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ABSTRACT:

In this paper we present a design concept, architecture and implementation of a microservice to process and integrate rain inform-
ation into a car navigation system in the form of rain map features. Two different input data sources are considered: QuadTile
JSON format and GeoTIFF images. Our system converts this input data into an ouput GeoJSON format with only the most relevant
information for the map overlay system in the navigation system of the car. We discuss different options for the cloud appearance,
like color, shape and transparency. We present our microservices architecture together with data pipelines and implementation. Our
approach allows for low latency and spare computing resources, which are especially needed in embedded systems. Finally, we
discuss the advantages and disadvantages of our approach as well as further work.

1. INTRODUCTION

Rain is one of the main causes of car accidents in the world. Not
only it impedes the clear visibility of the road but it also makes
the road slippery, the brakes wet and in general the driving con-
ditions unpredictable, leading to high probability of traffic in-
cidents. Large amounts of rain often lead to severe flooding in
urban areas, which cause also traffic congestion, pollution and
in general unpleasant situations (especially for inexperienced
drivers) that could be avoided if the driver could be advised of
any upcoming rainfall on the road (Kyte et al., 2000).

The main goal of this paper is to present a backend service
architecture that displays rain information on a digital map in
the form of a semi-transparent overlay consisting of a number
of polygons with specific color-coding (e.g. blue, yellow, red,
etc.) according to the intensity of the rain. The most typical
rain measurement is the rate of precipitation expressed in milli-
meters per hour, where one millimeter of rainfall is the equival-
ent of one liter of water per square meter (Krajeswki and Smith,
2001). Note that the term rainfall is sometimes used to include
not only amounts of rain, but also snow and hail. For simplicity,
we use in the rest of the paper, the term precipitation.

Several rain radar services map their data to color in different
manners. Most of them map the intensity of precipitation to a
color gradient. Either a rainbow gradient, a limited hue gradient
(for example from blue to yellow), a brightness gradient, or the
alpha value of a color. For this, some guidelines are available
for practical usage of colors in maps (Stauffer et al., 2015). Us-
ing these guidelines and the web portal ColorBrewer1 for map
designers, it is possible to choose certain color schemes to dis-
play rain data in a readable way (Brewer et al., 2003).

Besides the color, the geometrical representation of the rain
clouds is of high importance. Typically, the visualization of
rain radar information is left pixelized. This has the advant-
age that the measurements are shown just as close as they can
be to the real rain information, i.e. no information is falsified.
The disadvantage is that the form of the clouds is not visually
∗ Corresponding author
1 https://colorbrewer2.org/

appealing and does not look professional. Some researchers
have proposed the use of algorithms to convert radar informa-
tion into polygons for nicer visualization. Of special interest are
the strategies to overlap radar polygons with other map features
like points and lines (Hu, 2014).

It is also very important to review the driver experience
with systems displaying precipitation information. It is com-
mon knowledge that extreme weather affects driver behavior
(Kilpeläinen and Summala, 2007). And it can be that unexpec-
ted routing decisions taken by the intelligent routing algorithms
may confuse the driver, who will question the correctness of the
routing algorithm (Curzon et al., 2002). Recently, some studies
presented the view of some drivers on including weather fore-
casts in the optimal routing of navigation systems (Kisters et al.,
2019). In these investigations, most of the participants would
accept to drive following routing recommendations based on
weather forecasts. The authors discuss also the importance
of finding the best way to communicate weather-related route
changes to the users. Another study proposes the use of a
route-guidance system to help drivers avoid heavy rainfalls (Ito,
Sadanori and Koji, Zettsu, 2020). In this study, some parti-
cipants were given a driving simulator to test four alert methods,
three route options, and four levels of possible risk avoidance.
The authors report that such a system has a 85.63% social ac-
ceptance, demonstrating the usefulness of such systems. Our
approach in this paper, improves acceptance by the user, as it
would provide extra context visual information to the driver to
understand, validate and trust the routing computed by the car
navigation system.

Nowadays, several companies provide weather data but focus
mainly on global products. These are sometimes difficult to
customize and have a limited compatibility especially for the
purpose of displaying rain data in a mobile device or a car. To
improve this situation, some work has been done to provide for
example satellite rainfall estimates in different formats using
Python-based web service and Android applications (Mantas
et al., 2015). On the other hand, some researchers have fo-
cused their studies on providing data frameworks for managing
weather data, for example WeatherBench (Rasp et al., 2020).
Some other studies focus on precipitation only, for example,
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RainBench, a dataset for studying global precipitation forecast-
ing from satellite imagery. And PyRain, a framework to re-
lease user-friendly rain datasets, using pipelines to enable ef-
ficient processing of data by any modeling framework (Tong
et al., 2020). Another example is THOR2 (Tool for High-
resolution Observation Review), which is a rainfall satellite im-
age dataviewer that started as a desktop application and is now
available also on a web browser (Kelley, 2013). The authors re-
port that the simplicity of their approach can be useful for easy
adapting and deploying applications to analyse and test new al-
gorithms and products for precipitation visualization.

Finally, note that the novelty of this paper is to present an ap-
proach and implementation to provide precipitation information
into car navigation systems in the form of a rain map feature. In
Section 2, we discuss two data input sources, QuadTile JSON
format and GeoTIFF image format; and the data preparation
and data output suitable for car navigation systems. In Section 4
and Section 5, we present our architecture and implementation,
resp. Finally, in Section 6 we present our conclusions and fur-
ther work. To our knowledge, no previous research work has
focused on describing concept, design and implementation of
microservices to bring rain information into digital maps for
car navigation systems.

2. DATA

In this paper, we propose to use precipitation data about the
current precipitation situation from external weather data pro-
viders. The precipitation information is converted to a format
that can be digested by the map overlay system in the car, adap-
ted for optimal visualization, and delivered to all vehicles that
are clients of the precipitation service.

2.1 Data Sources

Our implementation of the precipitation service is connected to
two distinct, external data providers that deliver weather data.
Due to privacy concerns we cannot disclose the names of these
external companies. The flexibility of our proposed solution
enables the usage of two providers using totally different data
formats: Raster tiles JSON files and GeoTIFF images. This also
allows us to compare the data quality of these two data sources.
We can obtain further weather data from our external providers,
such as air temperature, humidity, precipitation, and the like.
However, for our rain map feature, we focus only on the in-
tensity of precipitation value, the iop value. From our external
data providers we obtain nowcasting data every 15 minutes,
i.e. short-range forecast based on hourly weather stations data,
modern techniques and algorithms. Therefore, we obtain iop
values which are measured in mm / 15 minutes. Note that this
has a minimum value of iop = 0.01, which means a small
drizzle, whereas iop > 2.0 would mean a heavy rain storm.
Fig. 1 shows an example of raster tile data for Europe. The ras-
ter tiles we obtain from our provider use QuadTiles3 which has
become a standard tiling method and is being used by Open-
StreetMap, BingMaps, among other web maps.

Fig. 2 shows a zoomed-in example of rain data in QuadTile
format for Germany and East Frisia. Note the rounding effects
in the raster rain information. These effects can be caused by
algorithms that extrapolate data from different sources every

2 https://arthurhou.pps.eosdis.nasa.gov/thorrelease.html
3 https://wiki.openstreetmap.org/wiki/QuadTiles

Figure 1. Example of rain data in QuadTile format for Europe.

15 minutes from hourly weather stations data. As clouds are
moving over time, this produces an estimation with the shape
of a probability distribution. In other words, rounded cloud ef-
fects may appear due to the mix of hourly weather station meas-
urements plus algorithmic estimated rain probabilities every 15
minutes.

Figure 2. Zoomed-in examples of rain data in QuadTile format
for Germany (left) and East Frisia (right).

In contrast, Fig. 3 shows rain information in a GeoTIFF4 file
color-coded with different tint shade blue gradients for differ-
ent intensity precipitation levels. The GeoTIFF format is used
by many GIS applications, where the GeoTIFF file is actually
an ordinary TIFF image file with extra geographic metadata ad-
ded in the header of the TIFF file (Ritter and Ruth, 1997). For
comparison purposes, the size of the GeoTIFF file shown in
Fig. 3 with rain data for Europe is of approx. 1.5 MB, whereas
the size of the QuadTile JSON file used in Fig. 1 is of approx.
15 MB (zipped JSON file). Moreover, using QGIS 3.0, it was
much faster to open and handle the data in GeoTIFF than in
GeoJSON. This shows an advantage of using GeoTIFF image
format instead of JSON format, especially for embedded sys-
tems. While GeoTIFF format is widely used for geographic
information systems, QuadTile JSON is also frequently used,
because of the general advantages of using JSON, like pars-
ing customization, portability, easy integration and readabil-
ity, among others. Furthermore, note that tools like Rasterio5,
provide diverse functionality to read and write GeoTIFF files
and to use Python with N-dimensional arrays and GeoJSON.
We considered both QuadTile JSON and GeoTIFF formats be-
cause we want to keep both easy handling and small size, resp.,
as well as the possibility to evaluate two different providers.

2.2 Data Output

Our precipitation service supports a number of different out-
put data formats. The most relevant output format is the data
format used by the map overlay system in the car. This map
overlay system is a pre-existing software component built into

4 https://trac.osgeo.org/geotiff
5 https://rasterio.readthedocs.io
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Figure 3. Example of rain data in GeoTIFF format for Europe

a large number of cars all over the world. Due to privacy reas-
ons, we cannot disclose complete information about this over-
lay system. However, we can mention that it allows developers
to add arbitrary objects, like images or geometric shapes, on top
of the navigation map displayed on the screen. These overlay
objects need to be defined in a JSON document with a specific
structure. Our precipitation service can generate such map over-
lay JSONs, in particular, we focused on the following JSON
formats: LeafletJSON, GeoJSON and MOSJSON. This latter is
our special ”Map Overlay System” JSON, which contains only
the most relevant information for the car map system. While car
navigation maps are our main target, we also enabled our solu-
tion to deliver precipitation data via apps and websites. For this
purpose we defined a second data format, again in JSON, but
specific to our precipitation use case. In comparison to the map
overlay data format, which was designed to support a wide vari-
ety of map features, the clear focus in the second data format
results in a much more concise - and also easy to understand
- structure, which in turn decreases the amount of data that is
needed to encode a given precipitation situation. As a third out-
put format, the precipitation service also supports GeoJSON6,
an open standard for encoding geographical information. This
allows our service to exchange data with a wide range of applic-
ations, for example to export and render precipitation data. In
addition to these data formats meant for delivering data to other
software systems, the precipitation service is capable of encod-
ing precipitation data in Leaflet7 format for faster validation us-
ing interactive web mapping, as well as, in binary formats that
are used internally to exchange and cache information.

2.3 Data Preparation

Our precipitation system allows to modify precipitation data in
different manners. When creating map overlay JSONs, one
modification step that always needs to be done is splitting up
precipitation areas that have holes in them. It might happen, for
example, that it is raining in large parts of a given region, but
there are few small areas within that region where there is no
rain at all. In this case our system deals with a large precipita-
tion area that has holes inside. While this case is handled prop-
erly by our system, the map overlay system in the car may not
support shapes with holes. Therefore we split for each hole the
surrounding shape into two parts, with the cutting line around
the hole, so that we end up with two shapes that do not have
a hole anymore, but together still exactly resemble the original
precipitation area. Another modification step that we regularly

6 https://geojson.io/
7 https://leafletjs.com/

apply for all output formats is binning. From our data sources
we receive iop values on a fine-grained scale. However, for our
users we want to distinguish only between few levels of rain.
For this, we use the following classification for iop specified in
mm per 15 min: (i) Light rain: iop is less than 0.5 mm; (ii) Nor-
mal rain: iop between 0.5 mm and 2 mm; and (iii) Heavy rain:
iop is larger than 2 mm (MetOffice, 2012).

When dealing with precipitation data for large areas, like whole
continents or even multiple continents at the same time, we ob-
served performance issues, both in our precipitation service and
in the clients rendering the output data. Therefore we intro-
duced a number of optional modification steps that allow to re-
duce the amount of data. The first of these options restricts all
data handling to a requested bounding box. This way we could
set up several instances of the precipitation service in parallel,
with each of them being responsible only for a certain area of
the world, for example one service per country. Additionally,
clients usually only show a small part of the world in their map
viewer at a time. Thus it makes sense for them to dynamically
request precipitation data only for the specific bounding box
they are currently rendering. The second data reduction op-
tion is to define the outline of each precipitation area on a more
coarse-grained level, omitting some details of its exact shape.
This is particularly useful for clients which display precipita-
tion for very large areas. In such cases, fine-grained details are
usually not needed. Finally, we also included the option to set a
hard limit on the output data size. With this option, all precip-
itation areas which would make the output bigger than allowed
are simply discarded instead of being written to the output.

3. CLOUD APPEARANCE

In this section we review how to properly present different
levels of precipitation. We discuss different options for the
cloud appearance like color, shape and opacity, taking into ac-
count that the precipitation information in the navigation system
should be visible, intuitive and useful to the driver.

3.1 Color Scheme

In infographics design, it has been shown that a rainbow gradi-
ent or heatmap which uses the full color spectrum may not be
intuitive for the user. For example, it may not be clear for the
user if a purple is a higher value than a deep red. Such situ-
ation may not be desirable for car navigation systems because
it would need extra legends to explain the color meaning. Data
mapped onto an alpha gradient of the same color would sim-
plify interpreting values because more opaque areas will be per-
ceived as stronger than more transparent areas. However, using
transparent rain clouds may be problematic due to the underly-
ing map mixing color with the rain clouds. This would result in
brighter and darker areas with the same rain intensity. On the
other hand, brighter colors are perceived as less intense than
darker ones. Thus, we recommend using a simple brightness
gradient to map the precipitation intensities to the rain clouds.
To make the appearance of the rain clouds more pleasant, we
added a limited hue gradient to the different intensities.

In this paper, we focus on precipitation only, however, note that
to differentiate between rain and snow, we suggest to use diver-
ging color gradients which will provide a complementary con-
trast. While the gradient for the rain goes from lighter blue to a
dark blue to harmonize with the rest of the UI, the intensity of
the snow could be mapped from light yellow to a dark red as it
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is shown in Fig. 4. Moreover, hail could be shown with a pink
color. Note also that in some countries there are conventions
and customs to visualize rain information, while in Europe typ-
ically rain would be shown in blue, in the US for example, rain
is typically visualized with yellow red color gradients.

Figure 4. Color scheme for rain (blue), snow (yellow-red) and
hail (pink).

3.2 Cloud Shape

The main idea of polygon smoothing for rain clouds is to beau-
tify the shapes of the polygons. Although it is possible to render
complex cloud formations, the shape of the polygons should be
as simple as possible for fast-processing and easy interpretation
in car navigation systems. In general, whenever we process any
cloud shape there can be loss of information. For example, the
more smoothness we apply to a cloud, the more information
will be lost from the original pixelized cloud. For this, Fig. 5
(top) shows different possible cloud shapes for displaying in a
car-navigation system. We suggest to apply some smoothness
but just enough to avoid pixelized clouds such that the minor
loss of information does not affect the overall accuracy. An-
other advantage of using a more rounded and smoothed appear-
ance for the clouds is, that they will stay in higher contrast to
the mostly straight lines of the roads, ensuring their readability.

Figure 5. Top: cloud shapes for navigation systems: pixelated
(left), rounded (middle) and smoothed (right). Bottom: example

of rain cloud (blue) and snow (yellow red) shapes with 85%
alpha transparency.

3.3 Cloud Opacity

We suggest to use clouds with a very low amount of transpar-
ency to reduce overloading the map. In this manner, the clouds
will not be affected by the underlying map and they will be
readable without distracting the driver. Note that the color of

the clouds can be very close to important map elements like
roads, lakes and rivers. To make these elements to appear, they
should contain a border or drop shadow which should be active
when the rain-map is active. We suggest to use 85% alpha as
it is shown in Fig. 5 (bottom). Note that clouds are readable
and information from background is still visible, where rain is
represented in blue and snow in yellow red colors. If we de-
crease or increase the alpha value then clouds would be either
not readable because the background would heavily influence
them or readable but all further map information would be lost,
respectively.

Fig. 6 shows an example of our design concept for rain cloud
shapes for a car navigation system. Note the good readability of
the information about the road map features, route navigation
and precipitation. Moreover, blurring the clouds results in a
overall reduced readability, as different intensities of rain can
sometimes not be clearly distinguished. Therefore, we do not
suggest to add blur nor borders to the rain clouds.

Figure 6. Example of rain cloud (blue) and snow (yellow red)
shapes on a navigation system.

4. ARCHITECTURE

Fig. 7 shows the architecture of our system. On the right, the
two precipitation data providers, for each one, there is a separ-
ate pipeline which imports and prepares the corresponding data
from our providers. The first step of such a pipeline is an im-
port process that is triggered every 15 minutes. It downloads
the latest data from the respective data provider, converts it to
our internal binary storage format and persists it, in a file named
”Provider Cache”. Once finished, the importer process triggers
the output converter process, which reads the latest data from
the provider cache and runs the corresponding data preparation
steps described in Section 2.3. Specific parameters for the data
preparation options are configurable when setting up a pipeline.
After all configured intermediate transformations have been fin-
ished, the output converter process converts the precipitation
data to the map overlay JSON format so that it can be consumed
by the cars. The results are persisted in a file.
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Figure 7. Microservice architecture of the rain map feature system.

Cars request the latest precipitation data via HTTP and a stand-
ard web server is used to serve the respective files. Since precip-
itation data is stored in simple files, common web servers can be
used for this purposes. On the car, we let the user choose which
data to display and this will be requested accordingly. Due to
the design of the map overlay system, the car also needs to re-
quest some additional information. This data is independent of
the actual precipitation data and contains style definitions, like
the color of displayed polygons, borders, etc. These style defin-
itions are static, so by putting them in a file, they can easily be
served by the described web server.

The architecture described so far is built around the idea of pre-
computing the precipitation data that is sent to our cars. This
approach allows for low latency and uses only little computing
resources. However, it does not allow us to adapt precipita-
tion data to particular requirements of each car. As outlined
in Section 2.3, especially problematic is the large amount of
data and rendering resources needed to update the full precip-
itation status on every car. For this reason, our architecture in
Figure 7 also allows cars to request individually adapted pre-
cipitation data from an alternative server, called ”dynamic pre-
cipitation server”. This server reads precipitation data from
the provider caches, adapts it as requested by its clients, and
serves it to them. Supported adaptions include the conversion
to any of the JSON formats mentioned in Section 2.2, selecting
data for a given bounding box and discarding all data beyond
a chosen output data limit as described in Section 2.3. In ad-
dition, the dynamic precipitation server allows the modification
of the style definitions of the displayed precipitation areas dy-
namically. With both the standard web server and the dynamic
precipitation server in place, we can compare both approaches
and data providers with regards to latency, output data size, re-
quired computing resources, flexibility, etc.

5. IMPLEMENTATION

Fig. 8 shows the internal structure of our implemented applica-
tion. There are two entry points to our application, Command-
LineMain and RainWebServer. CommandLineMain class, this

is the entry point for running the whole pipeline which: (i) im-
ports precipitation data from a provider; (ii) performs any num-
ber of configured intermediate operations on it; and (iii) out-
puts it in a chosen format. While the data processing itself is
handled in separate classes, CommandLineMain is responsible
for handling command line parameters and setting up the data
processing classes and their configuration accordingly.

Data processing is split as follows: importing data, buffering
data, limiting data and exporting data. These steps are handled
by a Source class, the Buffer class and a Sink class, respectively.
Source and Sink have several sub-classes. They manage import
and export settings, respectively, and implement common func-
tionality, but leave the handling of specific input and output data
formats to the sub-classes.

Source has a sub-class for each of our two data providers, cap-
able of importing data in the specific format used by the respect-
ive provider. Provider1Source for example has the optional
capability to import data for a specific bounding box. A third
Source, FileSource is used for experimentation purposes. Our
application and its various data processing options can easily
be tested, for example, we added functionality to export/import
precipitation data directly to/from a file, respectively. The im-
porting from such a serialized file is the task of FileSource, and
it supports several different serialization formats.

Source classes generate precipitation data for one location at a
time. Sink classes on the other hand need a collection of all
existing precipitation locations before they can start generat-
ing any output. For this reason, we added the Buffer class in
between. It collects all precipitation data generated by a Source
and forwards it to the - potentially multiple - connected Sinks
only when the Source has finished. It is here where the option
to impose a hard limit on the data size is implemented.

Sink has a sub-class for each supported output data format:
GeoJsonSink, LeafletJsonSink and MOSJsonSink (where
”MOS” stands for ”Map Overlay System”). These classes con-
tain logic for smoothing polygons, assigning colors to iop val-
ues, etc. There is also a SerializedFileSink for the serialization
use case described above. In addition, there are several model
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Figure 8. Internal structure of our implementation.

classes as well as helper classes for logging, serialization, etc.
We rely on the geotools8 library for some of the more advanced
geospatial operations in our application.

The second entry point to our application is RainWebServer, a
server that creates precipitation data on the fly as requested by
its clients. To achieve low latency, this server does not make
use of a full Source - Buffer - Sink chain. Instead, in terms of
data input, it is specialized on reading serialized data from a file.
In other words, the need for a Buffer is eliminated by reading
the whole file before processing it. RainWebServer has its own,
specialized functionality to limit data size and it also allows
to limit output precipitation data to a configured or requested
bounding box. For encoding the output, however, the server
class makes use of some of the aforementioned classes, namely
the three JSON-related Sink classes.

The system we implemented fetches precipitation data from ex-
ternal providers, whose names are not disclosed due to privacy
concerns. The job of our backend components is to request this
data periodically, convert it to polygons that can be digest by the
navigation system in the motor vehicle and bring this polygons
as a map overlay to the digital map. For this, we implemen-
ted the following steps: (i) fetch precipitation data; (ii) convert
precipitation data to microservice format; and (iii) delivery of
precipitation data to the car. To improve performance, note that
the server should dynamically select precipitation data on de-
mand for a requested bounding box only

Fig. 9 shows our current implementation of the rain map poly-
gons in the car navigation system in 2D and 3D respectively. In
our implementation we used Java together with GDAL libraries
to read GeoTIFF files. Another option is to use Rasterio which
provides a much developer friendly experience and performs
just as fast as GDAL’s Python bindings.

5.1 UI Integration

The rain map is a feature that should be easy and fast to ac-
tivate by the car driver. Especially in regions of the world
where weather can change very fast, it is needed that the user
can quickly check if there will be heavy rain on the road
ahead. Therefore, the rain map feature should be easy to access.

8 https://geotools.org/

Figure 9. Implementation of our rain map feature on a car
navigation system: (top) 2D and (bottom) 3D views.

Ideally it should be activated from the top level of the naviga-
tion interface, without the need to tap or scroll through menus.
Therefore, a button to activate the rain map feature could be
placed directly on the navigation interface. This button can be
used to communicate the status of the feature too, i.e. if it is ac-
tivated or not, if data is available or not, etc. For this, a glowing
border and a brighter, more saturated color can tell the active
state and a rotating throbber can indicate whenever the feature
service needs to fetch data to update the rain map. If the fea-
ture is activated through a menu, an icon on the main interface
should communicate an active state. In both cases, the feature
should also be accessible using speech with some command like
”show me the rain map” or ”show me where it rains”. If there
is no service available, or an error occurs while fetching data,
a second icon should be displayed communicating to the user,
that the rain map is activated but not functional. Ideally, a user
research study should be conducted to assess the acceptance of
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the feature, i.e. to determine if a legend is necessary and to de-
termine also the level of extra information detail needed by the
user. Note that the appearance and location of the button has to
be in line with UI design guidelines of the specific platform.

There may be a problem regarding the activation of the rain
map on higher zoom levels. It may be possible, that a cloud
will overlay the whole screen. Without a visible polygon shape,
the blue region will not be recognized as a cloud as it would
not provide any context to the user. Therefore, it is necessary to
hide the cloud polygon in higher zoom levels and substitute this
with an icon indicating the intensity of the rain. The intensity
can be communicated with different types of icons, each one
with different amount of rain drops and colored shape indicat-
ing the intensity of the rain according to the used color gradi-
ent. Another option is to just hide the cloud and to not show
any further information, just as pedestrian and private roads are
not shown at lower zoom levels.

6. CONCLUSIONS AND FURTHER WORK

In this paper, we propose a system to integrate rain information
as a map feature for motor vehicle navigation systems. We dis-
cussed the usage of two different input data formats: QuadTile
JSON files and GeoTIFF images. And the output data formats:
GeoJSON, LeafletJSON and MOSJSON with the most relev-
ant information for the map overlay system. We also discussed
different important properties for the rain cloud appearance in
a navigation system. We presented in detail our microservices
architecture, and discussed some important issues when deal-
ing with data pipelines and implementation of such systems in
cloud and embedded systems.

Further work includes to improve the shape of the polygons.
Our current polygons have perpendicular sides (pixelated). In
Fig. 10, we show some problems we found when applying
smoothing to our pixeled polygons. One problem occurs when
placing polygons on top of each other, which leads to unreal-
istic cracks or fissures in the clouds. Further work includes fur-
ther testing of algorithms to find the most suitable algorithms
that generate polygons leading to smooth rain clouds for the
navigation system. For this, several libraries can be found, for
example psimpl or boost: simplify, both libraries for polyline
simplification using Douglas-Peucker algorithm (Douglas and
Peucker, 1973). A different promising approach is the use of
k-means or DBSCAN clustering algorithms to locate clusters of
points, i.e. rain clouds that belong together and as a second step
a convex hull algorithm to find a coarse polygon that covers all
points in the cloud (Ada et al., 2018).

In general, there is a trade-off on using large contour polygons
over small size polygons for visualizing the rain clouds in motor
vehicle navigation systems. The advantage to use large contour
polygons is that this leads to short JSON file size, which means
higher performance, and fast processing of the rain map fea-
ture in the navigation systems. The disadvantage, however, is
that the shape of some polygons may be too generic, falsify-
ing rain information, i.e. showing rain clouds where there is no
rain at all, or on the contrary, showing no rain where it is actu-
ally raining. How to deal with these too generic polygons? We
can either prevent their formation adding some extra logic, or
we can fix them by adding some extra computations to dissect
these polygons. If possible, the former would be a much better
approach. On the other hand, when we use small size poly-
gons, the advantage is that of simplicity, no extra computations

Figure 10. Smoothing problem when over-posing cloud layers.

are needed to determine the most proper rain cloud polygon
shapes. Another advantage is that pixeled clouds are already
familiar for the end users, as they already know the meaning of
these rain clouds and shapes from mobile or desktop rain radar
applications. Thus, drivers would immediately recognize them
and understand their meaning when they see them for the first
time in the car navigation system. However, the disadvantage is
that the performance of the navigation system would decrease,
the larger the JSON file, the larger the CPU computation in the
embedded system, where resources are usually scarce.

Further work also includes presenting precipitation in 3D in a
much convenient form as it is shown in Fig. 9 (bottom). One
suggestion is to render the clouds in the 3D view on a common
height above the horizon as shown in Fig. 11. Atmospheric
perspective is used to minimize visual clutter due to clouds in
the background and in order to give the user a reference to es-
timate the distance to the clouds. The shape of the clouds in
Fig. 11 is the same as in the top-down view in Fig.6, they are
only rendered as flat polygons. A polygon could be drawn down
from the cloud to give a better understanding of the area where
the rain is present. An alpha gradient can be applied to the
clouds to avoid covering objects behind the polygons. It would
be also useful to investigate how to differentiate intensities of
blue in 3D. For this, some frameworks are available for web-
based real-time 3D visualization of large-scale weather radar
data using 3D tiles and WebGIS technology (Lu et al., 2021).
This 3D tiles technology is really promising as it is an open spe-
cification for online streaming 3D geospatial datasets with high
rendering performance and low memory consumption.

Further work is also to validate and integrate information from
different sources, assessing the best accurate data to provide
the most reliable information to the final user. This includes
data that can also come directly from the fleet of vehicles that
are clients of the service. This approach of harvesting precipita-
tion data from client vehicles was not part of our current imple-
mentation and it is left as further work. Nevertheless, each indi-
vidual vehicle on the street can sense for raining - by checking
the status of the windshield wipers, wipers speed, etc. There-
fore, some information could flow from the car to the backend
to update the rain nowcasting. And since cars are also equipped
with GPS, our precipitation service could be extended to com-
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Figure 11. Design concept for rain map feature in 3D.

pute a precipitation map based on the collected data. Note
also that some countries provide also free weather information,
for example, in Germany the Deutscher Wetterdienst (DWD)9,
through the CDC (Climate Data Center) they offer free access
to many climate data of the DWD. The service we propose in
this paper is designed in such a flexible way that allows dif-
ferent data sources - as demonstrated already with the existing
providers - so that integrating this computed map as another
data source is already enabled by our concept.

Some extra features (for example to show information on aver-
age and variance of rain precipitation) can be also included in a
navigation route. Recent approaches have shown the possibil-
ity to predict dangerous roads under certain weather conditions
(Reichenbach and Navarro-B., 2021). This approach could be
integrated in the system proposed in this paper to help warn the
driver not only about coming rain storms and severe weather
situations, but also roads and junctions that are particularly dan-
gerous during heavy precipitation. Finally, it is feasible to in-
clude animated rain by showing in which direction the rain is
moving. The main problem for an animated feature is safety,
the driver could be distracted or annoyed by the animation.
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