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ABSTRACT: 

Point clouds acquired by light detection and ranging (lidar) and photogrammetry technology (e.g., structure from motion/multi-view 

stereo-SfM/MVS) are widely used for various applications such topographic mapping due to their high resolution and accuracy. To 

generate a digital elevation model (DEM) or extract other features in the data, the ground points and non-ground points usually need 

to be separated first. This process, called ground filtering, can be tedious and time consuming as it requires substantial manual effort 

for high quality results. Although many have developed automated ground filtering algorithms, very few have the versatility to 

process data acquired from different scenes and systems. In this paper, we propose a versatile ground filter based on multi-scale 

voxelization and smooth segments, named Vo-SmoG. The proposed method introduces a novel voxelization approach, followed by 

isolated voxel filtering, lowest point filtering, local smooth filtering, and ground clustering. The result of the Vo-SmoG ground 

filtering is a classified point cloud. The effectiveness and efficiency of our method are demonstrated qualitatively and quantitatively. 

The quantitative evaluation consists of both point-wise and grid-wise comparisons. The recall, precision, and F1-score are over 97% 

in terms of classification while the root mean squared error (RMSE) of the DEM is within 0.1 m, which is on par with the reported 

vertical accuracy of the tested data. We further demonstrate the versatility of the Vo-SmoG via large-scale, real-world datasets 

collected from different environments with mobile laser scanning, airborne laser scanning, terrestrial laser scanning, uncrewed 

aircraft system (UAS)-SfM, and UAS-lidar. 

 

 

1. INTRODUCTION 

Lidar (light detection and ranging) and structure from 

motion/multi-view stereo (SfM/MVS) photogrammetry 

technology have revolutionized terrain mapping and offer many 

benefits over other techniques such as radar and conventional 

photogrammetry including resolution, accuracy, and canopy 

penetration. Entities ranging from local to international in scale 

have invested heavily to update digital elevation models 

(DEMs) using these technologies given the wide array of 

applications supported by these high-quality, versatile data 

(e.g., Sugarbaker et al, 2014). Both lidar and SfM/MVS data 

can be acquired from terrestrial, Uncrewed Aircraft Systems 

(UAS), mobile, or airborne platforms depending on the desired 

accuracy, resolution, and area to be captured (Olsen and Gillins, 

2015). The resulting point cloud from lidar requires additional 

processing to extract ground points from points representing 

other objects or noise in the data.  

 

1.1 Related Work 

A wide range of techniques have been developed to identify 

ground points within the point cloud since commercial lidar 

systems became available. Sithole & Vosselman (2004) 

evaluated several ground filters for ALS data in the early days 

and categorized those based on their concepts into slope-based, 

block-minimum, surface-based, and clustering/segmentation. 

Later, Meng et al. (2010) classified the ground filters for ALS 

data into segment/cluster, morphology, directional scanning, 

contour, TIN (triangular irregular network), and interpolation, 

and completed a comprehensive review. Then Chen et al. 

(2017) further reviewed and summarized the more recent 

approaches using a similar classification. Besides the 

aforementioned categories and characteristics, deep learning has 

become more and more popular in point cloud processing 

including ground filtering (e.g., Rizaldy et al., 2018, Jin et al., 

2020). Following the previous work covered in the review 

papers, Ni et al. (2018) improved the progressive TIN 

densification (PTD) filtering algorithms by adding a clustering 

step and adopting iterative graph cuts. Similarly, with PTD as 

the final refinement of the terrain model, Cai et al. (2019) 

implemented cloth simulation filtering (CSF) to acquire the 

seed points to generate the initial terrain model. Instead of using 

a TIN to organize the point cloud, some other methods structure 

the data into 2D or 3D grid (e.g., voxels). Additionally, Wang et 

al. (2017) developed a voxel-based ground filtering approach 

where the constraint of slope and local elevation variation is 

embedded in the voxelization settings. Kumar et al. (2018) 

analysed the local elevation variation in a set of neighbour 

searching results at each point to identify the ground points 

iteratively. To assist the ground filtering and terrain modelling 

to better follow the topography, splines are also commonly used 

to model the terrain from the seed ground points (e.g., Sánchez 

et al., 2019, Liu et al., 2020, Abdeldayem, 2020, Chen et al., 

2021).  

 

The point cloud from UAS-SfM shares a lot of similarities with 

ALS data except that ALS can penetrate vegetation to capture 

the ground and record multiple returns for a laser pulse. To 

process UAS-SfM point clouds, Yilmaz et al. (2018) evaluated 

the performance of a variety of ground filtering algorithms on 

UAS-SfM point clouds. In contrast to ALS and UAS-SfM that 

capture the site from a top view with relatively consistent point 

density, terrestrial laser scanning (TLS) usually captures objects 

with much more detail from the side but with varying density. 

Thus, it is not straightforward to simply apply the ground filters 

developed for ALS to TLS dataset. In our prior work (Che & 

Olsen, 2017), we reviewed several TLS-specific ground filtering 
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approaches and proposed a ground filter by analysing density 

anomalies in each scanline. Additionally, Roberts et al. (2019) 

tested some of the ALS ground filtering approaches on some 

TLS datasets. Although Mobile laser scanning (MLS) has a 

similar scanning geometry with TLS, recognizing ground is a 

much easier task with MLS given it is operated in areas with 

relatively less vegetation and flatter slopes. Che et al. (2019) 

performed a comprehensive review in object recognition in 

MLS point clouds. Recently, for MLS point clouds with more 

complex road side environments including steep slopes, Che et 

al. (2021) proposed a segment-based ground filtering method 

relying on reconstructing the scan pattern grid and Yadav et al. 

(2021) proposed a hybrid approach based on PTD. 

 

1.2 Objectives 

The general challenges in ground filtering for point cloud data 

can be summarized as follows:  

1. Most of these algorithms were only tested on some smaller 

datasets (typically no more than several millions points) 

such that the scalability is unclear considering the fact that 

the computation time often increases exponentially with 

larger datasets.  

2. Some of the parameters are not intuitive for users to 

provide, and it can be challenging to tune these parameters 

for a complex scene without extensive knowledge and 

experience with certain technologies or concepts that are 

involved in the workflow.  

3. For the machine learning and deep learning approaches, 

collecting training datasets is very time-consuming, and the 

same model may not work as effectively for a different 

dataset with differences in terrain. Further, it is also 

unclear how large the training datasets needs to be for the 

learning process.   

4. Very few approaches are demonstrated to be able to 

effectively handle datasets collected from various 

platforms.  

 

To overcome these challenges, we propose a novel ground 

filtering algorithm for point cloud data that utilizes a multi-scale 

voxelization segmentation approach to organize point clouds to 

operate efficiently on very large point cloud datasets (hundreds 

of millions of points). This versatile algorithm is applicable to 

point clouds acquired from various methods and systems (e.g., 

ALS, TLS, MLS, UAS-lidar, UAS-SfM). A wide variety of 

real-world point clouds from multiple sources were tested to 

demonstrate this versatility, and the effectiveness of the 

proposed method was evaluated both qualitatively and 

quantitatively.  

 

2. METHODOLOGY 

With an unorganized point cloud data and intuitive parameters 

as input, our method is able to label or extract the ground points 

automatically. The proposed ground filtering methodology 

consists of five steps: best-fit plane rotation (if applicable), 

isolated voxel filtering, lowest point filtering, local smooth 

filtering, and ground clustering. In this workflow, a proposed 

multi-scale voxelization technique is introduced to sample and 

organize the data.  

 

2.1 Voxelization-based Sampling 

Voxelization is a common approach to organize and process 

point cloud data. Ordinarily in voxelization, the point cloud is 

sampled to voxels and the voxels occupied by at least a certain 

number of points are treated as a single point or valid voxel. 

These processes can substantially reduce the complexity of the 

point cloud data while enriching the point cloud with 

connectivity information. However, because each voxel is often 

presented by its centre coordinates, the voxelized point cloud 

can be very sensitive to the voxel dimensions, often resulting in 

loss of or change to geometric information. To overcome this 

challenge, the proposed approach instead uses the point closest 

to the centre of its corresponding voxel to represent the voxel. 

Sampling the point cloud in such way preserves the geometry 

better because the coordinates of the original point cloud are 

used. Meanwhile, the voxel indices still provide the structure 

and connectivity needed for efficient processing. The original 

point cloud can be always retrieved via the voxel structure and 

mapped the processing result. As a result, the proposed ground 

filtering is able to apply such voxelization process multiple 

times throughout the workflow with different cell size to 

analyse the data across different spatial scales. 

 

2.2 Best-fit Plane Rotation 

In some cases, there can be a dominant orientation of the 

terrain, which poses challenges to perform analysis plotting the 

point cloud onto the horizontal (x-y) plane or based on the 

assumption that the terrain tends to have a lower slope. For 

example, in cases where the area of interest is a steep rock slope 

or coastal cliff, a global best-fit plane can be estimated and used 

to re-project the point cloud such that the analysis can be 

adapted to the dominant slope (Olsen et al. 2020). Hence, when 

desired, the propose approach initially rotates the point cloud to 

perform the analysis in the best-fit plane using Principal 

Component Analysis (PCA). Thus, the coordinates x’, y’, and z’ 

refer to the coordinates after the rotation (or original 

coordinates if no rotation) hereafter. After the filtering is 

complete, the point cloud will be projected back to its original 

coordinate system.  

 

2.3 Isolated Voxel Filtering 

Point cloud data can contain various forms of noise. In addition 

to the random noise caused by the ranging error, some artefacts 

from moving objects in the scene can contradict to the 

assumptions made in the point cloud processing and analysis. 

Taking ground filtering as an example, many approaches 

initially consider the points with lower elevations in a local area 

as the starting or seed points to identify ground. However, as 

shown in Figure 1, noise points with low elevation, if not 

removed, can result in significant error, if not complete failure 

of the ground filtering process. Applying one or multiple 

thresholds to define the range of elevation can cope with such 

noise in an area without a substantial change in elevation. 

However, for the point cloud covering a larger area, it can be 

challenging to select these thresholds without extensive prior 

knowledge about the site. Additionally, the noise points can 

also occur at a similar elevation with the ground (e.g., the 

distant noise in Figure 1). Another approach is to identify 

isolated points with no close neighbours; nonetheless, such an 

approach cannot tackle the noise points in small clusters.  

 

To solve these issues, in the proposed method, the point cloud 

is first sampled into voxels. Then, all of the points in the 

isolated voxels (without neighbour voxels that contain any 

points) are labelled as noise points. This approach is able to 

cope with both the noise of isolated points and small clusters. 

The voxel size depends on the noise level and point density. In 
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the presented tests, it is typically set over 10 times of VSGround, 

the voxel size – described later.  

 

 
Figure 1. Example of noise points in a mobile lidar point cloud. 

 

2.4 Lowest Point Filtering 

After removing noise from the point cloud, we apply a lowest 

point filter by organizing the remaining data into voxels with a 

given voxel size VSGround. The voxel size set here should be 

given based on the general ground point density in the dataset. 

Because the voxelization result in this step will be also utilized 

in the following analysis, the parameter VSGround may need to be 

adjusted accordingly. With the point cloud being sampled via 

the proposed voxelization, the lowest voxel point for each 2D 

voxel index on the x’-y’ plane is preserved (Figure 2).  

 

 
Figure 2. Example of the proposed lowest point filtering. 

 

2.5 Local Smooth Filtering 

Although the previous step of lowest filtering removes a 

substantial portion of the non-ground points from objects such 

as powerlines, poles, and so on, some non-ground objects are 

not fully removed from the point cloud (e.g., vehicles, thick 

vegetation, etc.), especially when the ground is not adequately 

captured. As a result, we propose a local smooth filter to 

analyse the remaining points to identify ground points.  

The highly efficient normal variation analysis (Norvana) 

segmentation algorithm was proposed in our prior work, Che & 

Olsen (2018) and Che & Olsen (2019), to segment and classify 

terrestrial or mobile point clouds into smooth and rough 

surfaces. However, these approaches needed to be modified to 

address challenges when applying them to extract the smooth 

points from the filtered point cloud. First, both approaches 

require the point cloud data to be structured into a 2D scan 

pattern grid. Nonetheless, the input point cloud may not be 

organized and the scan pattern information is not necessarily 

stored in the file format. Although the scan pattern can be 

reconstructed in some cases (Che & Olsen, 2019), the 

voxelization and the filtering processes will create 

discontinuities in the scan pattern. Second, Norvana is sensitive 

to rough surface and noise in the data because it considers the 

maximum normal gradient locally as the criterion to determine 

whether a point is on a smooth surface. For a natural terrain, it 

is challenging to use this as the only condition to detect ground 

points. Thus, our approach still takes advantage of the concept 

of Norvana but modifies it for ground filtering to overcome the 

aforementioned challenges. 

 

Once the lowest point filtering has been applied to the point 

cloud, we can organize the point cloud in a 2D grid to reduce 

the computing and searching complexity to achieve higher 

efficiency. The neighbourhood of a point is defined as all the 

points in its adjacent neighbour grids with a maximum of 8 

neighbour points for a given point. The normal vector for each 

point is first estimated via PCA with its neighbouring points in 

the grid where the z’ component of normal is forced to point 

upward (+z’). If the normal at a point cannot be estimated 

because of insufficient neighbours, the point will be labelled as 

noise point and removed. Then, similar to Norvana, a local 

triangular mesh is generated around the point under analysis. 

Before computing the normal of each facet, we smooth the local 

triangular mesh by adjusting the vertices in the direction of the 

normal at the point under analysis with a given maximum 

adjustment, TAdjust, such that the proposed analysis is less 

sensitive to rough surfaces. Note that the actual coordinates of 

the point cloud are not modified during this process- just a 

temporary copy for the analysis. After the adjustment, the 

normal of each facet is computed and the maximum normal 

gradient over the point under analysis is compared with the 

user-given threshold, T∆Norm. If the local normal gradient 

exceeds T∆Norm, the point under analysis is labelled as non-

ground. As a result of adjusting the local triangular mesh, the 

proposed approach is able to cope with surfaces with a 

moderate curvature or sudden change in height while still  

successfully removing the objects such as vegetation (Figure 3).  
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Figure 3. Example of the proposed local smooth filtering. 

 

2.6 Ground Clustering 

After all the aforementioned steps, there are still some points 

lying on objects such as vegetation and building roofs (Figure 

3) because the prior filters have predominately only considered 

local features when classifying ground candidates. We apply 

region growing, a common approach for segmentation and 

modelling of point cloud data, to cluster the ground candidate 

points and further analyse the segments to refine the ground 

filtering result. To ensure the effectiveness and robustness of 

the region growing process, there are three key factors including 

seed point selection, neighbour searching approach, and 

growing criteria, that need to be determined to improve the 

ground filtering results while being generally consistent with 

the previous steps in terms of their assumptions. 

 

In the proposed approach, we organize the ground candidate 

points via voxelization with a given voxel size of VSSeed. The 

ground candidate with the lowest z’ value in each voxel will be 

selected as the seed points with the assumption that it is more 

likely to be a ground point, which is consistent with the 

proposed lowest point filtering. Then, starting with the seed 

points, a 2D neighbour searching is performed with a given 

radius of RSearch to close some of the gaps (e.g., occlusions) in 

the point cloud. The growing criteria for each neighbour point 

are consistent with the proposed smooth filtering where the 

normal difference between the seed point and this neighbour 

point should be no larger than T∆Norm while the projected 

distance of the neighbour point on the seed point’s normal 

direction needs to be no more than TAdjust. If a neighbour point 

satisfies both criteria, it will be labelled as seed point for the 

next iteration. The region growing is able to filter most of the 

non-ground points while the remaining ones are grouped into 

clusters which can be easily removed based on their sizes 

(Figure 4). Because the voxelization normalizes the point 

density, we simply apply a threshold of the minimum number of 

voxels, TSize, to each cluster to remove those small clusters. 

Finally, we rotate the ground points to their original coordinate 

system, if needed, and project them back to the original point 

cloud to obtain the final ground filtering result.  

 

 
Figure 4. Point cloud clustering and refinement result. 

 

3. EXPERIMENT 

3.1 Overview 

The proposed Vo-SmoG ground filtering is implemented in 

C++ and enhanced by parallel programming. It was tested on a 

desktop computer with an Intel(R) Xeon(R) W-2145 CPU @ 

3.70GHz including 8 cores/16 threads, and 128 GB RAM. The 

test datasets include point clouds collected by MLS, ALS, TLS, 

UAS-lidar, and UAS-SfM from a variety of scene types (Table 

1). All the data are unorganized and stored in ASPRS LAS/LAZ 

format. The dataset size ranges from 18 million to 380 million 

points and the proposed method retains the high computational 

performance with those large datasets. It is worth noting that the 

computation performance in points per second or grid cells per 

second varies with various factors (e.g., scene types, total 

number of points, point density, etc.).  

 

 MLS ALS TLS 
UAS-

lidar 

UAS-

SfM 

Point count 19.4 M 18.2 M 131.2 M 380.4 M 119.4 M 

Ground points 14.5 M 7.7 M 43.8 M 54.8 M 28.9 M 

Grid cell count 

with VSGround 
0.61 M 3.9 M 4.5 M 5.8 M 6.5 M 

Time 

(excluding 

data IO) 

42 s 155 s 281 s 768 s 463 s 

Efficiency 

(points per 

second) 

0.46 M 0.12 M 0.47 M 0.50 M 0.26 M 

Efficiency 

(cells per 

second) 

8.5 K 25.2 K 16.0 K 7.6 K 14.0 K 

Table 1 Summary of the testing datasets and test results. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume VIII-4/W2-2021 
16th 3D GeoInfo Conference 2021, 11–14 October 2021, New York City, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-VIII-4-W2-2021-59-2021 | © Author(s) 2021. CC BY 4.0 License.

 
62



 

Regarding the parameter settings, we did not conduct extensive 

fine-tuning, but rather provided a reasonable estimate and kept 

them as consistent as possible across the datasets to show the 

robustness of the proposed approach (Table 2). The ALS dataset 

is the sample data provided in the swissSURFACE3D database 

(Swisstopo, 2021). These data are used in the quantitative 

evaluation. All the other point clouds are used to demonstrate 

the versatility of Vo-SmoG. Note that the result for MLS data 

has been shown in the methodology section to illustrate each 

step of the algorithm. 

 

Parameter MLS ALS TLS 
UAS-

lidar 

UAS-

SfM 

VSGround 0.15 m 0.5 m 0.05 m 0.5 m 0.3 m 

VSSeed 30 m 100 m 50 m 50 m 50 m 

T∆Norm 15° 15° 15° 15° 15° 

TAdjust 0.05 m 0.1 m 0.02 m 0.2 m 0.05 m 

RSearch 0.3 m 1.5 m 0.1 m 5 m 5 m 

TSize 
100 

voxels 

10 

voxels 

100 

voxels 

10 

voxels 

100 

voxels 

Table 2 Summary of the parameters used in the tests. 

 

3.2 Quantitative Evaluation 

The swissSURFACE3D sample dataset was chosen for the 

quantitative evaluation because of its pre-existing point 

classification (used as ground truth) generated by automated 

filters followed by rigorous manual clean-up. The dataset also 

includes a wide variety of objects (e.g., trees, buildings, 

powerlines, etc.) and topography (e.g., steep slopes, highways, 

bridges) throughout the scene (Figure 5). To assess the 

quantitative accuracy of Vo-SmoG at identifying ground points, 

both point-wise and grid-wise comparisons were performed.  

 

 
Figure 5 Vo-SmoG result (VSGround = 0.5 m) for the ALS point 

cloud. 

 

For this assessment, the points in this dataset were reclassified 

using Vo-SmoG in order to create two ground models of the 

same point cloud, one ground model containing the ground 

points classified by Vo-SmoG (referred to as the Vo-SmoG 

points) and one model containing the ground points as 

classified in the pre-existing dataset (referred to as the reference 

points). Notice that we consider the bridges are part of the 

ground classification although they are manually assigned in a 

separate class in the reference data for the hydro enforcement 

process. All non-ground points were then removed from the 

data to create two distinct ground terrain models. 

 

The first comparison consisted of a direct point-wise 

comparison between the classification of the Vo-Smog points 

and the reference points (Figure 6). The Precision, Recall, and 

F1-Score for this comparison are all greater than 97% (Table 3), 

which shows that the proposed Vo-SmoG method is capable of 

yielding accurate and robust results. These results are more 

promising considering that a substantial number of the false 

positive points are constrained to 3 areas (A, B, and C of Figure 

6). Areas A and B represent roofs of buildings that are 

connected to the surrounding ground leading to the 

misclassification where there is a ramp on the side of the 

building in area A while the building in area B is smoothly 

connected to terrain behind it. Area C represents a water body 

that is separately classified as such in the reference dataset. In 

practice, further classification methods could be combined with 

Vo-SmoG to successfully classify these points as a water body; 

however, this work is outside of the scope of this paper. 

Nevertheless, in all three of these cases, these false positives 

could easily be manually cleaned up by a user with much less 

effort than is typically required with conventional ground filters. 

These simple cleanup efforts would then result in even better 

accuracy results than represented in the above analysis.  

 

 Point-based (points) Model-based (cells) 

Total 18,249,984 3,333,771 (valid) 

True Positive 7,475,319 3,249,575 

True Negative 10,328,634 579,762 

False Positive 221,421 84,196 

False Negative 224,610 86,467 

Recall 97.1% 97.4% 

Precision 97.1% 97.5% 

F1-score 97.1% 97.4% 

Table 3 Accuracy assessment of ground classification 

 

Since many applications of ALS rely on derivative products 

such as DEMs, the second assessment compares the resulting 

DEMs from each of the ground classifications (Vo-SmoG and 

reference). This demonstrates how biases introduced in the 

ground modelling may propagate into derivative products. To 

ensure a consistent comparison, DEMs were generated for both 

datasets using a cell size of 0.5m. The mean elevation of all 

ground points lying within that grid cell was used without any 

further refinement or interpolation. A cell size of 0.5m was 

chosen to be consistent with the resolution of the publicly 

available digital surface model (DSM), which is derived from 

the same point cloud. 

 

A grid-wise comparison was then performed between the two 

datasets (Figure 7). The precision, recall, and F1-Score are 

again are all greater than 97% (Table 3) and contain the same 

three false positive areas as described in the point-wise analysis 

above. Notice that the evaluation here only examines whether a 

cell contains at least one ground point or not. The mean, and 

RMSE difference between the two models is 0.00m and 0.10m 

respectively. It is worth noting that the reported vertical 

accuracy of this dataset is ± 0.1m, which is consistent with the 

RMSE. 
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Figure 6. Point-wise comparison between the Vo-SmoG points 

and the reference points. 

 

 
Figure 7. The grid wise comparison between DEMs (0.5 m) 

generated by the Vo-SmoG and reference data. 

 

3.3 Versatility Test 

Vo-Smog was also tested on data from multiple sensors (e.g. 

TLS, MLS, UAS-SfM, and UAS lidar) and scenes (e.g. urban, 

rural, and forest). Vo-Smog was effective across the different 

sensors and scenes. Select examples are provided herein to 

demonstrate the versatility. For TLS data in an urban scene 

(Figure 8), Vo-Smog was effective in removing trees and 

buildings and provides a high-quality DEM of the grassy field, 

sidewalks, and roadways present in the scene. Note that Vo-

Smog also effectively removed the clusters at the outer edges of 

the dataset that ordinarily would need to be manually cropped 

when applying conventional ground filters.  

 

When applied to rugged terrain surveyed via UAS-lidar for a 

coastal landslide (Figure 9), Vo-Smog successfully removed the 

trees and tall grasses while still preserving the complex 

topographic features across the landslide that are important for 

monitoring efforts. Many conventional ground filters struggle 

with preserving the rugged terrain while removing the 

vegetation. It also removed noise from the lidar sensor 

appearing in the bottom right of the figure introduced by a 

water body. When applied to a similar scene with UAS-SfM 

(Figure 10), the proposed ground filter was effective in areas 

where the UAS-SfM data provides sufficient ground samples. 

The UAS-SfM has a marked increase in data gaps given that the 

ground points cannot be generated through the SfM process in 

dense forest canopy. Because UAS lidar is an active sensor, it is 

much more effective in penetrating this dense canopy to obtain 

ground points. Note that from the profile view in Figure 10, Vo-

Smog shows its robustness to significant noise in the data. Most 

conventional ground filters would erroneously select many of 

the artificially low noise points as ground points. 

 

 
Figure 8 Vo-SmoG result (VSGround = 0.05 m) for the TLS point 

cloud. 

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume VIII-4/W2-2021 
16th 3D GeoInfo Conference 2021, 11–14 October 2021, New York City, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-VIII-4-W2-2021-59-2021 | © Author(s) 2021. CC BY 4.0 License.

 
64



 

Figure 9 Vo-SmoG result (VSGround = 0.5 m) for the UAS-lidar 

point cloud. 

 

 

  
Figure 10 Vo-SmoG result (VSGround = 0.3 m) for the UAS-SfM 

point cloud. 

4. CONCLUSION 

In this paper, we propose Vo-SmoG, a novel smooth segment-

based ground filtering method based on multi-scale voxelization 

for processing point cloud data. It was tested and evaluated both 

qualitatively and quantitatively in the experiment. The primary 

contributions can be summarized as follows:  

1. We introduce a voxelization approach that can mitigate the 

loss of information comparing against traditional 

voxelization approaches. The point cloud can be organized 

in voxelization structures across multiple scales to cope 

with different types of noise and objects. 

2. Vo-SmoG only requires a few intuitive parameters that can 

be easily provided by users.  

3. Vo-SmoG is effective, efficient, and scalable, which was 

demonstrated by processing large point clouds including 

hundreds of millions of points within minutes. This high 

efficiency is achievable given the algorithm is structured 

effectively such that it can take advantage of parallel 

programming.  

4. Vo-SmoG is very versatile and we demonstrate its ability 

to handle point clouds collected by several platforms and 

methods (e.g., TLS, MLS, ALS, UAS-lidar, UAS-SfM) 

from a variety of environments (e.g., urban, rural, forest, 

steep slope, coastal landslide, etc.) with different types and 

levels of noise.  

 

In the future, we will focus on: 1) further classifying the point 

cloud based on the Vo-SmoG ground filtering results to 

consider other object types, and 2) extending the use of the 

proposed voxelization to more types of point cloud processing 

(e.g., segmentation, feature extraction). 
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