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ABSTRACT:

A range of different and increasingly accessible acquisition methods, the possibility for frequent data updates of large areas, and a
simple data structure are some of the reasons for the popularity of three-dimensional (3D) point cloud data. While there are multiple
techniques for segmenting and classifying point clouds, capabilities of common data formats such as LAS for providing semantic
information are mostly limited to assigning points to a certain category (classification). However, several fields of application,
such as digital urban twins used for simulations and analyses, require more detailed semantic knowledge. This can be provided by
semantic 3D city models containing hierarchically structured semantic and spatial information. Although semantic models are often
reconstructed from point clouds, they are usually geometrically less accurate due to generalization processes. First, point cloud data
structures / formats are discussed with respect to their semantic capabilities. Then, a new approach for integrating point clouds with
semantic 3D city models is presented, consequently combining respective advantages of both data types. In addition to elaborate
(and established) semantic concepts for several thematic areas, the new version 3.0 of the international Open Geospatial Consortium
(OGC) standard CityGML also provides a PointCloud module. In this paper a scheme is shown, how CityGML 3.0 can be used to
provide semantic structures for point clouds (directly or stored in a separate LAS file). Methods and metrics to automatically assign
points to corresponding Level of Detail (LoD)2 or LoD3 models are presented. Subsequently, dataset examples implementing these
concepts are provided for download.

1. INTRODUCTION

Three-dimensional point cloud data are increasingly relevant in
the context of several (emerging) applications such as digital
urban and environmental twins, Building Information Model-
ing (BIM), autonomous driving, city modeling, and many oth-
ers (Virtanen et al., 2017). One of the advantages of point
clouds is the possibility to generate these data automatically
for large areas and, thus, to enable frequent updates. Further-
more, due to its uniform structure based on point geometries,
point clouds are easy to use by geospatial algorithms (Xu and
Stilla, 2021). Point clouds are often the foundation from which
semantic models in different formats are derived. Processes
such as ”Scan-to-BIM” still vastly rely on manual modelling,
especially when it comes to object structuring and aggrega-
tion. Most semantically rich data formats do not support the
integrated representation of point cloud geometries. Thus, the
link between original point cloud data and resulting semantic
models is mostly lost. Conversely, semantic models are of-
ten generalised and could benefit from geometrically more de-
tailed information provided by corresponding point cloud data.
Also, there are tools and applications working with point cloud
data directly, that avoid the sometimes costly and complex step
of deriving semantic models from point cloud data (Peters et
al., 2015). Semantic interpretations of 3D point clouds are of-
ten done but mostly limited to classification. Common point
cloud formats (such as LAS) typically offer labels for assign-
ing points within a point cloud to a certain category (such as
Building or Vegetation). However, point cloud data with addi-
tional semantic information would be beneficial for several do-
mains (Poux, 2019). In this paper, a new approach for bridging
the gap between geometrically highly detailed point clouds and
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semantically rich 3D city models is presented. The following
research methodology is applied. First, semantic capabilities
of established point cloud formats such as LAS are investig-
ated and relevant literature in the context of semantically en-
riching point cloud data is discussed. Then, based on these
findings capabilities of the newly introduced PointCloud mod-
ule of the international OGC standard CityGML version 3.0 are
examined. Different methods for integrating point clouds with
semantic city models using the PointCloud module are presen-
ted and discussed. It is shown that semantic structures provided
by CityGML can be applied to point cloud data stored in typical
formats such as LAS. Then, an exemplary algorithm, including
methods and metrics for assigning point cloud (parts) to cor-
responding semantic models is presented using existing LoD3
models in combination with Mobile Laser Scanning (MLS) data.
Furthermore, in order to demonstrate the practicability of the
presented concepts, several examples for point cloud data coup-
led with LoD2 city models are shown and provided as Open
Data.

2. DISCUSSION ON (SEMANTIC) POINT CLOUDS
AND RELATED WORK

2.1 Three-dimensional point cloud data

Point clouds are generally defined as a set of 3D points, each
represented using X-/Y-/Z-coordinates and optionally accom-
panied with additional information on color (e.g. RGB values),
intensity, or other attributes. The acquisition of point cloud data
has become faster, more affordable and, thus, more accessible
in recent years. (Xu and Stilla, 2021) provide an extensive re-
view on point cloud data generation methods. Point cloud data
acquisition techniques can be divided into two main categor-
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ies - on the one hand ranging-based principles that use active
methods for deriving 3D coordinates, such as ”Light Detec-
tion and Ranging” (LiDAR) or time-of-flight (ToF) systems;
on the other hand imaging-based concepts that use triangula-
tion techniques and stereo images to generate 3D points. (Xie
et al., 2020) give an overview on advantages and disadvantages
of various point cloud data sources and list corresponding ap-
plications. (Shahzad and Zhu, 2015) present an approach for
reconstructing 3D building shapes from spaceborne synthetic
aperture radar (SAR) point clouds. Potential future data sources
may include laser scanners used by autonomous driving cars
scanning their environment (Behley et al., 2013). Tackling the
task of storing, managing and analysing the often huge amounts
of point cloud data is subject to ongoing research (van Oost-
erom et al., 2015, Vo, 2017). (Meyer and Brunn, 2019) dis-
cuss possibilities for storing and processing massive point cloud
data using spatial database systems. Among other advantages
of databases, this allows relating point cloud data to other types
of spatial (or non-spatial) data within the database. Raw point
cloud data already provides highly detailed geometric repres-
entations of real-world objects but does not include additional
semantic information. Thus, point cloud data are often segmen-
ted, classified, and further processed.

2.2 Point cloud segmentation, classification, and processing

While the aforementioned methods allow the acquisition of large
and geometrically accurate point clouds, this data needs to be
further processed in order to be usable for many applications.
In a first step, point clouds can be grouped into parts with sim-
ilar properties (segmentation), in a second step these regions
can then be labeled according to a specific class (classification).
Some methods directly conduct a semantic segmentation gen-
erating labelled points from raw data. In computer vision and
deep-learning applications, the task of assigning labels to points
within a point cloud is also referred to as ”Point Cloud Se-
mantic Segmentation” (PCSS) (Xie et al., 2020). (Grilli et al.,
2017) present a detailed review on different techniques for seg-
menting and classifying point cloud data. Recently, 3D neur-
onal networks have been used for improving segmentation and
classification methods. An example of a classified point cloud
with each point assigned to a specific category is depicted in
Figure 1. These classified point clouds can then be the found-
ation for creating semantic models in formats such as Open-
DRIVE, Industry Foundation Classes (IFC), or CityGML. De-
tecting and generating shapes and objects from point clouds has
been done for quite some time (Vosselman and Dijkman, 2001,
Schnabel et al., 2007). (Xu and Stilla, 2021) present numerous
methods for object reconstruction from point clouds in the con-
text of building and civil infrastructure. Digital Terrain Mod-
els (DTM), Digital Surface Models (DSM) or Mesh models are
also commonly generated from point cloud data.

Figure 1. Colored point cloud (left) and classified point cloud
(right); brown=ground, red=building, green=vegetation

2.3 Point cloud data formats / LAS

While there are many data formats available for working with
point cloud data, the LAS format is regarded as the industry
standard for the storage and interchange of LIDAR (or other)
point cloud data. Thus, the current LAS Specification 1.4, spe-
cified by the American Society for Photogrammetry and Remote
Sensing (ASPRS, 2018) is examined and discussed. LAS files
contain binary data with a so-called Public Header Block at the
beginning of each document, followed by any number of (op-
tional) Variable Length Records (VLRs, e.g. projection inform-
ation, metadata, etc.), Point Data Records, and any number of
(optional) Extended Variable Length Records (EVLRs, allow
a higher payload than VLRs and can be appended to the end
of an LAS file). There are currently 11 different Point Data
Record Formats, differing in available data fields (sometimes
referred to as ”components”). Point Data Records contain data
fields with information for each individual point within a point
cloud including X-/Y-/Z-coordinates, intensity, classification,
and other attributes. The specification provides a code list for
several classification types such as (but not limited to) Unclas-
sified, Ground, Building, Water, Vegetation, Rail, or Road Sur-
face, while also allowing user definable codes. Another com-
ponent called ”Point Source ID” is used for indicating the file
from which a point originated. A compressed variant of LAS
called LAZ is also commonly used. LAS does not provide any
concepts for semantic object structures such as hierarchies or
aggregation. One of the reasons for the popularity of the LAS
format is its simplicity and easy-to-use structure. While in prin-
ciple extending LAS point data records with additional user-
defined attributes (using extra bytes) is possible, there are no
guidelines for making use of this concept in the context of ex-
tended semantic capabilities. Furthermore, software tools likely
will not be able to interpret these additional attributes. Since at-
tributes can only be assigned to points, the LAS format is not
capable of storing information on objects that are not represen-
ted with at least one point.

2.4 Related work on extending the semantic capabilities of
point clouds

The term ”semantic point cloud” usually merely refers to points
assigned to certain categories (see section 2.2), whereas ”se-
mantic 3D city model” has a more comprehensive meaning.
This includes hierarchically structured and topologically con-
nected representations of objects in combination with a num-
ber of available attributes. Integrating point cloud data with
structured knowledge and semantics (beyond classification) can
be beneficial for several applications, domains, and decision
making (Poux, 2019). However, there are few concepts for
extending semantic capabilities of point clouds. (Rusu et al.,
2008) discuss a point-cloud-based object map for robotic as-
sistant systems. (Ben Hmida et al., 2012) propose a knowledge-
based detection of objects in point clouds by extracting this in-
formation from databases, CAD plans, GIS, and other sources.
Detected objects are then annotated with semantic information.
(Aljumaily et al., 2019) present a method for enriching point
clouds with semantic information based on GIS data aiming to
improve point cloud classification results. User-defined LAS
labels are used in order to introduce additional classification
tags. (Poux, 2019) describes a data model for a ”Smart Point
Cloud (SPC) infrastructure” providing a conceptual framework
for the semantic enrichment and structuring of point clouds.
This model is split into three conceptual levels. Level-0 de-
scribes a generalized SPC meta model. Here, ”SemanticPatches”
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are defined as small subsets of points with a shared relation-
ship based on available knowledge (e.g. point belonging to
a plane). Each semantic patch can retain attributes including
classification status and confidence of classification. Level-1
contains a connection-layer meta model divided into two sub-
levels. Level L1-1 contains ”ConnectedElements” aggregated
from closely related ”SemanticPatches”, which again can be
aggregated to ”AggregatedElements” (e.g. a table could be de-
scribed using 5 ”ConnectedElements” (4 feet and 1 tabletop),
or 1 ”AggregatedElement” for the entire object). Additionally,
”ConnectedElements” can relate to ”Spaces” defined as a set
of dimensions. In a lower abstraction level L1-2, ”Spaces”
and ”ConnectedElements” are connected to ”Sub-spaces” and
”WorldObjects”, that constitute the entry points on which dif-
ferent domain ontologies / specializations can be integrated in
level-2 (Poux et al., 2017), (Poux et al., 2018). (El-Mahgary et
al., 2020) present a concept for splitting semantic and geometric
information of point cloud data using two separate files (called
”Points” and ”Semantics”). Both files have exactly the same or-
dering of points and corresponding semantic information and,
thus, do not need indexing. While the file ”Points” contains
four columns (X, Y, Z, and Intensity) the file ”Semantics” only
provides one semantic label or class ID per corresponding point.
This does not allow the representation of hierarchical structures
(such as a door being part of a facade part of a building) but
enables each point to be referenced to a specific object (e.g. via
an integer representing the building ID of a specific building),
rather than a classic label only indicating that points are of a cer-
tain category (e.g. buildings in general). Methods presented so
far always use point cloud data as the foundation for extended
semantic concepts. Thus, objects where no point data are avail-
able (e.g. obscured backyard facades) also cannot be repres-
ented. In contrast, standards such as CityGML allow the stor-
age of objects independently from geometric correspondences
(e.g. rooms within a building can be represented, even when
no geometric representation is available). (Krijnen and Beetz,
2017) suggest an extension to the Industry Foundation Classes
(IFC) (ISO16739-1, 2018) to integrate point cloud datasets for
harmonizing these two data types. They point out that a point
cloud structured according to the semantics of the IFC schema
allows the search, selection, and use of specific point cloud sub-
set clusters. Furthermore, potentials of segmenting point cloud
data according to explicitly modelled semantic objects for effi-
cient visualization and analysis purposes are presented. How-
ever, drawbacks of combining these two different data types
within one common storage format are also discussed. These
include a more complicated update process of the data, miss-
ing software for working with unified IFC / point cloud data
and the increasing file size compared to original IFC files. (Vir-
tanen et al., 2017) describe the possibility of including object-
specific semantic information in a point cloud by adding a na-
tional building ID to all points belonging to a corresponding
building.

2.5 Potential of coupling point clouds with semantic 3D
city models

Digital 3D city models are commonly used for a variety of ap-
plications (Biljecki et al., 2015). One of the main advantage
of these models is the consistent integration of geometric, se-
mantic and topological information (Kolbe and Donaubauer,
2021). The international OGC standard CityGML is widely
used for modelling semantic 3D city models. Real-world ob-
jects are modelled in a hierarchical structure and segmented
by thematic modules. These include models of buildings, ter-

rain, vegetation, or the streetspace (Beil et al., 2020). Semantic
capabilities of 3D city models in combination with geometric-
ally highly detailed point cloud data have great potential for
several applications. Point cloud data have been a source for
generating digital urban environment models from the begin-
ning (Haala and Brenner, 1997), (Kolbe et al., 2009). (Prieto
et al., 2012) describe the complex task of generating CityGML
(building) models from point cloud data. LoD2 building mod-
els are often derived from LiDAR generated point clouds (Or-
tega et al., 2021). (Murtiyoso et al., 2020) present a workflow
for automatic roof extraction from point clouds for the genera-
tion of CityGML models. Workflows for modelling CityGML
tree objects from point clouds are presented in (Gobeawan et
al., 2018). This close relationship between these two data types
is mostly lost. However, concepts for integrating point clouds
with semantic 3D city models would come with several advant-
ages. Information on semantic affiliation of point cloud sub-
sets to individual objects can be beneficial for quickly identi-
fying parts of a point cloud relevant for a specific task or ap-
plication. A thematic search of point cloud data can be per-
formed using semantic information. As mentioned before, large
point cloud datasets require spatial indexing for efficient visu-
alization and analysis. Semantic information could be used for
improving these decomposition strategies by segmenting point
cloud data according to semantic structures (Krijnen and Beetz,
2017). There are tools for visualizing semantic 3D city models
using an extension to the CesiumJS WebGL virtual globe (Yao
et al., 2018). Similarly, point cloud data can be transformed to
Cesium 3D tiles to enable a combined visualization of both data
types1. This allows for a direct comparison of large semantic
city models with corresponding point cloud data in an efficient
way. Conversely, semantic city models such as buildings are
generalised representations of real-world objects. While this is
sufficient in many cases, emerging applications such as virtually
testing autonomous driving vehicles require more detailed geo-
metrical information of the environment (Schwab et al., 2020).
While building models in LoD2 have become a standard for
most city models and can be generated (semi-) automatically,
creating even more detailed structures or indoor models is time
and cost intensive. Thus, it might be useful to represent these
models using point cloud geometries directly. Several cities
including Helsinki or Munich have created visually appealing
mesh models as well as semantically rich 3D city models from
(imaging-based) point cloud data. In the future, a link between
these two datasets could be directly realised during the gen-
eration process of these models. (Poux, 2019) points out that
while point clouds often serve as a foundation for creating mod-
els in GIS, CAD or BIM, ways for a direct integration of point
clouds with these data types are very limited. Thus, in the fol-
lowing section possibilities for bridging the gap between 3D
point clouds and semantic 3D city models are presented and
discussed using capabilities of the new version 3.0 of the inter-
national CityGML standard.

3. INTEGRATION OF POINT CLOUDS WITH
SEMANTIC 3D CITY MODELS

3.1 Conceptual approach using CityGML 3.0

Version 3.0 of the international OGC standard CityGML will
come up with several new and revised concepts to improve the
use of CityGML in many areas of application including Smart
Cities, urban planning, and traffic analyses (Kutzner et al., 2020).
1 https://github.com/tum-gis/cesium-point-cloud-generator
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CityGML has a modular structure allowing applications to em-
ploy only those concepts that are relevant to them. The so-
called Core module defines the base concepts that need to be
implemented by all applications, such as the LoD concept with
the geometries. The objects of the built environment are defined
in thematic modules like Building, Transportation, or Vegeta-
tion. In addition, several modules define concepts that are ap-
plicable to all thematic modules, such as Appearance, or Gen-
erics. The newly introduced PointCloud module in CityGML
3.0 also falls into this category.
CityGML 3.0 introduces a new Space concept in the Core mod-
ule that is of fundamental importance to the semantic structur-
ing of 3D city models. All city objects are semantically dis-
tinguished into spaces and space boundaries. Spaces represent
objects with volumetric extent in the real world (e.g. buildings,
water bodies, or transportation spaces), whereas space bound-
aries represent objects with areal extent in the real world that
delimit and connect spaces (e.g. wall surfaces, water surfaces,
or road surfaces). Spaces are, furthermore, distinguished into
physical spaces and logical spaces depending on whether they
are bounded by physical or virtual boundaries. Buildings and
rooms are considered physical spaces, as they are bounded by
wall and roof surfaces, whereas the division of a building into
publicly accessible areas and areas with restricted access is of
purely virtual nature. Physical spaces are further classified into
occupied spaces and unoccupied spaces, depending on whether
they occupy space in the urban environment or not. Buildings
and trees, for instance, represent occupied spaces, as the space
that is blocked by these objects is no longer available for placing
other objects in that space. Rooms and transportation spaces, in
contrast, are considered unoccupied spaces, as their space can
still be filled with other objects.
In the CityGML UML model, the spaces and space boundaries
are represented by specific abstract classes in an hierarchical
order (cf. (Kutzner et al., 2020)). The concrete city objects in
the thematic modules are defined as subclasses of these space
and space boundary classes. Figure 2 illustrates this for the
city objects Building, WallSurface, and RoofSurface. Building
is defined as a subclass of AbstractOccupiedSpace, and transit-
ively as subclass of AbstractPhysicalSpace and AbstractSpace;
thus, buildings represent occupied physical spaces. WallSur-
face and RoofSurface are defined as subclasses of Abstract-
ThematicSurface and transitively as subclass of AbstractSpace-
Boundary; thus, these surfaces represent thematic space bound-
aries. The association between AbstractSpace and Abstract-
SpaceBoundary denotes that these surfaces bound the building.
In CityGML 3.0, the LoD concept and the geometries are not
specified individually in each thematic module anymore, but
they are defined centrally in the Core module and are associated
there with the space and space boundary classes. In this way,
the geometries are inherited by all concrete classes in the them-
atic modules and redundancy can be avoided. In addition, the
new PointCloud module allows for representing the geometry
of city objects by 3D point clouds. Figure 3 shows the UML
diagram of the PointCloud module. All city objects that repres-
ent physical spaces or thematic surfaces can now be represented
as point clouds, this also applies to the objects Building, Wall-
Surface, and RoofSurface from Figure 2.

The conceptual design of the PointCloud module allows for
coupling 3D city models with point clouds in different ways:

1. The point clouds are represented inline with the city ob-
jects using MultiPoint geometries. In this way, each city
object (e.g. buildings and even the individual surfaces that
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Figure 3. CityGML 3.0 PointCloud module (CityGML SWG,
2021)

bound the building) can be complemented with its spe-
cific point cloud representation directly in the CityGML
file. Due to the large file size that results from storing the
points directly in the CityGML file, this approach is only
recommended for data sets containing a small number of
city objects, for example, for providing self-contained data
sets for archiving, or for homogeneous structuring in data-
bases.

2. For each city object, a separate point cloud file is provided
(e.g. in LAS or LAZ format) and each city object in the
CityGML file references the corresponding point cloud file.
The disadvantage of this approach, however, is that this
can result in a huge amount of individual point cloud files,
one for each city object represented in the CityGML file.

3. One point cloud file is provided that contains all points
from a specific area. Each point contains information to
which city object the point belongs. In LAS files, this can
be implemented by using the component Point Source ID
and setting it to the same value for all points belonging to
a specific city object. Each city object in the CityGML file
references the point cloud file and all points with the cor-
responding value in the Point Source ID component. Fig-
ure 8 illustrates this approach. Since the Point Source ID
can only store 16 bits, only 65,536 different values are al-
lowed and, thus, a maximum of 65,536 city objects can
reference the point cloud file. This could be improved
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by including the component Classification that allows for
specifying up to 256 different classes. By combining the
two components, 256 × 65, 536 different city objects can
reference the point cloud file. As mentioned in 2.3, the
actual semantics of the Point Source ID component dif-
fers slightly according to the LAS standard, however, it is
considered a reasonable option for reuse. Furthermore, it
would generally also be possible to store the gml:id attrib-
ute of the corresponding CityGML object in an extended
data field of every point. However, many point cloud tools
are not yet able to deal with extended point cloud formats.

Although each approach has its drawbacks, the huge advantage
of all three approaches is that the rich semantics of CityGML
3.0 can be coupled with the simple structure of point clouds.
It is possible to derive semantic information from point clouds
as described in section 2, however, not with the semantic rich-
ness and structure that is required by many applications and
that is provided by CityGML. By coupling CityGML with point
clouds, there is no need to extend point cloud formats to al-
low for representing more semantic information, the existing
semantic concepts from CityGML 3.0 can directly be used to
the full extent. The concepts presented in this section make use
of point cloud data in the LAS format; however, it is possible
to apply this method to all point cloud data formats that allow
the storage of additional attributes for each point. As described
in (Meyer and Brunn, 2019), point cloud data can be managed
by spatial database systems. Thus, using the concepts presented
here, CityGML objects and corresponding point cloud data can
also be stored and linked within a common database.
A remaining challenge is the correct allocation of point cloud
data (parts) with corresponding semantic 3D city models. In
the following section potential metrics for achieving this task
are presented.

3.2 Metrics for associating and integrating 3D point clouds
with semantic models

The methods for associating and integrating point cloud subsets
with objects from a semantic city model depend on the avail-
able input datasets (Wysocki et al., 2021). Thereby, one major
use case is to link an existing semantic city model with a point
cloud obtained from a surveying campaign or more generally a
sensor observation. Figure 4 depicts a proposed approach for
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Figure 4. Method overview for integrating point clouds with
semantic models utilizing quality metrics.

this, where the first step is to cut out a portion of the point cloud
that matches the geometry of a city object and presumably rep-
resents it. However, if the model was created based on the point
cloud, modeling inaccuracies or missing objects can lead to as-
sociation discrepancies. If the point cloud was surveyed at a
later time than the model, changes in the physical environment

will also lead to discrepancies. Thus, metrics are needed to
evaluate whether a point cloud subset adequately represents an
object from the city model and is therefore suitable for integra-
tion.

(i) Semantic model (ii) 3D Buffering (iii) Subset (colorful)

Figure 5. Identification of the point cloud subset (colorful) that
presumably represents the wall surface of the semantic model.

Our test dataset contains MLS point clouds (relative accuracy 1-
3cm; density up to 3000 pts/m2) as well as 50 corresponding
LoD3 building models2, as shown in Figure 5i. To clip the point
cloud for each city object, a 3D buffer for each geometry sur-
face is created in the direction of the surface normal, as depicted
in Figure 5ii. The obtained 3D solids serve as point cloud filters
for the respective object, for instance a wall, door, or road.
Based on the associated point cloud subset and the city object,
a set of metrics are evaluated, which are listed in Table 1. In

Metric Indication for

Point density object coverage by observation data

Point distance distribution displacement in the direction of the
surface normal

Estimated plane orientation orientation deviation to surface
geometry of object

Intensity distribution material class/characteristic

Table 1. List of implemented metrics to assess the matching
between point cloud and city object.

order to determine whether the surveying campaign has suffi-
ciently covered the object, the metric point density [pts/m2]
on the object surface is computed. In order to automatically
refine geometries, (Wysocki, 2020) introduces a metric with a
similar objective, but related to the 2D footprint. If a minimum
coverage is achieved, further reliable statements can be drawn
about the relationship between the point cloud and the model
surface. First, the shortest distances between each point and the
model surface are calculated. Figure 6 shows a histogram of
the calculated distances for a particular wall object. Significant
displacements can be identified by means of measures from de-
scriptive statistics. For reliable conclusions with respect to out-
liers, it is evaluated whether the median is located within a cer-
tain range of values. As the relative accuracy of the given point
cloud dataset ranges from 1-3 cm, a median of more than 5 cm
is interpreted as a significant deviation. As the street surface
consists of cobblestones, this threshold is relaxed to 11.3 cm
for road features.
A further indication of geometric deviations may be obtained
by comparing the object’s surface with an estimated plane. For

2 https://github.com/savenow/lod3-road-space-models
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Figure 6. Distribution of the distances between the points and
the surface of the large wall with the three balconies in Figure 7.

This wall is occluded by a scaffolding with a typical width of
around 75 cm, accounting for the bimodal distribution.

this purpose, the outliers of the point cloud subset are filtered
using the RANdom SAmple Consensus (RANSAC) algorithm.
This is implemented using the software Feature Manipulation
Engine (FME) and Python scripts. To determine the normal
vector of the best fitting plane, the eigenvectors are calculated
using the Principal Component Analysis (PCA). The orienta-
tion difference between object surface and estimated plane is
interpreted as significant if greater than ±1 degree, whereas the
threshold was exploratively selected based on the dataset. Apart
from the purely geometrical deviations, the reflection intensity
can be used as an indicator for the class of the material. E.g.
road markings are characterized by a higher reflective portion
compared to pure asphalt.
Figure 7 shows the semantic model colored according to the
point distance distribution metric. Here, the large wall in the
left half of the image with its three balconies relates to the his-
togram in Figure 6 and the lower image of Figure 7 depicts
the point cloud for comparison. The results show that, for ex-

Figure 7. Colored building and street models for the inspection
of the point distance distribution - green object surfaces indicate

that the median is located within the tolerance range. Blue
indicates a significant displacement towards the inner of the

building and red indicates to the exterior.

ample, the scaffolding was correctly classified as a geometric
deviation and no deviation was detected for the free wall on the
left. The identified deviations in the street elements are either
caused by parked cars or by insufficiently modelled crossfalls.

The rear walls of the building models are entirely gray since the
point density of the MLS is too low. In order to quantify the
completeness of the model, the ratio of non-associated points
to the total number of points could be used as a further metric.
However, the implemented metrics still need to be evaluated on
larger datasets and the robustness of the method to inaccurate
georeferencing needs to be further investigated in future work.

4. EXAMPLES

4.1 Semantic 3D city models coupled with point cloud data

Using FME, several examples are generated to illustrate con-
cepts described in subsection 3.1. Figure 8 shows a CityGML
file encoded in XML and a corresponding point cloud visual-
ized in the FME Inspector. The point cloud data used in this
example covers an area of 1 [km2] with a point density of
6,25 [pts/m2] and was derived by the Bavarian Agency for
Digitisation, High-Speed Internet and Surveying using a dense
image matching method. Additionally, corresponding LoD2
CityGML building models are available. While the concept is
demonstrated using one 1x1km tile, this data is available for the
whole of Bavaria. For this example, the recommended method
of linking CityGML objects to one external point cloud file is
used. A CityGML building object providing attributes such as
function or roof type also contains information on correspond-
ing point cloud data. On the one hand, each point within an
LAS file contains a Point Source ID linking it to a city object.
Objects in the CityGML file, on the other hand, provide a data
path to the LAS file and the Point Source ID value of all points
representing this object. This example was generated by count-
ing all building objects within a CityGML file and assigning this
counted value to points in a corresponding point cloud. Figure 8
illustrates this concept for a building object coupled to all points
within an LAS file with a Point Source ID value equal to 1.

Figure 8. Example for linking points within a LAS file to
CityGML objects via the ”Point Source ID” point data record

Sample data making use of the concepts described in subsec-
tion 3.1 are available for download 3. This includes example
datasets for representing point cloud geometries inline as well
as data using the coupling method of CityGML models and an
external LAS file shown in Figure 8.
3 https://github.com/opengeospatial/CityGML-3.

0Encodings/tree/master/CityGML/Examples/PointCloud
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4.2 Point cloud data derived from semantic 3D city models

While the previous examples coupled point clouds with corres-
ponding semantic city models from different datasets, it is also
possible to generate point cloud data from city models directly.
While point clouds created in this way do not represent the real-
world geometries as good as measured point clouds (e.g. from
laser scanning), they are directly linked to the city model ob-
jects they have been derived from with corresponding attributes
and semantic structure. This strategy of creating an artificial
sampling point cloud enables the immediate use of point cloud
tools and algorithms on the semantic 3D city model and the po-
tentials discussed in subsection 2.5.
For instance, (Willenborg et al., 2018, Chaturvedi et al., 2017)
present a method for a solar potential simulation based on City-
GML models. The application estimates the direct, diffuse, and
global solar irradiation on city model features. The visibility
analysis of the simulation is conducted using a ray-casting ap-
proach, that requires a set of sampling points on the city model
surfaces. The simulation results are attached to the sampling
points via attributes and stored in a PostGIS database with the
identifiers of the corresponding city model objects. This allows
to compute aggregate values of the simulation results per city
model feature (e.g. WallSurface, RoofSurface, Building) and
the generation of textures. However, it is also possible to ex-
port the point grid including simulation results directly. This
data can easily be transformed to LAS or other point cloud
formats. Links to original building or surface models can be
preserved using the method described in subsection 3.1. Fig-
ure 9 shows a point cloud generated from building models in
the described process of a solar irradiation simulation. Each
point is colored according to simulation results with a colour
gradient ranging from blue (no irradiation) to red (maximum ir-
radiation) in [kWh/m2year] and contains attributes from the
original models. Similar processes would be possible for ap-
plications such as visibility analysis. This is also not limited
to models of buildings but could be extended to all thematic
objects such as vegetation or streetspace models.

Figure 9. Point cloud generated from CityGML building models
in the process of a solar potential simulation (Willenborg et al.,

2018)

5. DISCUSSION AND OUTLOOK

In this paper, concepts for integrating point clouds with struc-
tured semantic information (far beyond classification) provided
by 3D city models are presented using concepts of the OGC
standard CityGML version 3.0. This can be achieved using dif-
ferent methods. While it is possible to integrate points of a point
cloud inline within a CityGML file, this may only be feasible

for small datasets in order to provide self-containing data use-
ful for applications such as archiving. Since it is ineffective to
store point cloud geometries within GML directly, the presen-
ted concept to link CityGML models with corresponding point
clouds provided as separate LAS files (or in similar formats)
is recommended. Obviously, the coupled point cloud and city
model datasets should represent a scenario at the same point in
time (same acquisition date) and provide information in a com-
parable resolution and accuracy. Since city models are often
directly derived from point cloud data, these problems could
be avoided by already establishing relations between these two
datasets during the generation process of these models. Con-
versely, it was shown how point clouds can be generated from
city models, thus also enabling a close connection. However,
if one of the two datasets is updated (independently from the
other), links between these datasets need to be updated too. De-
pending on the intended application, representations in multiple
LoDs are needed. CityGML enables an object to be uniquely
identified, while allowing representations in different thematic
as well as geometric resolutions (LoDs), thus serving as an an-
chor point linking these different types of representation. Un-
til now availability of LoD3 models is limited. In the context
of creating digital urban twins, cities such as Munich currently
gather more detailed data for large areas. Concepts and meth-
ods presented in this paper could be applied to this data. Sev-
eral examples focusing on city scale objects such as buildings
are presented. However, CityGML also contains a Construction
module that includes concepts for representing smaller objects
such as furniture, installations, or other constructive elements.
Thus, applying the concepts for coupling point clouds with se-
mantic models of tables, chairs, etc. is possible. Since both
types of data will play a significant role in the context of gen-
erating (and updating) a digital twin of the urban environment,
relations between point clouds and corresponding semantic city
models will get increasingly relevant. While point clouds, mesh
models, or semantic city models are sometimes described as a
”digital twin” in their own right, a true digital twin of the urban
environment should be a system of systems integrating differ-
ent and heterogeneous information. Concepts presented in this
paper can be a step towards that direction by bridging the gap
between point clouds and semantic 3D city models.
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