination. 

 

 
Figure 5.  Result of applying a generalised least cost analysis 

that accounts for disruption to traffic free-flow speeds and 

flooded roads for part of the city of Newcastle upon Tyne UK. 

 

4. WORKFLOW DEVELOPMENT 

The individual models and analytics of Flood-PREPARED have 

been combined into a workflow deployment. Figure 6 shows the 

architecture of the workflow system which consists of two main 

components: a Dataflow manager and a Job manager. The 

system orchestrates various models across different computation 

resources including GPU and CPU clusters through the Job 

manager and the dependencies among the models are built via 

the Dataflow manager. 

 

 
Figure 6. The workflow developed for the coupling and 

deployment of the Flood-PREPARED real-time nowcasting 

system. 
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The Job deployment module that feeds into the Job Manager is 

used to decide where to deploy and how to execute the models 

over the available computing resources. A set of APIs have 

been developed to allow users to deploy their models over 

specified resources, including whether to deploy on CPU or 

GPU, geolocation of the deployment and required computation 

capacity, the number of cpu cores required, and the required 

memory size of each microservice (containerised model). If 

users do not specify their required resources, the system 

randomly selects suitable resources for the models, i.e., a model 

will be deployed on any resources that matches its execution 

requirements. The Flow control module determines when and 

how models are executed within a workflow taking into account 

workflow dependencies. During workflow execution models 

may dynamically change in terms of size and arrival rate. 

Therefore, the Flow monitoring module is used to adaptively 

execute the models to meet current performance requirements. 

 

The Resource provision module ensures that sufficient 

computing resources are available to meet the deployment 

requirements. The system utilises Kubernetes APIs to provision 

the resources. Kubernetes is utilised as it has excellent resource 

optimisation mechanisms for computer cluster deployment 

(Burns et al., 2016). As noted, the Flow control module chains 

different models as a workflow. Kafka (Kreps et al., 2011) is 

used as the message hub to orchestrate the inputs and outputs of 

each model. Kafka is a high performance and reliable stream-

processing software platform that follows a publish and 

subscribe messaging pattern. Thus, each model has one or more 

producers and consumers to exchange messages via Kafka. 

 

5. A PROTOTYPE IMPLAMENTATION 

On the 28th June 2012 Newcastle upon Tyne UK experienced a 

significant convective rainfall event resulting in 53mm of rain 

over a period of less than 90 minutes (the equivalent to a 

months’ worth). Local surface water flooding caused over £8m 

worth of damage and flooded over 500 homes in the city. The 

rainfall event also resulted in significant disruption to 

Newcastle’s transport systems with major roads being inundated 

and the closure of regional metro and rail stations. 

The rainfall, flood and impact models (Section 3) and the Big 

Data workflow (Section 4) were used to build a start-to-end 

workflow that looked to recreate the 2012 flood event within a 

real-time nowcasting system. Data from Newcastle Universities 

Urban Observatory (https://urbanobservatory.ac.uk/) was used 

to parametrise and calibrate the models. The Urban Observatory 

comprises of over 300+ environmental sensors distributed 

across Newcastle upon Tyne and its surrounding area, including 

a high density network of weather stations, rain gauges, traffic 

monitoring CCTV and a short range weather radar. 

As weather radar data was not available for the 2012 rainfall 

event, more recent Newcastle Urban Observatory weather radar 

data was synthetically modified using rain gauge data to create 

synthetic input weather radar data-sets that effectively replicated 

the spatiotemporal dynamics of the 2012 event. Figure 7 shows 

the final workflow developed, including the capability to 

replace the synthetic rainfall data stream with real-time weather 

data directly from the Newcastle Urban Observatory. 

 

In the Newcastle pilot implementation individual models were 

containerised using Docker (https://www.docker.com/) and a 

linear start-to-end workflow orchestration developed using a 

combination of Kubernets (https://kubernetes.io/) and Argo 

(https://blog.argoproj.io/). Rainfall data is streamed/presented to 

the system via Kafka (https://kafka.apache.org/), which filters 

the incoming data and monitors it for the trigger event in order 

to invoke the workflow. The trigger event can either be the 

recognition of an emergent convective rainfall event in the 

weather radar data or rain gauge readings at locations outside 

Newcastle which indicate a storm event is moving towards the 

city. 

 

Once an event has been triggered the workflow is initiated and 

the weather radar data passed to the rainfall model to be used 

for initiation of the model. Upon completion, the rainfall model 

provides the surface flood model with spatially distributed 

rainfall values at the 500m resolution across the city, which are 

used to run the surface water flood model. In the current 

implementation, the resultant surface water flood predictions 

are used to target which CCTV monitors should be used for 

vehicle counting. The workflow does not currently integrate the 

spatial modelling of how flood impacts will propagate across 

the road network (Section 3.3.2); although this will be 

implemented in the next round of development. In the 

prototype, when the surface water flood model is executed a 

websocket is opened to a client dashboard mapping application 

developed in Leaflet. At each time-stamp of the surface water 

flood model real-time updates (in terms of the model time-

stamp interval) of the spatial pattern of flooding on the road 

network is passed to the  

 

6. CONCLUSION 

New environmental sensor networks offer significant potential 

to allow the improved monitoring of the impacts of extreme 

events such as convective rainfall induced surface water 

flooding. However, if we are to improve our response and real-

time adaption to such events these need to be coupled with 

advanced models that can be deployed in real-time and provide 

nowcasting predictions of locational magnitude of impacts and 

of the events themselves. 

 

The Flood-PREPARED workflow developed in this paper 

shows the potential of coupling sensor network data feeds with 

advanced analytics and models using Big Data workflow 

orchestration tools such as Docker, Kubernets and Argo. In the 

case of this work, this has allowed a prototype linear workflow 

and demonstrator to be developed and deployed. 
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Figure 7. The prototype Flood-PREPARED workflow developed for a simulated extreme rainfall event of 53mm for the city of 

Newcastle upon Tyne UK. 

 

However, while the development of this porotype is promising, 

significant work remains before an operational widely 

deployable system exists. In particular, the development of 

workflows that are non-linear which allow forking and farming 

out of new model instances as the systems dynamics are 

changing in real-time is a major challenge. However, such tools 

are required as the both the hazard system itself (in this case the 

rainfall event), the impact (surface water flooding) and the 

urban system (in this case the road transport system) are 

themselves evolving simultaneous to the predictions that are 

being generated by a running workflow instance. Next stages of 

the Flood-PREPARED project will investigate how advanced 

data assimilation and the ability to develop iterative Big Data 

workflows with feedbacks can be employed to allow 

incorporation of knowledge of how the event, impact and 

impacted system are changing. 
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