
AN APPLICATION DOMAIN EXTENSION FOR STORING VALIDATION RESULTS OF 
CITYGML STRUCTURES

Matthias Betz1,∗, Volker Coors1

1 Stuttgart University of Applied Sciences, Germany 

KEY WORDS: CityGML, ADE, Validation, XML

ABSTRACT:

With the increase of applications using 3D models as base for visualization or simulation the requirements for having valid models
rises. While there are many programs that validate models there is no standard for storing the results. The simulation programs
also may implement their own validation checking to verify if a model can be simulated which may be error prone or not extensive
enough for their purpose. This paper provides an extension for the CityGML format to store the validation result. With the available
validation information software using the extension can improve their process of working with models containing errors. CityGML
model manufacturers may also improve their creation process of the model as well as deliver them validated.

1. INTRODUCTION

3D spatial models of cities or whole landscapes have been and
are going to be increasingly more popular visualization, simu-
lations, disaster management and many more applications. The
more requirements the application has for the model the more
important it gets that those requirements are actually fulfilled by
the available data. The widely used standard for storing 3D spa-
tial data is a XML (Consortium et al., 2006) based data format
called CityGML (City Geography Markup Language) (Gröger
et al., 2012). The current CityGML standard version 2 has no
way to store data containing information about the correctness
or validity of the geometric and semantic data in a data set. As
the data format is based on the XML standard it can be and is
intended to be extended. CityGML has created a system for
those extensions called an ADE (Application Domain Exten-
sion) (Gröger et al., 2012) which can be used to inject addi-
tional modules into existing CityGML data structures. This is
used in this paper to create data structures for storing validation
data for features. With this information available in the data
itself a simulation such as SimStadt (Nouvel et al., 2015) can
give more credible results as it can guarantee that the input is
correct or not. It is also possible to outright exclude parts of the
data and simulate only the parts that are correct.

It is also useful for CityGML manufacturers as they are able
to create models and deliver them validated with the validation
information contained in the model itself. They can also use the
information to improve the process of the geometry generation
or fix geometries in a post processing step to increase the quality
of the created models. The quality management process and
improvement is shown in figure 1.

2. STATE OF THE ART

There are many papers already describing algorithms and pro-
cesses for validating 3D city models, see (Coors et al., 2020),
(Ledoux and Wagner, 2016),(Biljecki et al., 2016).

To be able to work with massive amounts of data, meta data
management becomes a necessity (Kavisha, 2020). One of the
∗ Corresponding author

Figure 1. Quality Management Process

possibilities for meta data storing is creating and using an ADE
to extend existing CityGML models (Labetski et al., 2018).

Based on the state of the art it was decided to create an ADE for
CityGML so allow storage of quality management related data.
Therefore the CityGML Quality ADE was designed.

3. CONCEPT CITYGML QUALITY ADE

The process of validation is shown in figure 2. The valida-
tion plan defines the requirements and the parameters for the
requirements. The validation software implements checks that
test the defined requirements. The result is then stored in the
ADE. The result includes both the error case as well as the OK
case or the not validated case if the feature has been excluded
from the validation process. This is important to give a com-
plete overview of what was tested and which were the exact
result in all cases.

The paper (Coors et al., 2020) defines the scope of the geomet-
ric validation and the possible resulting errors. The ADE exten-
sion does not define how the results are obtained it only creates
space for the results to be written into the model itself. The
definition of each error type and where it can occur is defined
in the paper (Coors et al., 2020). Additionally the semantic
requirements can be very different between each application.
Most of those requirements are simply the presence of attrib-
utes or the correctness of an attribute. To include these inform-
ation the ADE contains endpoints to store whether an attribute
is missing or has the wrong value.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume VIII-4/W1-2021 
6th International Conference on Smart Data and Smart Cities, 15–17 September 2021, Stuttgart, Germany

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-VIII-4-W1-2021-11-2021 | © Author(s) 2021. CC BY 4.0 License.

 
11



Figure 2. Quality Management Process

4. DATA STRUCTURES

Figure 3. Main data structures

There are two main data structures (see figure 3) in the ADE,
first is the validation structure which is associated to a City-
Model CityGML structure. Second the validationResult struc-
ture associated to CityObjects. While the validationResult
structure can be written in each CityObject it is intended to use
it solely on top level features such as buildings, transportation
objects, vegetation objects etc.

4.1 Validation Structure

The validation structure contains meta information of the valid-
ation process. It contains the date of the validation as well as a
string identifying the validation software. Furthermore it con-
tains a statistic of the amount of features checked and how many
of them contain any error and a statistic of all errors found in
the model. The most important part of the validation structure is
the validation plan. It contains which requirements where val-
idated and with which parameters. This is essential to be able to
reproduce the results in different validation runs or to compare
the results with results of different validation software. Without
the plan the results would be meaningless.

4.2 Validation Plan

The validation plan consists of a list of requirements (see table 1
and uml diagram in figure 4) with each requirement containing
a list of parameters. There is also a section for global paramet-
ers where a list of parameters that apply to many or all require-
ments are defined.

RequirementType
R GE R TOO FEW POINTS
R GE R NOT CLOSED
R GE R CONSECUTIVE POINTS SAME
R GE R SELF INTERSECTION
R GE P NON PLANAR
R GE P INTERIOR DISCONNECTED
R GE P INTERSECTING RINGS
R GE P HOLE OUTSIDE
R GE P ORIENTATION RINGS SAME
R GE P INNER RINGS NESTED
R GE S TOO FEW POLYGONS
R GE S NOT CLOSED
R GE S NON MANIFOLD EDGE
R GE S POLYGON WRONG ORIENTATION
R GE S ALL POLYGONS WRONG ORIENTATION
R GE S NON MANIFOLD VERTEX
R GE S SELF INTERSECTION
R GE S MULTIPLE CONNECTED COMPONENTS
R SE ATTRIBUTES EXISTING
R SE ATTRIBUTES CORRECT

Table 1. Defined Requirements

An example validation plan would look like this in the final
document (excerpt):

<qual:validationPlan>

<qual:globalParameters>

<qual:parameter name="numberOfRoundingPlaces">

8</qual:parameter>

<qual:parameter name="minVertexDistance"

uom="m">1.0E-4</qual:parameter>

<qual:parameter name="schematronFile"/>

</qual:globalParameters>

<qual:requirement

name="R_GE_S_ALL_POLYGONS_WRONG_ORIENTATION"

enabled="true"/>

<qual:requirement

name="R_GE_P_INNER_RINGS_NESTED"

enabled="true"/>

<qual:requirement

name="R_GE_S_NOT_CLOSED" enabled="true"/>

<qual:requirement

name="R_GE_S_POLYGON_WRONG_ORIENTATION"

enabled="true"/>

<qual:requirement

name="R_GE_P_NON_PLANAR" enabled="true">

<qual:parameter name="angleTolerance"

uom="degree">1</qual:parameter>

<qual:parameter name="distanceTolerance"

uom="m">0.01</qual:parameter>

<qual:parameter name="type">distance

</qual:parameter>

</qual:requirement>

<qual:requirement

name="R_GE_R_TOO_FEW_POINTS"

enabled="true"/>

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume VIII-4/W1-2021 
6th International Conference on Smart Data and Smart Cities, 15–17 September 2021, Stuttgart, Germany

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-VIII-4-W1-2021-11-2021 | © Author(s) 2021. CC BY 4.0 License.

 
12



Figure 4. Validation Plan Structure

4.3 Statistics

The statistics structure has 5 variables for storing the amount of
top level features that were validated and the amount of them
having errors. See table 2 for which variable counts which
CityGML type.

Variable CityGML Type
numErrorBuildings BuildingType
numErrorVegetation AbstractVegetationObjectType
numErrorLandObjects LandUseType
numErrorBridgeObjects BridgeType
numErrorWaterObjects AbstractWaterObjectType
numErrorTransportation AbstractTransportation

ObjectType

Table 2. CityGML Type to error variable mapping

4.4 ErrorStatistics

The error statistics is a simple list of error type associated with
the number of times it occurred in the model. A list of possible
error types is listed in table 3

4.5 ValidationResult

This is the data structure that should be associated with top level
features in a CityModel. It contains information about whether
the validation was successful, an error occurred or even checked
at all. In case of errors there will also be information about the
error, the error type and additional error information depending

ErrorType
GE R TOO FEW POINTS
GE R NOT CLOSED
GE R CONSECUTIVE POINTS SAME
GE R SELF INTERSECTION
GE P NON PLANAR POLYGON NORMALS DEVIATION
GE P NON PLANAR POLYGON DISTANCE PLANE
GE P INTERIOR DISCONNECTED
GE P INTERSECTING RINGS
GE P HOLE OUTSIDE
GE P ORIENTATION RINGS SAME
GE P INNER RINGS NESTED
GE S TOO FEW POLYGONS
GE S NOT CLOSED
GE S NON MANIFOLD EDGE
GE S POLYGON WRONG ORIENTATION
GE S ALL POLYGONS WRONG ORIENTATION
GE S NON MANIFOLD VERTEX
GE S SELF INTERSECTION
GE S MULTIPLE CONNECTED COMPONENTS
SE ATTRIBUTE WRONG VALUE
SE ATTRIBUTE MISSING

Table 3. Possible error types

on the type. Figures 5, 6, 7 and 8 show the data structures
needed to store the errors in detail.

An example validationResult structure with a
GE R CONSECUTIVE POINTS SAME error would look
like the following XML example and is situated in the ADE
of a CityObject. It contains information in which ring the
error occured and which consecutive vertices are the same.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume VIII-4/W1-2021 
6th International Conference on Smart Data and Smart Cities, 15–17 September 2021, Stuttgart, Germany

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-VIII-4-W1-2021-11-2021 | © Author(s) 2021. CC BY 4.0 License.

 
13



Figure 5. Ring Error Datastructures

Figure 6. Polygon Error Datastructures

<qual:validationResult result="ERROR">

<qual:GE_R_CONSECUTIVE_POINTS_SAME>

<qual:linearRingId>_Simple_BD.1_PG.6_LR.1

</qual:linearRingId>

<qual:vertex1>11.5 10.0 4.5</qual:vertex1>

<qual:vertex2>11.5 10.0 4.5</qual:vertex2>

</qual:GE_R_CONSECUTIVE_POINTS_SAME>

</qual:validationResult>

5. IMPLEMENTATION

A reference implementation was created with a citygml4j plu-
gin in java. The implementation is open source and avail-
able here: https://transfer.hft-stuttgart.de/gitlab/
citydoctor/qualityade. It allows for an integration into
the widely used citygml4j parser and working with the defined
data structures. It can be used for writing and reading en-
riched CityGML files. The complete UML model and examples
can be viewed on the wiki page here: https://gitlab.com/
volkercoors/CiD4Sim/-/wikis/validation/QualityADE

The validation is not part of the implementation as there

can be many different implementations of the process.
The validation can be done with the open source soft-
ware CityDoctor2 https://transfer.hft-stuttgart.de/

gitlab/citydoctor/citydoctor2 but it can also be valid-
ated with val3dity (Ledoux, 2018)

The citygml4j plugin mechanism relies on the Java functional-
ity of the ServiceLoader where implementations of interfaces
can be easily loaded at runtime without knowing the imple-
mentation. This is used for loading all ADEs with the interface
name ADEContext. If the interface is correctly implemented
it provides citygml4j with all the necessary information to in-
tegrate the ADE into the main software. Citygml4j is based on
JAXB (Jakarta XML Binding) which transforms XML based
data into Java classes. For the ADE to be able to use JAXB in
conjunction with citygml4j the ADEContext interface declares
methods so it can be integrated into the mapping process.

5.1 Usage

CityDoctor2 is using the ADE for storing the result of the val-
idation process. For the validation of semantic issues in models
a XML validation process called Schematron (Van der Vlist,
2007) is used. By defining an exact output format of schemat-

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume VIII-4/W1-2021 
6th International Conference on Smart Data and Smart Cities, 15–17 September 2021, Stuttgart, Germany

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-VIII-4-W1-2021-11-2021 | © Author(s) 2021. CC BY 4.0 License.

 
14

https://transfer.hft-stuttgart.de/gitlab/citydoctor/qualityade
https://transfer.hft-stuttgart.de/gitlab/citydoctor/qualityade
https://gitlab.com/volkercoors/CiD4Sim/-/wikis/validation/QualityADE
https://gitlab.com/volkercoors/CiD4Sim/-/wikis/validation/QualityADE
https://transfer.hft-stuttgart.de/gitlab/citydoctor/citydoctor2
https://transfer.hft-stuttgart.de/gitlab/citydoctor/citydoctor2


Figure 7. Solid Error Datastructures

Model Name Errors
SimpleSolid SrefBS-GE-gml-LR-0002-T0001-ADE GE R CONSECUTIVE POINTS SAME
SimpleSolid SrefBS-GE-gml-LR-0003-T0001-ADE GE R NOT CLOSED
SimpleSolid SrefBS-GE-gml-PO-0001-T0001-ADE GE P INTERSECTING RINGS
SimpleSolid SrefBS-GE-gml-PO-0002-T0001-ADE GE P NON PLANAR POLYGON DISTANCE POLYGON
SimpleSolid SrefBS-GE-gml-PO-0005-T0001-ADE GE P INNER RINGS NESTED
SimpleSolid SrefBS-GE-gml-SO-0004-T0001-ADE GE S NON MANIFOLD EDGE
REKaiserwall-ADE Various Errors

Table 4. Model examples with ADE information stored

Figure 8. Semantic Error Datastructures

ron errors, they can be integrated into the CityDoctor validation
process after the schematron validation process has finished.

6. DISCUSSION, CONCLUSION AND FUTURE WORK

An ADE extending CityGML has been developed that can be
used to store validation results and has been successfully integ-

rated into the open source software CityDoctor. The results can
be used by different application software to be more aware of
potential problems within the CityGML model.

6.1 Test Data

In table 4 a list of CityGML files was verified and the ADE
was written into the files. The complete list with the original
models and the models with ADE for downloading can be
found here: https://gitlab.com/volkercoors/CiD4Sim/

-/wikis/validation/QualityADE

6.2 Data Volume

A large CityGML file of around 4GB was validated and en-
riched with the ADE. The file size increased by around 2MB
and has around 0.05% more lines.

6.3 Extensions

An extension for storing quality management meta data has
been created and works as intended. The principle can be trans-
ferred to other encodings for 3D models such as CityJSON, the
content and intention of the ADE is not based on the encoding
of the underlying data.

With the citygml4j plugin there is a reference implementa-
tion for reading files but there is no database extension for
3DCityDB (Yao et al., 2018) or GeoRocket (Krämer, 2020)
which would need to be implemented in the future.

The semantic error types can be extended as they are application
specific most of the time. The current semantic errors are there
to show that semantic errors are possible to store in the ADE.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume VIII-4/W1-2021 
6th International Conference on Smart Data and Smart Cities, 15–17 September 2021, Stuttgart, Germany

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-VIII-4-W1-2021-11-2021 | © Author(s) 2021. CC BY 4.0 License.

 
15

https://gitlab.com/volkercoors/CiD4Sim/-/wikis/validation/QualityADE
https://gitlab.com/volkercoors/CiD4Sim/-/wikis/validation/QualityADE


6.4 Limitations

As the semantic errors can be very divers depending on the ap-
plications it is impossible to include error types which contain
the necessary information for all possible semantic errors. As
an example you can have the requirement that the roof surfaces
of a building should only contain polygons that are planar to
each other. This is important if the normal of roof surfaces
containing multiple polygons should be calculated. That error
would need a new type containing the relevant information like
the normal and which polygon(s) are deviating too much.

REFERENCES

Biljecki, F., Ledoux, H., Du, X., Stoter, J., Soon, K. H., Khoo,
V., 2016. THE MOST COMMON GEOMETRIC AND SE-
MANTIC ERRORS IN CITYGML DATASETS. ISPRS Annals
of Photogrammetry, Remote Sensing & Spatial Information Sci-
ences, 4.

Consortium, W. W. W. et al., 2006. Extensible markup language
(XML) 1.1.

Coors, V., Betz, M., Duminil, E., 2020. A Concept of Qual-
ity Management of 3D City Models Supporting Application-
Specific Requirements. PFG–Journal of Photogrammetry, Re-
mote Sensing and Geoinformation Science, 88(1), 3–14.

Gröger, G., Kolbe, T. H., Nagel, C., Häfele, K.-H., 2012. OGC
city geography markup language (CityGML) encoding stand-
ard.

Kavisha, K., 2020. Modelling and managing massive 3D data
of the built environment.

Krämer, M., 2020. GeoRocket: A scalable and cloud-based data
store for big geospatial files. SoftwareX, 11, 100409.

Labetski, A., Kumar, K., Ledoux, H., Stoter, J., 2018. A
metadata ADE for CityGML. Open Geospatial Data, Software
and Standards, 3(1), 1–16.

Ledoux, H., 2018. val3dity: validation of 3D GIS primitives
according to the international standards. Open Geospatial Data,
Software and Standards, 3(1), 1–12.

Ledoux, H., Wagner, D. (eds), 2016. OGC® CityGML Quality
Interoperability Experiment. 16-064r1, Open Geospatial Con-
sortium (OCG).

Nouvel, R., Brassel, K.-H., Bruse, M., Duminil, E., Coors, V.,
Eicker, U., ROBINSON, D., 2015. Simstadt, a new workflow-
driven urban energy simulation platform for citygml city mod-
els. Proceedings of International Conference CISBAT 2015 Fu-
ture Buildings and Districts Sustainability from Nano to Urban
Scale, LESO-PB, EPFL, 889–894.

Van der Vlist, E., 2007. Schematron. ” O’Reilly Media, Inc.”.

Yao, Z., Nagel, C., Kunde, F., Hudra, G., Willkomm, P.,
Donaubauer, A., Adolphi, T., Kolbe, T. H., 2018. 3DCityDB-
a 3D geodatabase solution for the management, analysis, and
visualization of semantic 3D city models based on CityGML.
Open Geospatial Data, Software and Standards, 3(1), 1–26.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume VIII-4/W1-2021 
6th International Conference on Smart Data and Smart Cities, 15–17 September 2021, Stuttgart, Germany

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-VIII-4-W1-2021-11-2021 | © Author(s) 2021. CC BY 4.0 License.

 
16


	INTRODUCTION
	State of the art
	Concept CityGML Quality ADE
	Data structures
	Validation Structure
	Validation Plan
	Statistics
	ErrorStatistics
	ValidationResult

	Implementation
	Usage

	DISCUSSION, CONCLUSION AND FUTURE WORK
	Test Data
	Data Volume
	Extensions
	Limitations




