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ABSTRACT: 
 
Augmented Reality (AR) is more than an added value for Cultural Heritage (CH); it is vital for its sustainability, promotion and 
dissemination, increasing accessibility in CH even during difficult periods of time, like the Covid-19 pandemic. In order to be 
meaningful and engaging, an AR application should have the following characteristics: easiness of use, high-quality representations 
and compatibility. This paper presents a marker-less mobile AR application for the display and inspection of high-resolution 3D cultural 
assets, overlayed on a particular location in the real-world scene. Instead of predefined markers, an image captured by the user is 
exploited as a pattern for real-time feature matching, pose estimation and scene augmentation. Our approach is based on pure computer 
vision and photogrammetric techniques, implemented using native C++ and Java code for Android mobile platforms. It is built with 
the use of the OpenCV library and the OpenGL ES graphics API without any dependencies of AR Software Development Kits (SDKs). 
Therefore, it supports cross-vendor portability regarding mobile model devices and hardware specifications. The evaluation of the 
developed application examines the performance of various matching techniques and the overall responsiveness of processing and 3D 
rendering on mid-range and low-end smartphones. The results showcase the reliability and responsiveness of the pattern recognition 
as well as the potential of the 3D graphics engine to render and overlay complex 3D models balancing between visual quality and time. 
The proposed methodology is applied to the Ciborium of the church of St. Charalabos, located at St. Stephen’s Monastery in Meteora, 
Greece. 
 
 

1. INTRODUCTION 

Immersive technologies provide the opportunity of rethinking 
and further strengthening the role of Cultural Heritage (CH) in 
the new digital era. Unlike Virtual Reality (VR), the role of 
Augmented Reality (AR) is not to replace the real objects; it is to 
encounter and perceive them either from a cognitive or emotional 
point of view. It allows for completing, precising and 
reconstructing layers of information on the physical sites or 
assets through the camera. During the last twenty years, it has 
offered very interesting possibilities for the promotion of CH 
through interactive display of heritage items. One of the first AR 
systems targeted to CH was Archeoguide (Vlahakis et al., 2002), 
which permitted visualization of 3D monuments of the 
archaeological site of Olympia, Greece as they were in antiquity. 
Several AR projects related to CH were reported in the years that 
followed, e.g., LIFEPLUS (Papagiannakis et al., 2002) and 
iTacitus (Zoellner et al., 2007), and applications for museums 
have also been implemented (e.g., Caarls et al., 2009; Vanoni et 
al., 2012; Venigalla and Chimalakonda, 2019; Khan et al., 2021).  
 
The most widespread and easy to use type of AR technology is 
Mobile Augmented Reality (MAR) for handheld computers like 
smartphones and tablets (Siriwardhana et al., 2021). Proof of its 
wide scale adoption is the abundance of CH AR applications for 
mobile devices that have been launched (e.g., Haugstvedt and 
Krogstie, 2012; Verykokou et al., 2014; Galatis et al., 2016; 
Panou et al., 2018; Ramtohul and Khedo, 2019; Čejka et al., 
2020). The nature of this technology can also serve the actual 
needs of the CH community with the overlay of specific-domain 
knowledge or by addressing critical situations. Portability along 
with remote and safe interaction tackles the lack of accessibility 
for risk management, vulnerability assessment or other issues 
imposed by natural or human-caused disasters (Zhu & Li, 2021). 

MAR technology for the dissemination of CH without requiring 
physical contact with the heritage item has been especially 
investigated since 2020 (Kunjir and Patil, 2020; Trunfio et al., 
2020), because of the social distancing recommended by medical 
experts due to the Covid-19 pandemic. In that sense, MAR is 
pervasive in location and applicability of use. Its convergence 
with photogrammetry for the augmentation of realistic and 
geometrically precise 3D reconstructions further evolves its 
potential. 
 
In this paper an open-source Android application for pattern-
based AR in the CH section is presented. Real-world surfaces 
around the end-user can be used as a reference for enabling 
location-specific AR experiences. The application is capable of 
real-time processing of captured images for the visualization of 
high-resolution 3D models as AR overlays. The implementation 
is based on low and mid-level programming with Java and C++ 
and it may run on any device with Android operating system and 
a camera sensor. Unlike the majority of similar AR applications, 
no AR SDK or other specialized software is used. Each stage of 
computing and rendering process is described explicitly based on 
the OpenCV Computer Vision library (OpenCV Team, 2021) and 
the OpenGL ES graphics API (Khronos Group, 2021). Thus, this 
work is technologically innovative in terms of hardware 
independence, visual quality and performance. It integrates the 
following fundamental concepts: 

• feature extraction and matching;  
• anchoring based on keypoints and their descriptors;  
• high performance 3D rendering and visualization. 

 
The proposed methodology is applied at a characteristic example 
of inaccessible for the wide audience cultural asset, the Ciborium 
of the church of St. Charalabos of St. Stephen’s Monastery in 
Meteora, Greece. It is a religious architectural structure of 
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Eastern Orthodox churches, located at the altar of the church 
which is by tradition, a restricted area to the priest. The 3D model 
of the Ciborium that derives from image-based photogrammetry 
and surveying documentation, constitutes the overlay that is 
promoted and disseminated in the context of this application. The 
attained performance stability and visual quality as well as the 
compatibility with any computing device with a camera sensor 
demonstrate the potential of the application to serve a variety of 
AR cases in the CH field.   
 
The rest of the paper is organized as follows. Section 2 describes 
the methodological approach adopted by the AR application 
using photogrammetric and computer vision techniques for the 
augmentation of each camera frame. Section 3 presents the 
application, outlining implementation details, information on the 
generation of the 3D model of the case study and the achieved 
results. Finally, the conclusions of this research along with 
insights on future research steps are discussed in section 4. 
 

2. METHODOLOGICAL APPROACH 

In this section, the photogrammetric – computer vision 
methodology along with an overview of the basic principles of 
computer graphics followed by the AR application are presented. 
 
2.1 Pattern Object Definition 

The pattern object is assumed to be a planar rectangle surface. A 
nadir image of the pattern object is captured by the user, being a 
prerequisite for augmentation of the real-world scene. The origin 
of the world coordinate system is located at the center of the 
pattern object. X and Y axes lie on the pattern object plane, while 
Z axis is perpendicular to it, pointing to the camera. The X and Y 
coordinates of the four corners of the pattern object are derived 
from the normalized width and height of the pattern image 
(equation (1)), ranging from -1 to 1. Z coordinate is set to zero. 
 

𝑤𝑤𝑛𝑛 =
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

max(𝑟𝑟𝑐𝑐𝑤𝑤𝑐𝑐, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) , ℎ𝑛𝑛 =
𝑟𝑟𝑐𝑐𝑤𝑤𝑐𝑐

max(𝑟𝑟𝑐𝑐𝑤𝑤𝑐𝑐, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) (1) 

 
where  wn = normalized width of the pattern image 
 hn = normalized height of the pattern image 
 cols = number of columns of the pattern image  

rows = number of rows of the pattern image 
 
2.2 Feature Extraction and Image Matching 

Feature points are extracted once in the pattern image and in 
every camera frame, using the ORB (Oriented FAST and Rotated 
BRIEF) detector (Rublee et al., 2011), as it is computationally 
more efficient than robust well-established detectors like SIFT 
(Lowe, 2004) and SURF (Bay et al., 2008) and has been claimed 
to have similar matching performance with them. ORB builds on 
FAST keypoint detector (Rosten and Drummond 2006) and 
BRIEF descriptor (Calonder et al., 2010), being rotation invariant 
and resistant to noise.  
 
During the image matching stage, which is executed based on the 
minimum Hamming distance between the descriptors of the 
extracted feature points, outliers are rejected via the RANSAC 
algorithm (Fischler and Bolles, 1981), through computation of 
the 2D homography (projective transformation) between the 
image of the pattern object in each camera frame and the pattern 
image.  
 

2.3 Pattern Recognition 

The correspondences that verify the homography computed by 
RANSAC constitute the inliers. If a minimum number of inliers 
is detected, pattern recognition takes place and the 3D model is 
rendered, superimposed on the camera frame. Otherwise, the 
scene is not augmented, as the pattern object cannot be 
recognized in the frame. The initial estimation of the homography 
obtained by RANSAC is refined using all the inliers, via the 
Levenberg-Marquardt non-linear optimization algorithm (Moré, 
1978). The recognition of the pattern object in each camera frame 
is accomplished through calculation of the pixel coordinates of 
its four corners, using the estimated homography matrix and the 
pixel coordinates of the four corners of the pattern image.  
 
2.4 Camera Pose Estimation 

The estimation of the camera exterior orientation for every frame, 
which defines the camera pose, is accomplished using the pixel 
coordinates of the corners of the pattern object in the camera 
frame and their corresponding real-world coordinates as well as 
the camera interior orientation parameters. These are extracted 
from the information provided by the camera sensor of the mobile 
device. The mathematical model used is the projective 
transformation, as expressed by equation (2). 
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where  x, y = image coordinates of a point in the camera frame 
 corrected by the effects of distortion  
 X, Y, Z = its real-world coordinates  
 c = camera constant 
 x0, y0 = principal point coordinates 
 rij = the elements of the rotation matrix R 
 ti = the elements of the translation vector t 
 λ = scale factor. 
 
The elements (rij, ti) of the joint rotation-translation matrix [R|t] 
define the camera pose for each frame. They are computed 
linearly according to the set of equations (3), through 
computation of the 2D homography H that relates the X, Y real-
world coordinates of the pattern object with the corresponding 
undistorted image coordinates. 
 

                    𝑟𝑟1 = 𝜆𝜆𝐾𝐾−1ℎ1 
                   𝑟𝑟2 = 𝜆𝜆𝐾𝐾−1ℎ2 
                   𝑟𝑟3 = 𝑟𝑟1 × 𝑟𝑟2 
                   𝑡𝑡 = 𝜆𝜆𝐾𝐾−1ℎ3 

𝜆𝜆 =
1

‖𝛫𝛫−1ℎ1‖
 

 
(3) 

 
where ℎ1 = [ℎ11 ℎ21 ℎ31]𝑇𝑇 
 ℎ2 = [ℎ12 ℎ22 ℎ32]𝑇𝑇 
 ℎ3 = [ℎ13 ℎ23 ℎ33]𝑇𝑇 
 𝑟𝑟1 = [𝑟𝑟11 𝑟𝑟21 𝑟𝑟31]𝑇𝑇 
 𝑟𝑟2 = [𝑟𝑟12 𝑟𝑟22 𝑟𝑟32]𝑇𝑇 
 𝑟𝑟3 = [𝑟𝑟13 𝑟𝑟23 𝑟𝑟33]𝑇𝑇 

 K = the 3×3 camera matrix with the interior 
orientation parameters 

 hij = the elements of the 3×3 homography matrix. 
 
The calculation of the singular value decomposition of the 
rotation matrix R is accomplished in order to refine it, by coercing 
it to satisfy the orthogonality condition, as described by Zhang 
(2000). Then, it is transformed to a 3D rotation vector, using the 
Rodrigues rotation formula (Kaehler and Bradski, 2017). 
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Subsequently, the camera pose is optimized via the Levenberg-
Marquardt algorithm and the rotation vector is converted back 
into a 3×3 rotation matrix using the Rodrigues formula. The 
outcome of this procedure is the joint rotation-translation matrix 
[R|t] for each camera frame. 
 
2.5 3D Rendering 

On real-time pattern recognition, the elements of the estimated 
joint rotation-translation matrix [R|t] are converted from vectors 
to a float array and sent to the loading function. They define the 
current model matrix MMODEL that transforms the vertices of the 
3D model from the object coordinate system to their υ’ position 
in the world. Model matrix is multiplied by the view matrix 
MVIEW to convert the world-space coordinates to camera space 
coordinates. Then, they are multiplied with the projection matrix 
MPROJ, being normalized in the range [-1, 1] in all three axes. 
Finally, they undergo a viewport transformation. The screen 
coordinates υ are scaled and translated in order to fit the rendering 
screen and passed to the rasterization process of the graphics 
pipeline as a fragment. The transformation of the 3D coordinates 
in 2D screen coordinates is summarized by the Model View 
Projection or MVP, as expressed by equation (4). 
 

 𝜐𝜐′ =  𝛭𝛭𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∙ 𝑀𝑀𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 ∙ 𝑀𝑀𝑀𝑀𝑃𝑃𝑀𝑀𝑉𝑉𝑀𝑀 ∙ 𝜐𝜐 (4) 
 
This sequence of transformations is updated during the drawing 
calls and applied to the 3D model at each frame. Therefore, the 
3D model is visualized on top of the camera stream at the right 
position, with the intended orientation and scale relative to the 
pattern object. The rendering of the AR session further involves 
the construction of the vertex and fragment shaders, the parsing 
of the 3D file and its material properties as well as the 
configuration of the lighting and texturing. Specifically, the 
vertex shader transforms the vertices into screen coordinates 
through the MVP matrix and the fragment shader calculates the 
final colour of on-screen pixels. The colour is calculated using 
the interpolated values passed from the vertex shader to sample 
from the texture image file. Multiple framebuffers are finally 
used for the offscreen rendering. In order to prevent any 
operations overlap between the processing on camera preview 
and the graphics work, the various tasks are explicitly 
synchronized.   
 

3. APPLICATION 

In this section, implementation details regarding the developed 
application are presented, the creation of the 3D model of the case 
study is outlined and the results of the application are discussed. 
Insights on performance as well as strengths and limitations of 
the current work are also reported.  
 
3.1 Implementation 

The developed AR application is a native Android application 
built with the OpenCV Computer Vision library and OpenGL ES 
graphics API. It is based solely on open-source and free-to-use 
APIs and libraries without any hardware or software dependency. 
The development environment is Android Studio, integrating 
both Android Native Development Kit (NDK) for the native C++ 
implementation and Android Software Development Kit (SDK) 
for Java programming. The bidirectional communication of the 
Android SDK and NDK is established by the Java Native 
Interface (JNI). It handles the calls between C++ functions and 
Java classes as well as any conversion needed for shared objects.   
In native side, CMake connects native C++ files with Java and 
Android SDK. Data structures that represent basic 3D geometry 

are implemented using the OpenGL Mathematics (GLM) library 
(GLM, 2021). Besides the construction of the transformation 
matrices, GLM is used for describing the Wavefront .OBJ format 
and generating its facet and vertex normal.  
 
The application requires runtime permission to camera and 
external storage of the device. Once camera access is allowed, 
home page is loaded and the user can take an image of the point 
of interest of the real scene which will be augmented (Figure 1). 
For best performance, the internal environment or object must 
have enough details and distinguishable characteristics, so that 
sufficient feature points can be detected. The application stores 
the captured image as a temporary file in the cache and displays 
its thumbnail on home screen. The path of the image is sent to the 
native side for the definition of the pattern object. Then, the 
application prompts the user to enable the AR functionality. The 
camera module of OpenCV gets the current frame at run time and 
sends it through the JNI to the descriptor for features extraction. 
Every time the camera encounters the captured object, the pattern 
is detected, image matching occurs and the camera pose is 
estimated. The resulting rotation-translation matrix is sent back 
to Java through JNI as a float array. The transformation is needed 
to set the orientation and finally render the 3D model with 
OpenGL ES in Java. The captured image acts like a real-world 
anchor point and the 3D model is visualized at the given pose 
with fixed position and scale. The system architecture, its basic 
components along with the functional relationships that 
accomplish the NDK – SDK connection are presented in Figure 
2.  

  
Figure 1. User interface of the application. Left:  Home Screen; 

Right: Camera user interface for pattern image capture. 
 
3.2 3D Model 

The object of interest is a 17th century wooden engraved 
ecclesiastical sanctuary (altar) Ciborium, located in the sanctuary 
of St. Charalabos church of St. Stephen Monastery, in the 
archaeological site of Meteora, Greece. It is a form of a wooden 
engraved canopy supported by columns. It is a relic and distinct 
structure in the architecture of the Orthodox church, with 
dimensions: 1.4 m × 1.4 m × 3.0 m. The 3D documentation of 
this unique artefact along with its AR visualization leads to its 
dissemination to the public.  
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Figure 2. System architecture, technological components and 

operation process of the AR application. 
 
A total number of 897 images was acquired with Canon EOS 6D 
camera featuring a 24 mm focal length lens. Structure from 
motion and dense image matching techniques were applied for 
the generation of a dense point cloud of the Ciborium using the 
Agisoft Metashape software (Agisoft, 2021). 3D point cloud 
editing and meshing were applied using the Geomagic Wrap 
software (3D Systems, 2021). Finally, texture mapping in the 3D 
mesh was applied using Agisoft Metashape. The final 3D model, 
in OBJ format, comprises 30K triangles, corresponding to a size 
of 4 GB. For the purposes of the mobile application, the number 
of triangles has been minimized, in order to reduce its size to less 
than 50 MB. The mesh was decimated without losing the original 
topology using the pre-built tools of Geomagic Wrap. Details on 
specific regions of the model were preserved while the whole 
surface was cleaned and smoothed (Figure 3). 
 

   
Figure 3. 3D view (left) and zoom-in views (right) of the 

Ciborium of the church of St. Charalabos. 
 
3.3 Results 

As far as the pattern recognition results are concerned (Figures 4, 
5), the matching ORB feature points detected by the application 
lead to successful pattern object recognition, in the case that it is 
depicted in approximately the same scale with its scale in the 
pattern image, regardless of any rotation with respect to the 
pattern image. As also stated in the original paper of the ORB 
detector (Rublee et al., 2011), whereas the extracted feature 
points are rotation invariant, the issue of scale invariance has not 
been adequately addressed. In spite of the fact that ORB uses a 
pyramid scheme, issues like scale per keypoints or 
implementation of octaves are not tackled by the detector. Hence, 
it is not robust enough in changes of scale. This issue may be 

overtaken by the application by taking a pattern image that 
corresponds to approximately the same scale with the scale of the 
pattern object in each frame. However, taking into account the 
fact that scale invariance is a necessary characteristic in AR 
applications, future work will investigate other feature detectors, 
robust in changes of scale, like SURF or SIFT.  
 

 
Figure 4. Recognition of four different pattern objects; (a), (c), 
(e), (g): pattern images captured by the user; (b), (d), (f), (h): 

pattern recognition performed by the application. 
 

 
Figure 5. Left: User interface, displaying the pattern image 
captured by the user; Right: Photograph showing the pattern 

recognition process by the application. 
 
Regarding the AR session, an accurate and qualitative overlay of 
the 3D model of Ciborium at the given pose is achieved (Figures 
6, 7). The level of the display resolution is good, regarding the 
complexity of the surface. It can be observed that the different 
configurations on diffuse and specular maps that determine how 
the material is rendered in light, simulate different lighting 
conditions. The 3D model is attached at the center of the physical 
object, but tracking loses its efficiency during fast camera 
movements.   
 
The performance evaluation is conducted using Android profiler 
tools. The AR activity is being recorded three times using the 
same pattern image and Android smartphone device for 
benchmarking validation. The device displays 60 frames per 
seconds (fps) and optimal performance is attained when every 
frame is rendered in less than 16.67 ms. If rendering time exceeds 
this limit, a frame drop occurs. Table 1 reports frame counts and 
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latency at three critical moments: on pattern recognition, on 3D 
model loading and on final display of 3D model.  
 

 
Figure 6. Different views during the AR session of the 

application. Left: Photograph showing the pattern image and the 
screen display of the 3D overlay; Right: The 3D model of 

Ciborium as it is superimposed on top of the object. 
 

 
Figure 7. The 3D model of the Ciborium overlaid on top of a 

box.    
 
It can be observed that the application manages to deliver an 
average of 52 fps but drops frames during loading as well as at 
drawn time. The time spent between pattern detection and 
recognition is insignificant. However, the user waits 5.54 sec 
before seeing the 3D overlay. To investigate which rendering 
phases or events cause the latency and the framerates drops, 

Android trace analysis tool is exploited. Tracing data are 
collected for both Java and Native code execution during this 
time period. Two metrics are explored: GPU activity and CPU 
usage. The onDrawFrame function reports a long delay on 
loading, which is caused by the size of the mesh and its texture. 
A high number of vertices is submitted by the application and 
long time is recorded during waiting for dependent memory 
accesses, such as texture sampling. The whole evaluation 
indicates that the application succeeds in delivering a good frame 
latency distribution and maintaining the GPU at a consistent 
performance. Regarding computing workload, marker-less AR is 
a CPU-intensive task with increased memory consumption 
(Figure 8). The fact that real-time processing occurs on native 
side compensates for any delay on camera thread, providing a 
significant reduction in CPU overhead. 
 

Table 1. Metrics on UI thread, namely the main thread, at 
pattern recognition, loading and drawn time. 

 Pattern 
recognition Loading Display 

UI (FPS) 60 42 53 
Delay (sec) 0.3 5.54 

 

 
Figure 8. Graph of real-time CPU usage while the user captures 

the pattern image (CameraView activity) and enables the AR 
functionality (MainActivity activity). The increased CPU usage 

at the moment of pattern recognition is highlighted.  
 

4. CONCLUSIONS AND FUTURE WORK 

This paper presents the development of a content-based AR 
application for Android mobile platforms, which overlays high-
resolution 3D models at predefined locations of the real 
environment of the user. The application has been developed 
using pure computer vision and photogrammetric techniques, in 
C++ and Java programming languages. It is built with the use of 
the OpenCV library and the OpenGL graphics API without any 
dependencies on AR SDKs. Compared with other recent MAR 
applications in Cultural Heritage, our approach does not require 
any specialized software to be downloaded by the user in order 
to operate, having no hardware dependencies. It aims at evolving 
the way archaeological, historical and cultural assets are accessed 
and displayed. The application is flexible, on the grounds that it 
may be applied in numerous case studies and 3D augmentation 
objects, ranging from immovable cultural relics and artefacts to 
CH monuments and even 3D models that may not have any 
cultural value. This flexibility is due to the pattern-based AR 
methodology followed in the application, which relies on the 
recognition of the proper pattern in the real-world scene. The 
planar pattern object along with the 3D augmentation model are 
defined as input data in the application, which thus offers 
unlimited functionality regarding the case studies.    
 
The application is still under development, for being optimized 
in terms of reliability of pattern object recognition and speed, 
which are the most fundamental issues for computationally 
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intensive real-time marker-less AR augmentation. Currently, the 
AR tracking is not yet well-optimized. The application 
corresponds to successful pattern object recognition in the case 
that the pattern is depicted in approximately the same scale with 
its scale in the pattern image, regardless of any rotation with 
respect to it, due to the used ORB detector. Future work will 
investigate the performance of other feature point detectors, 
robust in changes of both scale and orientation, like SURF and 
SIFT, so that the tracking of the pattern object becomes more 
reliable, independently from its scale and orientation in the 
camera frames. The best solution in terms of accurate localization 
of the pattern object and fast image matching will be found, in 
order to combine both reliability and effectiveness. Moreover, the 
application calls the whole OBJ model and texture files at run-
time, instead of implementing progressive loading or a LoD 
(Level of Detail) representation of geometry. Future work will 
investigate such techniques, in order to reduce memory 
consumption by the computationally intensive task of run-time 
loading of the high-resolution 3D textured model. 
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