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ABSTRACT: 
 
Airborne light detection and ranging (LIDAR) systems allow archaeologists to capture 3D data of anthropogenic landscapes with a 
level of precision that permits the identification of archaeological sites in difficult to reach and inaccessible regions. These benefits 
have come with a deluge of LIDAR data that requires significant and costly manual labor to interpret and analyze. In order to address 
this challenge, researchers have explored the use of state-of-the-art automated object recognition algorithms from the field of deep 
learning with success. This previous research, however, has been limited to the exploration of deep learning processes that work with 
only 2D data, which excludes the use of available 3D data. Our research addresses this gap and contributes knowledge on the use of 
deep learning-based processes that can classify archaeological sites from LIDAR generated 3D point cloud datasets. LIDAR data 
from the UNESCO World Heritage Site of Copan, Honduras is used as the primary dataset to compare the classification accuracy of 
deep learning models using 2D and 3D data. The results demonstrate that models using 3D point cloud datasets provide the greatest 
classification accuracy in identifying Maya archaeological sites while requiring less data preparation. Further, the research 
contributes knowledge on the efficacy of data augmentation strategies when working with small 3D datasets.       
 
 

1. INTRODUCTION 

Remote sensing technologies, such as Light Detection and 
Ranging (LIDAR), are transforming archaeology. Airborne 
LIDAR Systems (ALS) use a laser pulse emitted from an 
airplane to collect 3D measurements of landscapes by 
calculating Time-of-Flight (ToF); that is, the time it takes light 
to hit objects in the landscape and reflect to the scanner. Unlike 
satellite imagery, ALS can penetrate canopied forests to reveal 
the ground surface below the canopies. This allows researchers 
to detect and map unknown archaeological sites in areas never 
before possible, and is especially true for surveys in Central 
America that have focused on ancient Maya landscapes in 
Guatemala, Honduras, Belize, and Mexico (e.g., Chase and 
Chase 2017; Prufer and Thompson 2016; von Schwerin et al. 
2016). ALS surveys in these areas have produced massive 
amounts of data that archaeologists must manually process to 
identify archaeological features. This task is extremely time-
consuming, expensive, and requires a high-level of technical 
and archaeological expertise. Consequently, significant amounts 
of LIDAR data from this region have not been post-processed. 
The development of automated methods to identify 
archaeological features in such datasets is therefore a pressing 
problem in the field.  
 
Deep learning (DL) is a sub-field of machine learning that has 
demonstrated state-of-the-art performance on automated object 
recognition tasks involving both 2D and 3D datasets. DL 
models use layers of artificial neurons to construct a piecewise 
function that can iteratively adjust its weights through 
optimization procedures to map a set of inputs to a set of 
outputs. The pattern and design of these layers is referred to as 
the architecture of the DL model. Convolutional Neural 
Networks (CNNs)—a DL architecture developed specifically 
for 2D image datasets—have out-performed competing 
approaches for object recognition. CNNs have been used for the 

analysis of 2D remote sensing data in a variety of fields for 
tasks as wide ranging as pollution detection to poverty 
estimation (Piaggesi et al. 2019, Li et al. 2016). In the field of 
archaeology, CNNs have been used to automate the 
identification of archaeological sites from ALS data (Albrecht et 
al. 2019, Bundzel et al. 2020, Guyot et al. 2021, Kazimi et al. 
2018, Somrak, Džeroski, and Kokalj 2020, Verschoof-van der 
Vaart et al. 2020). This previous research, however, has been 
limited to DL architectures that employ 2D data. This approach 
excludes a wealth of available 3D data, such as point cloud 
datasets, that could aid in the detection and classification of 
archaeological sites.  

 
 

Figure 1. Copan ALS survey area illustrating archaeological 
sites on LIDAR-derived Digital Elevation Model (DEM).  

 
This research addresses this gap in previous work through the 
application of DL processes that can classify Maya 
archaeological sites from ALS generated 3D point cloud 
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datasets. Specifically, the PointConv (Wu, Qi, and Fuxin 2019) 
DL architecture is used to identify ancient Maya archaeological 
sites from ALS-generated 3D point cloud data taken from 26 
square kilometers surrounding the UNESCO World Heritage 
Site of Copan, Honduras (Figure 1). This method is tested 
against CNN-based processes that rely on 2D data to determine 
the most efficacious approach. In addition, data augmentation 
strategies for working with small 3D datasets are evaluated. The 
results of these experiments demonstrate that the PointConv 
architecture provides greater classification accuracy in 
identifying Maya archaeological sites than the CNN-based 
approach. This result demonstrates a path for researchers to 
make use of 3D point cloud data directly in DL models while 
improving accuracy and reducing data preparation time.  
 
The research is organized into the following sections: study area 
and dataset (Section 2); overview of previous research in deep 
learning and archaeology (Section 3); description of the deep 
learning models, experimental set-ups, and data preparation 
(Section 4); results and discussion (Section 5); lastly, a 
summary of conclusions and future directions (Section 6).    
 
2. CASE STUDY: MAYA SITE OF COPAN, HONDURAS 

2.1 Historical Background 

As early as 1000-800 BCE, the ancient Maya constructed 
massive and elaborate ceremonial architecture. In fact, due to 
ALS, archaeologists recently located the oldest and largest 
construction found in the Maya area (Inomata et al. 2020). 
However, not only is ALS assisting archaeologists in site 
reconnaissance, but it is also changing our views about the scale 
of the ancient Maya civilization with the identification of 
thousands of undocumented sites (Canuto et al. 2018; Garrison 
et al. 2018). Through LIDAR data along with excavation, 
epigraphic, iconographic, architectural, and other lines of 
evidence, archaeologists are developing a clearer picture of the 
extent and ways the ancient Maya successfully engineered and 
transformed the landscape for over two millennia.  
 
The case study, Copan, is a UNESCO World Heritage site in 
Honduras, but from the 5th–9th centuries CE, the city was the 
cultural and commercial center of a powerful ancient Maya 
kingdom. The city has awed explorers, archaeologists, and 
visitors since the 1500s and is the most thoroughly excavated 
Maya site, providing fundamental data for archaeological 
interpretations. In 427 CE, Yax Kuk Mo, became Copan’s first 
dynastic ruler founding a dynasty that encompassed sixteen 
rulers and spanned almost four-hundred years (Fash 2001).   
 
2.2 Environment 

A key impetus for Maya expansion into the Copan area was its 
favourable environment with an abundance of rich, natural 
resources including highly productive soils and sufficient 
rainfall for agriculture, localized clay sources for ceramics, and 
plentiful wildlife as well as its location along a critical trade 
route. The city of Copan is located along the Copan River in the 
elongated Copan Pocket with an approximated average width of 
four kilometers. Within this circumscribed environment, 
altitude ranges from 569-1408 meters resulting in varied 
topography (flat to steep), diverse vegetation and ecological 
zones, and differential landuse practices—in the past and today.  
This ecologically and topographically diverse landscape leads to 
additional challenges in post processing LIDAR data.  
 

2.3 Project Data: Archaeological and Lidar 

In the late 1970s and early 1980s, the Copan Archaeological 
Project carried out a “100%” pedestrian survey of the Copan 
Pocket and instrument-mapped almost 600 sites within twenty-
four square kilometers surrounding the city’s main civic-
ceremonial core. This work resulted in a (paper) publication that 
included 24 one-square kilometer maps that plot archaeological 
sites, contour lines, and hydrology at a scale 1:2000 (Fash and 
Long 1983). These paper maps were scanned, georeferenced, 
and digitized to create a shapefile with attributes of Copan’s 
archaeological structures (n~3500) (Richards-Rissetto 2010).  
 
In 2013, the MayaArch3D Project commissioned the 
acquisition of LIDAR data (LAS and ASCII) for the Copan 
Pocket (von Schwerin et al. 2016). Watershed Sciences Inc. 
(WSI) from Oregon, USA acquired the data using a Leica 
ALS50 Phase II system mounted in a Piper Aztec aircraft. The 
target point density was ≥ 15 pulses/m2 and all areas were 
surveyed with an opposing flight line sidelap overlap of ≥ 50%. 
The average first-return density for the LIDAR data was 21.57 
points/m2 and ground return density averaged 2.91 points/m2. 
WSI set two permanent survey monuments and used a Trimble 
R7 base unit and a roving Trimble R8 GNSS receiver to collect 
GPS data across the valley. Following acquisition, this LIDAR 
data went through several (time-consuming) stages of post-
processing that incorporated “standard” bare-earth algorithms, 
semi-automatic, and manual methods to classify 3D points into 
four classes: (1) Vegetation (green), (2) Default/unclassified 
(green) , (3) Ground (yellow), (4) Archaeological Features 
(red), and (5) Ruin Grounds (purple) (see von Schwerin et al 
2016 for additional details on post-processing) (Figure 2). The 
classified data overlaid with the structure shapefile served as the 
3D training set in this research (Figure 2). The resultant 
classified 3D data were used to generate a (2.5D raster) Digital 
Elevation Model incorporating bare-earth and archaeological 
mounds that was converted into a hillshade, exported as a TIFF 
for the 2D (image) training set.   
 

 
 

Figure 2. Copan ALS survey 3D Classified Point Clouds. 
 

3. PREVIOUS WORK 

3.1 Deep Learning: Object Classification and Semantic 
Segmentation 

The field of computer vision has studied the problem of 
automating object classification and semantic segmentation for 
decades (Khurana et al. 2016). Object classification refers to the 
automated classification of objects in 2D and 3D data. Semantic 
segmentation, in contrast, refers to the process of classifying all 
pixels, or points, within a 2D image, or 3D, as belonging to one 
object contained in a scene verses other objects in that same 
scene. CNNs were first introduced by LeCun et al. (1989) and 
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have emerged as the leading approach for object classification 
and semantic segmentation when working with 2D images 
(Krizhevsky, Sutskever, and Hinton 2012; Zhao et al. 2017). 
 
A challenge in working with CNNs is that they require large 
amounts of labeled training data often in the range of millions 
of images that are pre-labeled and/or segmented by hand. This 
poses a difficulty when working with small datasets. In order to 
address this problem, researchers have developed a technique 
called “transfer learning” (Yosinski et al. 2014). Transfer 
learning involves repurposing CNN models trained on one 
image dataset for another image dataset. This is done by 
retraining only a few selected layers of the CNN model on the 
new dataset. Transfer learning has demonstrated the ability to 
improve model accuracy in situations where the available data 
to train CNN models is small (i.e., thousands of images) 
(Yosinski et al. 2014). Remote sensing datasets are often small 
and previous research suggests that the application of transfer 
learning in this context improves model accuracy (Pires de 
Lima and Marfurt 2020).   
 
There are also DL architectures specifically designed to work 
with 3D remote sensing data, such as point clouds. Previous 
work in this area has explored a variety of DL architectures to 
perform 3D shape classification and 3D point cloud 
segmentation tasks (Guo et al. 2020). In terms of 3D shape 
classification, previous research can be organized into three 
categories: multi-view methods - which use a combination of 
3D point data and 2D image views of objects; volumetric-based 
methods – which use voxels to represent 3D objects; and point-
based methods. Of these, point-based methods have 
demonstrated some of the highest accuracy when working with 
3D point cloud data. Our research, therefore, uses a point-based 
DL architecture to classify 3D point cloud data in the 
identification of archaeological sites.   
 
3.2 Deep Learning Archaeological LIDAR Applications  

DL is still a relatively new field and its applications in 
archaeology to identify archaeological sites from remote sensing 
data, such as LIDAR data, have been limited to the use of DL 
architectures that work with 2D data. This previous research can 
be organized into two different categories: approaches using DL 
architectures for object classification and those that focus on 
semantic segmentation. The first category provides a probability 
as an output as to whether an input image is likely to contain an 
archaeological site. The second approach provides pixel-level 
probabilities to classify each pixel of the image as belonging to 
an archaeological structure or not. This method, therefore, 
provides the classification and the position of archaeological 
structures within the larger input image. Both approaches can 
also provide probabilities that can be used to classify the type of 
archaeological structures (e.g., mound, platform, building, etc.) 
found in an input image. 
 
In terms of approaches that investigate DL architectures for 
object classification, Kazimi et al. (2018) test three different 
CNN architectures for the classification of four different 
landscape features in the Harz mining Region in Lower Saxony 
using 2D height maps extracted from LIDAR data. They find 
that the simplest CNN model, which did not use transfer 
learning, was more accurate than the VGG-16 and autoencoder 
architectures. Somrak, Džeroski, and Kokalj (2020) test 
variations of the VGG-19 CNN architecture with transfer 
learning to classify LIDAR data into four different categories of 
Maya archaeological structures. The research also explores 

which 2D image formats extracted from LIDAR data improve 
model accuracy the most. They find that visualization for 
archaeological topography (VAT) images without analytical 
hillshading provide the best prediction performance.  
 
Previous research has also explored the use of semantic 
segmentation to identify archaeological sites. Verschoof-van der 
Vaart and Lambers (2019) demonstrate the use of the Faster R-
CNN semantic segmentation architecture to identify different 
classes of archaeological structures in the Netherlands from 
Simple Local Relief Model (SLRM) images derived from 
LIDAR data. The research provides insight into how small 
dataset sizes can pose challenges for training DL models. 
Bundzel et al. (2020) tests two different semantic segmentation 
DL architectures, U-Net and Mask R-CNN, to identify Maya 
archaeological sites of various sizes from digital elevation 
model (DEM) images and find that the U-Net architecture, 
which does not use transfer learning, preforms best on all sizes 
of archaeological structures.  
 
This previous research touches on several key issues in the 
application of DL to identify archaeological structures in 
LIDAR data. The first issue is the impact that dataset sizes have 
on the accuracy of DL models. The LIDAR datasets used in this 
previous research were all relatively small (i.e., in the hundreds 
and thousands of data samples) compared to the dataset sizes 
used to get peak accuracy in the training of state-of-the-art CNN 
models (i.e., in the millions of images). To address this issue, 
previous research investigated the impact of simplifying DL 
architectures, so they have less trainable parameters; using 
transfer learning; and/or applying data augmentation strategies. 
Data augmentation is a process in which additional training 
samples are created by copying and modifying (e.g., through 
scaling, rotation, translation, adding noise, zooming, etc.) 
existing data to produce new data instances.  
 
Another important issue involves the translation of LIDAR data 
into an image input format for training a selected DL 
architecture. That is, all previous research used 2D images 
extracted from 3D LIDAR data. There has been no study of DL 
architectures that can work with the 3D point cloud LIDAR data 
directly, nor how efficacious strategies for dealing with small 
archaeological datasets used in the context of 2D architectures 
(e.g., transfer learning and data augmentation) might be when 
used for 3D architectures.  
 
Our research addresses these gaps through the application of a 
point-based 3D shape classification DL architecture for the 
classification of 3D point cloud data. Specifically, the 
PointConv (Wu, Qi, and Fuxin 2019) DL architecture is used to 
classify LIDAR-based 3D point cloud data in the classification 
of Maya archaeological sites. The model is used in conjunction 
with transfer learning and data augmentation techniques to 
improve its efficacy on small datasets. 
 

4. METHODS 

4.1 Dataset Pre-Processing 

For the experiments, we implemented 3D and 2D DL models 
and compared their performance. For the 3D model training, we 
used raw laser (LAS) formatted files annotated by the 
archaeologists as described in section 2. We uniformly sampled 
10,024 points for each input data and computed the normal 
vectors from the point clouds. The primary parameters for our 
point cloud data include XYZ coordinates and normal vectors. 
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The normal vectors were calculated using a script in the open-
source software CloudCompare.  
 
In order to prepare the dataset for the 2D DL model, the 
hillshade image was used as shown in Figure 1. The high-
resolution hillshade image was divided into smaller-size sub-
images and were labeled according to the shapefile of 
archaeological structures described in section 2.3. Each raw 
image was divided into sub-images of 299×299 pixels. This size 
was chosen because it was large enough to include 
archaeological structures with background. To obtain the 
negative class, which does not include any archaeological 
structures, sub-images of the same size were used and they 
included a variety of natural landscape features, such as hills, 
mountains, and flat areas. 
 
4.2 Data Augmentation 

Large amounts of data are needed to train the deep learning 
models, but our dataset was not large enough, therefore, 
different data augmentation methods were used to create a 
larger and more variable dataset. For fair comparison between 
the 3D and 2D DL model performances, the same data 
augmentation strategies were employed for both models during 
training by randomly rotating the data and jittering both points 
and image pixels by adding Gaussian noise with a zero mean 
and 0.02 standard deviation. 
 
The 3D model training dataset was composed of 142 positive 
class LIDAR data samples containing archaeological features, 
and 142 negative class data samples that contained natural 
landscape features, such as vegetation, mountains, and hills. 
The 2D training dataset consisted of 410 positive data samples 
and 430 negative class data samples with a variety of hills, 
mountains, and flat areas (vegetation was removed). Through 
data augmentation, the dataset size was tripled for both 3D and 
2D model training. 
 
4.3 Training the 3D Deep Learning Model 

For our 3D implementation, the PointConv (Wu, Qi, and Fuxin 
2019) model was used, which has demonstrated state-of-the-art 
performance in the classification of 3D point clouds. PointConv 
is a type of encoder-decoder framework for feature extraction 
and propagation that can efficiently perform convolution 
operations on non-uniformly sampled 3D point cloud data. The 
core feature extracting model takes a point cloud P = 
{p1,p2,...,pL}∈ RL×C0 as its input, which contains L points with 
C0 channels, and produces a L×C feature map at the end of its 
last decoder layer. PointConv utilizes a multi-layer perceptron 
(MLP) to learn the convolution weights on each point 
implicitly as a nonlinear transformation from the point 
coordinates to get a continuous convolution operator on 
irregular point clouds. Figure 3 shows how PointConv 
processes an example 3D point cloud input of a Maya 
archaeological site. In the PointConv architecture, Cin with 
Cout represents the dimensions of the input and output 
features from the K nearest neighbors. The input consists of 
the relative coordinates of the 3D point (Plocal), density and 
characteristics (Fin) and relative coordinates of 3D points. After 
the continuous function MLP1, the corresponding feature 
weight W of each point is obtained, and after MLP2, the inverse 
density coefficient S is obtained. Finally, the input features F 
and output features Fout are calculated. 
For the 3D model training, 80% of the dataset were used in 
training and the remaining 20% were used for testing. The 

training learning rate was set to 0.001 with 32 inputs at each 
training batch. Stochastic gradient descent was used as an 
optimizer and the model was trained for 400 steps. 
 

 
 

Figure 3. 3D PointConv model with input LIDAR data 
examples for Maya archaeological site classification is shown. 

 
4.4 Training the 2D Deep Learning Model  

The trained 2D CNN model used for the classification of 
archaeological sites is based on the Inception-v3 (Szegedy et al. 
(2016) pre-trained deep learning model. Inception-v3 can learn 
the most important features in different kinds of images because 
it is pre-trained on a large-scale hierarchical dataset called 
ImageNet. Given that we had a small dataset, the transfer 
learning approach was used to train our model. Figure 4 shows 
the Inception-v3 architecture along with archaeological site 
images.  
 

 
 

Figure 4. 2D-CNN Inception-v3 architecture is shown along 
with the 2D hillshade images used to train the model.  

Similar to the 3D model, 80% of the annotated sub-images were 
used as training data for the 2D model training and the 
remaining 20% were used for testing. The training learning rate 
was set to 0.01. The training batch size was 100 and the model 
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was trained for 2000 epochs. The final layer of the model was 
retrained on our 2D high-resolution hillshade dataset and 
labeled using the tfClassifier repository of the Inception-v3 
model (Sourcedexter, 2018). 
 

5. RESULTS 

The 3D and 2D models were evaluated based on the 
classification accuracy on the test datasets – which were not 
used in the training process. Additionally, we evaluated the 
models based on augmentation methods. Figure 5 shows the 
classification accuracy of different augmentation methods. The 
3D model achieved 88% accuracy on the testing data without 
augmentation; 91.7% using a Gaussian noise-based approach; 
92.4% using random rotations; and 95% accuracy when two 
different augmentation strategies were combined together – 
specifically, random rotation and Gaussian noise. In 
comparison, the 2D model was only able to achieve an accuracy 
of 87.8% using this same combined augmentation strategy. 
  

 
Figure 5. Classification accuracy of different data augmentation 

strategies for the 3D and 2D deep learning models. 
 
The trained 3D and 2D model performances were also evaluated 
based on the calculation of precision (1) and recall (2). 

 
   (1) 

 

  (2) 
    
Precision measures the number of positive class predictions that 
actually belong to the positive class. Recall measures the 
number of positive class predictions made out of all positive 
examples found in the dataset. Using the precision and recall 
values, the F1 score is calculated and given in equation (3). The 
F1 score is the weighted average of precision and recall. 
 

  (3)  

The 3D inference model achieved 90.5% precision and 94.1% 
recall values on the testing data. Based on those values, the 
weighted F1 value was calculated to be 92.2%. In comparison, 
the 2D inference model achieved 84.6% for precision 
and 88.9% for recall. The F1 score was 86.91%. Figure 6 shows 
two examples of “misclassifications” by the 3D PointConv 
model. For the left image, the false negative probably occurs 
due to landscape changes through time arising from crop 
cultivation. Given that the 3D training set was annotated using a 
shapefile of archaeological structures derived from early 1980s 

pedestrian surveys, there is a high likelihood that the mounds no 
longer exist, and thus do not occur in the LIDAR data. 
Therefore, in this case the data would not actually be 
misclassified. As for the right image, the cause(s) of the false 
negative are currently unknown.  

Figure 6. Examples of false negatives produced by the 3D 
PointConv model. The red shapes show archaeological sites that 

the model was unable to detect. 
 

Figure 7 shows two examples of misclassifications (i.e., false 
negatives) made by the 2D CNN model. These examples 
illustrate the limitations of the hillshade data representation, 
which failed to capture archaeological ruins that were present in 
both of these inputs due to low mound height and/or a low 
ground-return density or possibly missing mounds—a subject of 
future research and possibly a benefit to using 3D point clouds. 
 

 
 

Figure 7. Examples of false negatives produced by the 2D-
CNN model. The black dots show the archaeological sites that 

were not detected.  
 

6. CONCLUSIONS & FUTURE WORK 

While LIDAR is revolutionizing archaeological reconnaissance, 
archaeologists still spend an inordinate amount of time 
processing LIDAR data to identify archaeological sites because 
standard filtering algorithms often fail to capture many features 
(Magoni et al. 2016; Opitz and Cowley 2013). In the Maya 
region, identifying archaeological sites is particularly 
challenging because many are hidden below jungle canopy and 
appear as mounds that are difficult to distinguish from natural 
topography. To date, only a few deep learning projects have 
been applied to archaeology, and these have employed 2D 
approaches, and while several have achieved high accuracy 
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rates, data preparation is more time-consuming that directly 
using raw 3D data.   
 
It is under these circumstances that we designed and performed 
this study to compare 3D and 2D deep learning approaches to 
classify Maya archaeological sites. Overall, the 3D model 
achieved the highest accuracy. This result is likely because the 
model is trained on 3D points, which include the z elevation 
(unlike the 2D hillshade images). Moreover, the data 
augmentation experiments showed the best accuracy when 
augmentation methods were combined – specifically Gaussian 
noise and random rotation augmentations. This combined 
augmentation increases the training dataset and the robustness 
of the model. Given the small LIDAR dataset for Copan, 
merging different augmentation methods using 3D data has 
significant potential for improving deep learning models.  
 
While these initial results are promising, they do have some 
limitations. First, the DL results are dependent on the precision 
of the LIDAR data—areas with low point-return densities have 
a higher likelihood of false negatives. Second, because Maya 
sites exhibit diversity in architecture, infrastructure, and 
environment, using a small dataset does not capture all 
variation. For example, archaeological site locations range from 
low-lying scrub brush in the Yucatan Peninsula of Mexico to 
dense tropical forest sites in the Petén (Maya Heartland) and 
mountainous Highlands of Guatemala. Moreover, architectural 
size and style differ based on function, construction materials, 
and time period. Such diversity necessitates an initial large time 
investment in the annotation of features. Third, identification of 
low-lying archaeological (household) mounds depends not only 
on the precision of the original LIDAR data, but also on the 
ability to separate mounds from landscape features.  
 
Future work seeks to overcome and/or reduce some of these 
limitations as well as refine the methods employed in this study. 
The next phase of research includes several components: (1) 
experimenting with additional augmentation techniques, beyond 
random rotation and Gaussian noise, such as applying multi-
directional hillshade, PCA of hillshade, local relief, and Sky-
View Factor to the DEM (Štular et al. 2012; Thompson 2020); 
(2), integrating raw and augmented 3D data with various 2D 
datasets (3) testing our methods on other Maya LIDAR datasets, 
and (4),  identifying causes for inaccurate classification such as 
low mound height, vegetation types, and differential 
topography.  Given the diversity in Maya archaeological 
landscapes, we plan to investigate the impact of varied 
approaches on different feature types in relation to landscape 
factors; it is likely that multiple DL methods may be required to 
identify and classify ancient Maya archaeological sites. To 
begin to investigate such differences, we are analysing the DL 
results in relation to other geospatial datasets such as landform 
and vegetation using Geographic Information Systems (GIS). 
Following this analysis, we will test our methods on a larger 
LIDAR dataset from Belize to evaluate their applicability in 
other Maya regions and refine them for wider-spread use for 
Maya archaeology.   
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