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ABSTRACT:

Deep neural networks (DNNs) and convolutional neural networks (CNNs) have demonstrated greater robustness and accuracy in
classifying two-dimensional images and three-dimensional point clouds compared to more traditional machine learning approaches.
However, their main drawback is the need for large quantities of semantically labeled training data sets, which are often out of reach
for those with resource constraints. In this study, we evaluated the use of simulated 3D point clouds for training a CNN learning
algorithm to segment and classify 3D point clouds of real-world urban environments. The simulation involved collecting light
detection and ranging (LiDAR) data using a simulated 16 channel laser scanner within the the CARLA (Car Learning to Act)
autonomous vehicle gaming environment. We used this labeled data to train the Kernel Point Convolution (KPConv) and KPConv
Segmentation Network for Point Clouds (KP-FCNN), which we tested on real-world LiDAR data from the NPM3D benchmark
data set. Our results showed that high accuracy can be achieved using data collected in a simulator.

1. INTRODUCTION

Low elevation and mobile generated point clouds are becoming
increasingly easy to obtain. LiDAR scanners are no longer lim-
ited to high elevation aerial collects, nor are they restricted to
cumbersome terrestrial scanners that need to be moved manu-
ally, as more companies move to using small unmanned aerial
systems (sUAS) and laser scanners attached to vehicles. These
newer platforms provide a more streamlined and affordable col-
lection of point cloud data, which introduces new challenges to
the point cloud community, particularly in the semantic seg-
mentation of this data.

1.1 Traditional Methods

Traditional machine learning algorithms and non machine learn-
ing techniques have historically been used for classification and
segmentation tasks. The pipeline of these algorithms is to com-
pute pointwise geometric features, such as geometric features
derived from a radial or k-nearest neighbors covariance mat-
rix, and then use the features from the covariance matrix to run
it through a traditional machine learning algorithm such as a
support vector machine or a random forest classifier (Thomas,
2019). The features are based on using the resultant eigenvalues
(λ1 > λ2 > λ3) and corresponding eigenvectors (e1, e2, e3).
These features include point omnivariance 3

√
(λ1λ2λ3), linear-

ity (λ1−λ2
λ1

), eigenentropy (−
∑3

i=1 λiln(λi)), sum of eigenval-
ues (

∑3
i=1 λi), and planarity (λ2−λ3

λ1
). These discriminate fea-

tures allow for a traditional machine learning algorithm such as
a random forest or support vector machine classifier to give ac-
curate results (Weinmann et al., 2013). A study done by (Wein-
mann et al., 2013) used point features calculated from the co-
variance matrix as inputs for several classifiers on the Oakland
3D point dataset, obtaining an overall accuracy of 93.32 per-
cent. The objects were labeled as wire, pole/trunk, facades,
ground, and vegetation. The Oakland 3D dataset is a LiDAR

point cloud of the CMU campus and comes split into a training,
validation, and test points (Munoz et al., 2009).

One of the problems with using these more traditional tech-
niques is they do not leverage the capability of deep learning
algorithms, that is learning hierarchical structures of data, and
are therefore limited in their ability automatically classify data.
Although the accuracy seen in (Weinmann et al., 2013) is above
90 percent, it relies heavily on handcrafted features for accurate
classification and using one dataset split into training and test-
ing sections. A deep learning algorithm is able to learn these
features on its own without the need for handcrafted features.

1.2 Deep learning in point clouds

Recently, more focus has been put on deep learning techniques
due to their success in image classification. Neural networks,
specifically convolutional neural networks, are able to learn ab-
stract features of image data and give better results than us-
ing traditional machine learning on images. This success can
also be found in 3D point datasets. Older methods use mul-
tiview representations for points, which consists of projecting
3D data onto multiple 2D planes and using 2D CNNs for seg-
mentation (Guo et al., 2020). Other methods use a voxelization
method where the point cloud is split into 3D occupancy grids
and ran through a modified version of an image CNN (Chen et
al., 2019). Pointnet and Pointnet++ were groundbreaking in ap-
plying deep learning to directly to points within point clouds.
This eliminated the need to project points to 2D space and re-
moved the need for computationally expensive voxel grids (Qi
et al., 2017). Later pointwise algorithms improved on this concept
and applied convolution neural networks to points as seen in
(Thomas et al., 2019).

1.3 Simulated Data

Deep learning on point clouds has shown to be an effective
method of point cloud segmentation, though their effectiveness
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depends on the quantity and quality of training data. The newer
generations of low elevation mobile scanning solutions address
the quantity challenge but acquiring high quality pre-classified
training data remains a non trivial endeavor. Point clouds typ-
ically consist of millions of points, which makes hand labelling
points for semantic segmentation a difficult and time consum-
ing task. There are benchmark datasets that come labeled for
a variety of classification tasks, including semantic segmenta-
tion. Popular ones include the Semantic3D dataset (Hackel et
al., 2017), Paris-rue-Madame dataset (Serna et al., 2014), and
the TerraMobilita/iQumulus dataset (Vallet et al., 2015). The
Semantic3D dataset is an outdoor point cloud collected using
a terrestrial laser scanner containing over 4 billion hand annot-
ated points (Hackel et al., 2017) while the TerraMobilita and
Paris-rue-Madame datasets were collected using a mobile laser
scanner (Vallet et al., 2015) (Serna et al., 2014). All of these
datasets use traditional point segmentation techniques and hand
annotation to label the points for training and testing. This re-
quires a large amount of time and usually utilizes a team of
people to accomplish. This is particularly true for semantic and
panoptic segmentation tasks. Semantic and panoptic segmenta-
tion involve labeling every point in the scene, whether these are
pixels in an image or points in a point cloud. Hence, collect-
ing data in gaming engines and modeling suites help address
the challenges presented in these segmentation tasks, and is one
of the motivators of this study. In this paper, we explore using
an autonomous vehicle simulator created in a gaming engine to
collect training data and tested the results on a LiDAR dataset.
We will show that training a deep learning algorithm on com-
puter generated data can give superior results to that of a more
traditional machine learning algorithm as described in section
1.1.

2. PREVIOUS WORK

Research into utilizing computer generated data for training is
still relatively new. SqueezeSeg was one of the pioneers in this
endeavor. They used a plugin for the video game Grand Theft
Auto V (GTA-V) to attach a VLP-16 LiDAR scanner on top of
a car in the video game. They used this scanner to collect point
cloud data by driving the car around in game in order to supple-
ment their training set (Wu et al., 2017). They then tested the
trained algorithm on the benchmark KITTI dataset, a real world
LiDAR collection utilizing a VLP system (Geiger et al., 2012).
When only trained on the GTA-V data, the class level intersec-
tion over union (IoU) accuracy was 29.0 (Wu et al., 2017).

Another attempt at utilizing simulated data is from the creators
of SynthCity. Synth City is a globally registered labeled point
cloud collected in the modelling program Blender (Griffiths and
Boehm, 2019). A Gaussian noise level of σ = 0.5 cm is applied
on each axis to simulate real world sensor noise. The model
simulates an urban environment with ground, natural, building,
points (Griffiths and Boehm, 2019). Scanning simulation was
done using the Blender plugin, BlenSor. BlenSor allows for the
simulation of 3D sensors such as LiDAR and Kinect sensors
(Gschwandtner et al., 2011).

Gaming engines, specifically Unreal Engine, offer a variety of
solutions for vehicle and sensor simulations. Microsoft Air-
Sim offers a simulation space to test out sensors attached to
a sUAS. This allows for testing SLAM (simultaneous localiz-
ation and mapping) based algorithms and learning based ap-
proaches within a simulator (Shah et al., 2017). CARLA (Car
Learning to Act) is similar to AirSim, however it is primarily

an autonomous vehicle simulator used to test autonomous driv-
ing algorithms and vehicles in a safe setting. It also provide
a plethora of sensors to test in the simulator. These sensors
include RGB cameras, radar sensors, depth cameras, LiDAR
sensors, Global Navigation Satellite Systems (GNSS), and in-
ertial measurement units (IMU). Many of the pipelines done
in CARLA are for reinforced learning and sensor testing, as
these are heavily used in autonomous driving (Dosovitskiy et
al., 2017). The abundance of sensors allows for extensive test-
ing and collection of LiDAR data, particualry labeled LiDAR
data. Other researchers have conducted similar studies by com-
bining LiDAR data from CARLA with the KITTI dataset for
object detection (Dworak et al., 2019).

Our research differs from (Dworak et al., 2019) and (Wu et al.,
2017) in that we only use simulated data collected in CARLA
for the task of semantic segmentation. We train a deep learning
algorithm on the simulated data and test it on real world point
clouds. Our approach also differs from (Griffiths and Boehm,
2019) in how we apply noise to our simulated LiDAR data.
Synth City applies a noise factor along each axis, but we apply
noise to the range of the scanner. We also apply the noise per
scan instead of applying the noise after the collection is done.
We also use a algorithm that is well suited for semantic seg-
mentation.

2.1 Kernel Point Convolution (KPConv)

In recent years, there have been many advances in 3D deep
learning algorithms as mentioned in section 1.2. The algorithm
we chose is Kernel Point Convolution, which applies a convo-
lution operation directly to points (Thomas et al., 2019).

In image based CNNs, each pixel is directly multipilied to the
weight matrix Wk followed by an activation function. Due to
the irregular nature of point clouds, a point p is not likely to
be aligned with the kernel points. Hence, KPConv introduces
a kernel function that correlates distances between p and kernel
points (Thomas, 2019). Let point cloud P with N points be
such that P ∈ RNx3 and point features F ∈ RNxD We will let
general point convolution be defined by the following equation
(Thomas, 2019):

(F ∗ g)(x) =
∑
xi∈Nx

g(yi)fi (1)

where yi = xi−x, xi ∈ P , fi ∈ F , andNx = {||xi−x|| ≤ r}
for a radius r. Kernel function g is defined as

g(x) =
∑
k<K

h(y, x̃k)Wk (2)

where x̃k are kernel points and Wk are the associated weight
matrices. h id a correlation function, where points closer to
kernel points have a greater correlation factor than points fur-
ther away. Generally it is written as

h(yi, x̃k) = max

(
0, 1− ||yi − x̃k||

σ

)
(3)

Each feature vector is multiplied and summed over allK weight
matrices. Further details of KPConv can be found in (Thomas
et al., 2019).
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3. METHODS

3.1 Collecting the Data in CARLA

CARLA is built using Unreal Engine 4, which is typically used
for modelling, gaming, and simulation. The version of CARLA
used in this experiment is CARLA 0.9.10. Data is collected
using a semantic LiDAR scanner that is available in the CARLA
sensor suite. Each return of a scan from the LiDAR sensor has
an (x, y, z) coordinate as well as an object tag, object index, and
cosine of the incidence angle. Note we are primarily interested
in the object tag. It is also possible to adjust the number of
channels, range, points per second, rotation frequency, field of
view, and sensor tick of the scanner. This may be adjusted to
better reflect different sensors. Our LiDAR sensor was set to 16
channels, had an upper and lower field of view of 15 degrees,
and a maximum range of 100m. These settings are similar to
a VLP-16 LiDAR scanner. The position of the LiDAR scanner
was set to 1m forward of the car center and 2.8 m above center.
Note also that CARLA uses a left handed coordinate system
where x is forward, y is right, and z is up. Maps can either be
created or downloaded using Unreal Engine. The map chosen
is named ”Town 3” in the CARLA map collection, which is a
built-in map. Even though other maps are available, this one
was chosen for its urban setting.

For real world mobile LiDAR scans, three sensors are involved:
GNSS, IMU, and LiDAR scanner. The point cloud is generated
using the following equation (Glennie, 2007):

plG = plGPS +Rlb ·Rbs · rs −Rlb · lb (4)

plG are the coordinates in the local frame.
plGPS are the GPS coordinates in the local frame.
Rlb are the roll, pitch, and yaw rotations from the body
frame to the local frame. This is given by the IMU
Rbs is the rotation matrix from the scanner frame to the
body frame
rs are the point coordinates in the scanner frame
lb is the lever arm offset from the scanner origin to
the navigation origin with respect to the body frame

Errors in IMU attitude, boresight measurements, and GNSS
measurements propagate throughout the system (Glennie, 2007).
CARLA allows for testing all three of these systems, includ-
ing a Gaussian error effect for both the IMU and GNSS (Doso-
vitskiy et al., 2017). For our purposes, we simplified the pro-
cess by only considering error in the scanner’s range measure-
ments. The transformation and rotation matrix is taken from
the LiDAR scanner in CARLA, and is the exact transform from
the LiDAR scanner coordinate frame to the world (local) frame.
Therefore, Rbs is the identity matrix and lb is

−→
0 . Hence, equa-

tion 4 reduces to

plG = Rrot · rs (5)

where Rrot is the 4x4 affine transformation and rotation matrix
from the scanner frame to the local frame of the form:


R11 R12 R13 tx
R21 R22 R23 ty
R31 R23 R33 tz
0 0 0 1

 (6)

The point rs in the scanner frame is a 4x1 column vector with
coordinates

[
rx ry rz 1

]
in the scanner coordinate refer-

ence frame. Entry Rij is the result of 3 matrix multiplications
of the rotation matrix about the z axis, y axis, and x axis given
by Rz · Ry · Rx. This is often called the Tate-Bryant sequence
of rotations, where for rotation angle α, β, γ about the x, y, z
axis (respectively), we get:

Rz =

 cos γ sin γ 0
− sin γ cos γ 0

0 0 1



Ry =

cosβ 0 − sinβ
0 1 0

sinβ 0 cosβ



Rx =

1 0 0
0 cosα sinα
0 − sinα cosα



(7)

So the first three rows and columns of Rrot = Rz ·Ry ·Rx give
the resultant 3x3 rotation matrix. The translation column vector[
tx ty tz 1

]
give the x, y, z translation from the scanner

coordinate frame to the local frame.

3.2 Adding Noise

Data collects such as Synth City apply noise to each axis, how-
ever this is not how noise is applied to laser scanners. Laser
scanners such as the VLP-16 collect range measurements and
then convert them to a Cartesian coordinate system. The se-
mantic LiDAR scanner in CARLA collects points in (x, y, z)
coordinate system. For our purposes, we assume that error
in range values are normally distributed with a standard devi-
ation (σscanner) of 2 cm. Points are collected in Cartesian co-
ordinates and converted to spherical coordinates, where ρ is the
range, φ is the elevation angle, and θ is the azimuth angle. Thus,
for a given scan S with N points and i ∈ [1, N ], we have:

ρi =
√
x2i + y2i + z2i

φi = arccos
zi
ρi

θi = arctan
yi
xi

(8)

Note that the arctan range is from [−π, π] (In modern program-
ming languages, this is the arctan2 function) to account for the
different signs of x and y. So for a given range, ρi, a new range
value is ρ(n)i = ρi + n, where n is a drawn sample from a nor-
mal distribution with µscanner = 0 and σscanner = 0.02. So
converting back to point p(n)i = (x

(n)
i , y

(n)
i , z

(n)
i ), we get:

x
(n)
i = ρ

(n)
i sinφi cos θi

y
(n)
i = ρ

(n)
i sinφi cos θi

z
(n)
i = ρ

(n)
i cosφi

(9)
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Figure 1. Error levels added to ρ

Figure 2. Training data from CARLA with added noise

This is done per scan. Note that each point, pi has a label asso-
ciated with it. Data is collected similarly to a mobile laser scan
in an urban setting. The LiDAR scanner is attached to the car
and driven using a heads up display (HUD). When the data is
collected, it is combined into a single point cloud by applying
equation 6 to the scan points, rs after noise has been added.
Note that rs is a column vector of size 4xS, where S is the
number of points per scan. Hence,

rs =


t0x . . . tSx
t0y . . . tSy
t0z . . . tSz
1 . . . 1

 (10)

So applying the rotation matrix per scan, RSrot we get


t
final(0)
x . . . t

final(S)
x

t
final(0)
y . . . t

final(S)
y

t
final(0)
z . . . t

final(S)
z

1 . . . 1

 = RSrot ·


t0x . . . tSx
t0y . . . tSy
t0z . . . tSz
1 . . . 1

 (11)

This gives us the final (x, y, z) coordinates of the point cloud.

Following this the data density is reduced and made uniform
through subsampling. The point cloud is first split into a voxel
grid of size 1 cm. Then for a voxel grid V , and all points p ∈ V ,

the point that is closest to the center of the voxel is kept and
all other points are removed. Additionally, the points are res-
ampled as the point closest to the center of the voxel is moved
to the voxel center (PDAL Contributors, 2018). They are then
relabeled to buildings, ground, miscellaneous, pole-like, veget-
ation, and vehicles.

Start CARLA simulator

LiDAR scan

Convert scan to spherical coordinates

Add 2cm noise to range (ρ)

Convert back to Cartesian coordinates

Apply rotation and translation matrix

Figure 3. Flowchart of data collect

3.3 Test Data

Test data was selected from the NPM3D benchmark dataset,
which we call the Lille dataset (Roynard et al., 2018). This
real world LiDAR data was collected using a Novatek Flex-
Pak 6 GNSS, an Ixsea PHINS IMU, and a Velodyne HDL-32E
LiDAR scanner. Points come with (x, y, z) coordinates and
RGB data. Data was collected in Paris and Lille, France, how-
ever the test data only uses 1150 m of the Lille data, totalling
approximately 30 million points (Roynard et al., 2018). Ori-
ginal labels include buildings, poles, bollards, trash cans, bar-
riers, pedestrians, cars, and natural, which were changed to fit
our schema.

3.4 Running KPConv on training data

KPConv architecture comes in two varieties, classification (KP-
CNN) and segmentation (KP-FCNN) (Thomas, 2019). Since
this is a segmentation task, we chose the KP-FCNN, which
consists of 5 encoder layers similar to ResNet blocks (He et
al., 2016) and nearest upsampling for the decoder section. This
gives pointwise feature classification, which is the goal for scene
segmentation (Thomas, 2019). The KPConv algorithm was run
using the Pytorch implementation of KPConv. Pytorch is a
GPU accelerated deep learning python API allowing for the
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Figure 4. Lille, France test dataset

Figure 5. Heads up display of vehicle being driven in CARLA

training of deep neural and convolution neural networks (Paszke
et al., 2019). The training data from CARLA was downsampled
to 8 cm to save space. Training data was split into 9 sections
(labeled 0 - 8). Section 3 was chosen for validation, as it had
good representation from points of all classes. The algorithm
was trained with a batch size of 4 and done for 500 epochs. The
results of training were then tested on the Lille, France dataset.

3.5 Comparison with Traditional methods

We split the Lille dataset into training and testing data to com-
pare traditional methods of segmentation with our method. We
ran a random forest classifier on five handcrafted features sim-
ilar to the ones used in (Weinmann et al., 2013). The five fea-
tures used were eigenentropy, linearity, and sum of eigenvalues
as shown in section 1.1. Local point density of k nearest neigh-
bors, D = k+1

4
3
πr3

knn

and sum of the eigenvalues from the cov-
ariance matrix when the points are projected to 2D space were
also included as done in (Weinmann et al., 2013).

4. RESULTS

4.1 Accuracy metrics

The result of testing can be seen in figure 7. Overall accuracy
for the algorithm was 93.8 percent. Table 1 shows the con-
fusion matrix of all values, rounded to 2 decimal places and
table 2 shows the intersection over union (IoU) results. The
best results came from ground and buildings, both having ac-
curacy results above 90 percent and IoU scores above 0.80. The

Figure 6. Validation set derived from CARLA

Figure 7. Visual results of KPConv

buildings ground miscellaneous pole-like vegetation vehicles
0.95 0.00 0.02 0.00 0.02 0.00
0.01 0.99 0.00 0.00 0.00 0.00
0.39 0.01 0.46 0.01 0.13 0.00
0.21 0.00 0.09 0.56 0.13 0.00
0.01 0.00 0.02 0.00 0.97 0.00
0.00 0.00 0.03 0.00 0.17 0.80

Table 1. Confusion matrix of classes

buildings ground miscellaneous pole-like vegetation vehicles mIoU
0.86 0.98 0.38 0.44 0.73 0.79 0.70

Table 2. Intersection over Union (IoU) results on Lille, France

worst results were miscellaneous and pole-like objects. table 3
shows how a traditional machine learning classifiers compare to
our method. The overall accuracy using random forest classifer
was 0.78, with the KPConv learning algorithm outperforming
in every category.

buildings ground miscellaneous pole-like vegetation vehicles
0.78 0.04 0.02 0.00 0.15 0.02
0.06 0.89 0.00 0.00 0.03 0.01
0.43 0.06 0.11 0.00 0.34 0.05
0.30 0.01 0.02 0.41 0.25 0.01
0.08 0.02 0.01 0.00 0.87 0.02
0.22 0.16 0.03 0.00 0.31 0.28

Table 3. Confusion matrix using random forest classifier

4.2 Mislabeling: Miscellaneous

As table 1 shows, pole-like objects were mostly classified as ve-
getation or building objects. Miscellaneous objects were clas-
sified as buildings or vegetation. We can see that parts of mis-
cellaneous objects, have a higher probability of being classi-
fied as buildings. We can see that in figure 8 that the stair-
case and fence had high probabilities of being building points
when indeed they were miscellaneous. In particular, the stair-
case has a high probability of being buildings. Also, barrier

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume VIII-4/W2-2021 
16th 3D GeoInfo Conference 2021, 11–14 October 2021, New York City, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-VIII-4-W2-2021-67-2021 | © Author(s) 2021. CC BY 4.0 License.

 
71



objects, such as barrier walls, have a similar geometry to build-
ing facades. Both object have similar geometric properties, yet
they are labeled as two different object.

Figure 8. Probability of building points in a mislabeled section

4.3 Mislabeling: Pole-like

We can also see various mislabelling of pole-like objects, par-
ticularly in objects that significantly differ from poles in the
training data. Light poles existed in both the training and test-
ing set, hence light pole objects were often were correctly seg-
mented in the test set. The variety of different pole-like objects
in the test set made their classification more difficult, hence we
see the mislabeling.

Figure 9. Correctly classified points for light pole and pole
object mislabeled

5. DISCUSSION

Although KPConv trained on CARLA data produced satisfact-
ory results for buildings, ground, vegetation, and vehicles, im-
provement can be made for the pole-like and miscellaneous ob-
jects. Note that many of the pole-like objects in the testing en-
vironments include street signs of various shape, bollards, and
light poles. We can see that light poles and bollards were con-
sistently classified, but street signs were often mislabeled. It is
important to note that the training size consisted of approxim-
ately 52 million points which is relatively small compared to the
test size, which consisted of approximately 30 million points.

The results given in section 4 show that using training data
solely generated in a gaming environment can be effective in
training deep learning algorithms and can give accurate results
on testing real world data. Using these environments helps to
solve the bottleneck issue explained in section 1. The custom-
ization and versatility allows for more simulation of real world

environments, with the added benefit of fully labeled data to use
for training. This saves time and resources, and makes this type
data more accessible to researchers, as CARLA is open source
(Dosovitskiy et al., 2017). This method also outperforms more
traditional methods of segmentation as demonstrated in section
4.

5.1 Testing new networks

Future work will need to focus on testing other neural networks
and creating more customized datasets. Other networks demon-
strate good results on benchmark datasets and constructed more
for semantic segmentation. RAndla-Net is a recent network
designed specifically for semantic segmentation of large scale
point clouds, using a point random sampling method and point
feature aggregator (Hu et al., 2020). This allows for quick seg-
mentation of large point cloud data.

5.2 Testing different sensors

Work will also continue in setting real world simulations for
collection of training data. As stated in section 2 and section
3, there are other sensors attached to a mobile laser scanner
system, namely the GNSS and IMU. For our experiment, we
did not use these sensors and only used the transform data from
the sensor. This gives the exact rotation and translation from the
LiDAR scanner in the world frame. IMU and GNSS data can
be used instead and we can simulate real world noise for both
sensors, then the point cloud can be generated using equation 4.

5.3 Creating new and different models

Figure 10. Town 2, another urban environment in CARLA

To help the network better generalize a deep network, we need
to add new data to the algorithm. While Town 3 was good in
how it represented an urban setting, the pole-like and miscel-
laneous objects saw higher rates of mislabelling. Adding more
variance in the training data for these objects should allow the
algorithm to generalize better, allowing for better test results.

6. CONCLUSION

Using simulation spaces for 3D deep learning shows promise
due to the versatile nature of gaming engines. They have the
ability to generate real world environments with fully labeled
data, allowing for the training of convolution neural networks
without the need for hand labeled training data. We see in this
study that using only data and noise from the simulated LiDAR
we get an overall mIoU accuracy of 0.70, showing that this can
be done effectively. Further study needs to be done with other
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algorithms as well as testing other sensors attached to a typ-
ical LiDAR suite, including IMU and GNSS sensors. As shown
in equation 4, LiDAR point clouds are derived from using 3
sensors, and each one of these sensors comes with its own er-
ror distribution. Hence, further study will include how these
sensors affect the overall accuracy of learning algorithms when
trained on simulated data.
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