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Abstract 

Recent advances in precise navigation have extensively utilized the integration of Global Navigation Satellite System (GNSS) and 

Inertial Navigation System (INS), particularly in the domain of intelligent vehicles. However, the efficacy of such navigation systems 

is considerably compromised by the reflection and multipath disruptions of non-light-of-sight (NLOS) signals. Light Detection and 

Ranging (LiDAR)-based odometry, an active perception-based sensor known for its precise 3D measurements, has become 

increasingly prevalent in augmenting navigation systems. Nonetheless, the assimilation of LiDAR odometry with GNSS/INS systems 

presents substantial challenges. Addressing these challenges, this study introduces a two-phase sensor fusion (TPSF) approach that 

synergistically combines GNSS positioning, LiDAR odometry, and IMU pre-integration through a dual-stage sensor fusion process. 

The initial stage employs an Extended Kalman Filter (EKF) to amalgamate the GNSS solution with IMU Mechanization, facilitating 

the estimation of IMU biases and system initialization. Subsequently, the second stage integrates scan-to-map LiDAR odometry with 

IMU mechanization to support continuous LiDAR factor estimation. Factor graph optimization (FGO) is then utilized for the 

comprehensive fusion of LiDAR factors, IMU pre-integration, and GNSS solutions. The efficacy of the proposed methodology is 

corroborated through rigorous testing on a demanding trajectory from an urbanized open-source dataset, with the system demonstrating 

a notable enhancement in performance compared to the state-of-the-art algorithms, achieving a translational Standard Deviation (STD) 

of 1.269 meters. 

1. Introduction

With the development of smart vehicles, the capability of the real-

time positioning and navigation has become critical and 

fundamental requirement (Ai et al., 2022). Given considerations 

of extensive coverage and cost efficiency, GNSS/INS systems 

equipped with low-cost receivers and Micro-Electro Mechanical 

Systems (MEMS)-level IMU have traditionally been the 

cornerstone of vehicle positioning technology (Moussa et al., 

2021). Nevertheless, these systems are prone to significant drift, 

particularly when navigating urban environments characterized by 

signal reflectance and dynamic objects. The amalgamation of 

GNSS solutions with INS mechanization, which can ameliorate 

accuracy by leveraging continuous pose data, has garnered 

increasing interest among researchers in recent years (Chiang et 

al., 2020).  

Literature in this field delineates two solutions pertaining to 

GNSS/INS sensor fusion: the filter-based algorithms, and 

optimization-based algorithms. Filter-based odometry solutions, 

such as Kalman filter and its derivatives, iteratively update the 

vehicle’s new pose based on its preceding state (Chiang et al., 

2019). These methods are validated in published research works, 

demonstrating that a continuous state can be deduced by 

computing nonlinear transformation matrices. In contrast, 

optimization-based approaches utilize the branch of data and 

optimize the all the measurements and state via a nonlinear solver. 

Research work (Wen et al., 2021) has shown that the utilization of 

FGO can achieve promising navigation results, notwithstanding 

drifting errors instigated by GNSS outliers. Moreover, research by 

(Wang et al., 2021) demonstrate that the FGO solution shows the 

capability on fusing heterogeneous measurements and constraints 

(e.g., loop closure constraints and primitive constraints). However, 

in the absence of supplementary measurements, the pure 

GNSS/INS navigation solution is unable to self-correct, 

particularly in the face of adverse GNSS conditions and satellite 

insufficiency. Consequently, the integration of GNSS/INS 

systems with perception-based sensors, like Light Detection and 

Ranging (LiDAR), which can furnish relative local pose data, has 

emerged as a viable alternative.  

With the advantages of unsensitive to various illumination and the 

accurate range measurements, an increasing number of researches 

focus on how to integrate the LiDAR-based odometry (LO) or 

map-aided LiDAR localization with GNSS/INS system, within 

the FGO framework. For example, studies in (Liu et al., 2023; 

Shan et al., 2020) integrates the LiDAR measurements, GNSS 

signals and IMU measurements in loosely or tightly coupled 

system by comprehensively eliminating the distance errors. 

Studies in (Ai et al., 2023) introduce the map matching constraints 

to the navigation system which can highly eliminate the 

translation errors in the vertical direction. However, current 

solutions can’t prevent the positioning drifting from utilizing all 

the measurements at one single stage optimization. Specifically, 

the limitations of the current solutions can be discussed as the 

following two aspects:  

(1). The system’s initialization accuracy is limited: Initialization’s 

aim is to estimate the parameters affected by noise, such as bias 

and scale factor, and to ascertain the direction of gravity. 

Especially when the initial speed is low, the accuracy of IMU 

measurements is affected by the noisy, resulting in drifting at the 

initial stage.  

(2). Susceptibility to local minima: Contemporary methodologies 

often merge all measurable data and states within a singular back-

end framework, which can be compromised by noise and outliers. 

A single estimator’s failure can precipitate system-wide drift due 

to the local minima encountered by nonlinear solvers. 

Additionally, while most navigation systems are dependent on the 

LiDAR-Inertial odometry (LIO) estimator for continuous 

estimation, the GNSS solution is relegated to providing a global 

absolute constraints. Consequently, in scenarios where the GNSS 

data is compromised by unreliable observations, the system is still 

prone to substantial errors.  

To address the mentioned challenging issues, this paper proposes 

a novel two-phase sensor fusion strategy that integrates GNSS, 
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IMU and LiDAR to achieve precise and resilient positioning in 

urban canyons. Specifically, the first phase of GNSS-INS fusion 

leverages the EKF to integrate the GNSS positioning with IMU 

mechanization for the initial positioning. The subsequent LIO-

GNSS fusion phase employs a LIO odometry which is estimated 

via a scan-to-map LiDAR odometry estimation, where the initial 

guess is derived from IMU mechanization. The global positioning 

is then estimated via a tightly coupled FGO framework that 

optimizes factors of LiDAR odometry, IMU mechanization, and 

the GNSS/INS integration factor. The contributions of this paper 

can be summarized as following,  

 

(1). Introduction of a Two-Phase Sensor Fusion (TPSF) strategy 

that enhances navigation precision and system robustness in urban 

canyon environments.  

(2). Implementation of the TPSF strategy, which incorporates 

stages of GNSS-INS fusion and LIO-GNSS fusion, hierarchically 

estimating the global positioning.  

(3). Comprehensive evaluation and results analysis using an urban 

trajectory using a real-world urbanized dataset, demonstrating  the 

evaluation analysis are implemented through two urbanized 

trajectories using a real-world dataset, demonstrating the 

robustness of the proposed solution.  

 

2. Proposed method 

2.1 Overview  

The framework of the TPSF strategy introduced in this paper is 

shown in Figure 1. This strategy is comprised of four primary 

stages: INS mechanization, GNSS-INS integration via an EKF, 

estimation of LiDAR-Inertial odometry, and LIO-GNSS fusion. 

Inputs are comprised of GNSS positioning solutions obtained 

from a low-cost receiver, IMU measurements and the point 

clouds from a LiDAR. To maintain computational efficiency, 

keyframe selection is employed, prioritizing LiDAR frames that 

exhibit the most pronounced geometric features, as outlined by 

(Shan et al., 2020). INS mechanization processes raw IMU 

measurements to deduce relative poses, which also serve as initial 

guess for LiDAR odometry. The details of this process are 

expounded in the foundational works (Forster et al., 2017; Shan 

et al., 2021).  

2.2 Coordinate and frame definition 

We establish the following notations and coordinate frameworks 
for clarity in our methodological discourse. The local world 
coordinate system, denoted as {𝑊(𝑋𝐸𝑁𝑈 , 𝑌𝐸𝑁𝑈 , 𝑍𝐸𝑁𝑈)} is firstly 
defined aligning the East, north, and up (ENU) convention. In 

this coordinate, the X-axis is oriented eastward, the Y-axis 
northward, and the Z-axis upward. The ENU is determined by the 
global position given by the first fixed GNSS location. Local 
sensor frame including LiDAR coordinate system 
{𝐿(𝑋𝐿, 𝑌𝐿, 𝑍𝐿)}  and IMU body frame {𝐵(𝑋𝐵 , 𝑌𝐵 , 𝑍𝐵)} are 
defined, which are affixed to their respective sensors.  

Furthermore, we assume that the timestamps are synchronized 
for sensors, with timestamps 𝑇{𝑡1 , 𝑡2, . . , 𝑡𝑘} , and the relative 
transformation matrix are well calculated, which defined the 
translation and rotation from sensors frame to body frame 

[𝑇𝐵
𝑠𝑒𝑛𝑠𝑜𝑟 , 𝑅𝐵

𝑠𝑒𝑛𝑠𝑜𝑟].  

2.3 IMU pre-integration  

In this study, IMU pre-integration is implemented to estimate the 

IMU pre-integration factor. The raw IMU measurements can be 

represented as,  

�̂�𝑡 = 𝑎𝑡 + 𝑏𝑎𝑡
+ 𝑅𝑡

𝑊𝑔𝑊 + 𝑛𝑎                      (1) 

�̂�𝑡 = 𝜔𝑡 + 𝑏𝜔𝑡
+ 𝑛𝜔                              (2) 

where �̂�𝑡 and �̂�𝑡 are the raw measurements of the gyroscope and 

the accelerometer, while 𝑏 and 𝑛 represent the bias and additive 

noises. 𝑅𝑡
𝑊 is the rotation matrix at each timestamp. The IMU 

pre-integration can be calculated between timestamp 𝑘 − 1 and 

𝑘, as following Equation (3),  

𝛼𝑏𝑘

𝑏𝑘−1 = ∬  
𝑡∈[𝑡𝑘−1,𝑡𝑘]

𝑅𝑡
𝑊(â𝑡 − b𝑎𝑡

)𝑑𝑡2

𝛽𝑏𝑘

𝑏𝑘−1
= ∫  

𝑡∈[𝑡𝑘−1,𝑡𝑘]
𝑅𝑡

𝑊(â𝑡 − b𝑎𝑡
)𝑑𝑡

𝛾𝑏𝑘

𝑏𝑘−1 = ∫  
𝑡∈[𝑡𝑘−1,𝑡𝑘]

1

2
Ω(�̂�𝑡 − b𝑤𝑡

)𝛾𝑡
𝑏𝑘𝑑𝑡

            (3) 

where Ω(𝜔) = [
−⌊𝜔⌋× 𝜔

−𝜔𝑇 0
], ⌊𝜔⌋× = [

0 −𝜔𝑧 𝜔𝑦

𝜔𝑧 0 −𝜔𝑥]
−𝜔𝑦 𝜔𝑥 0

 

 

The IMU factor can be calculated as following:  
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𝛿ṫt
bk

𝛿�̇�t
bt

𝛿ḃat
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Figure 1. The overview of the proposed solution. 
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2.4 LiDAR-Inertial Odometry (LIO) 

In this section, LiDAR-Inertial odometry is estimated via scan-

to-map matching when a new LiDAR frame is available. The first 

step is to extract the edge points and planar points by calculating 

and sorting the smooth value, following Equation (5) (Zhang and 

Singh, 2014),  

𝑠𝑖 =
1

‖𝑆‖
‖∑ (𝑋𝑖

𝐿 − 𝑋𝑗
𝐿)𝑆

𝑗=1,𝑗≠𝑖 ‖                (5) 

where the 𝑠𝑖 is the roughness of the point, while 𝑆 denotes the 

surrounding local region of the center point 𝑋𝑖
𝐿. The 𝑋𝑖

𝐿 will be 

classified as an edge point 𝐹𝑒,𝑘
𝐿  when the 𝑠𝑖 is larger than a pre-

defined threshold 𝛿. Otherwise, the center point will be classified 

as a planar point 𝐹𝑝,𝑘
𝐿 . Subsequently, the set of feature points is 

composed of the planar points and edge points.  
 

Using the IMU pre-integration as initial guess, the relative 
transformation matrix can be estimated by minimizing the 
corresponding featured point set, which can be formulated as 
Equation (6),  

m𝑘−1,𝐵
𝑘,𝐵 = 𝜌(𝑅𝐵

𝐿(F𝑘{F𝑝,𝑘
𝐿 , F𝑒,𝑘

𝐿 }, F𝑘−1{F𝑝,𝑘−1
𝐿 , F𝑒,𝑘−1

𝐿 }))  (6) 

 

where 𝜌  denotes the distance minimization operation, while 

m𝑘−1,𝐵
𝑘,𝐵

 is the calculated distance.  

 

By solving the linear minimization process of m𝑘−1,𝐵
𝑘,𝐵

, the 

relative transformation matrix of LIO factor can be represented 

as Equation (7),  

ΔT𝑘−1,𝑘 = T𝑘−1
⊤ T𝑘                                (7) 

where ΔT𝑘−1,𝑘 represents the relative LiDAR-Inertial odometry.  

 

2.5 Fusion Stage 1: GNSS/INS Fusion 

In this research, the EKF is implemented to fuse the data from 

the GNSS positioning solution and the INS mechanization 

derived from a 6-axis IMU, employing a loosely coupled sensor 

fusion strategy. INS mechanization computes the relative motion 

state using the measurements from the IMU, which include 

angular rates from a gyroscope and accelerative forces from an 

accelerometer. The GNSS positioning are transposed into the 

ENU frame relative to the defined initial point.  

 

The state 𝑥  of the navigation system along with variables, is 

articulated in terms of position 𝑟 , velocity 𝑣 , and the IMU 

specific parameters as bias and scale factors. The state function 

for the system can be formulated as following,  

𝜒𝑘 = [𝑋𝑘
𝐸𝑁𝑈, 𝑣𝑘

𝐸𝑁𝑈 , 𝑏𝑎,𝑘
𝐵 , 𝑏𝑔,𝑘

𝐵 ]𝑇                      (8) 

where 𝑋𝑘
𝐸𝑁𝑈 = [𝑥𝑘

𝐸𝑁𝑈, 𝑦𝑘
𝐸𝑁𝑈 , 𝑧𝑘

𝐸𝑁𝑈]  is the positioning of the 

GNSS receiver in the ENU frame at a timestamp 𝑘, and 𝑣𝑘
𝑤 =

[𝑣𝑥,𝑘
𝑤 , 𝑣𝑦,𝑘

𝑤 , 𝑣𝑧,𝑘
𝑤 ] demonstrates the velocity, respectively. 𝑏𝑎,𝑘

𝐵  and 

𝑏𝑔,𝑘
𝐵  denote the bias of the accelerometer and gyroscope. In this 

study, the first stage of GNSS-INS loosely coupled system 

estimate each term and finish the initialization.  

 

A brief introduction of EKF is presented herein. A general 

dynamic model of EKF-based loosely coupled system can be 

formulated as Equation (9),  

𝐱𝑘 = 𝑓(𝐱𝑘−1, 𝐮𝑘) + 𝐰𝑘−1                          (9) 

where 𝐱𝑘  represents the state vector at the timestamp 𝑘 . 𝐮𝑘 

embodies the LiDAR measurements, including IMU 

measurement, and 𝐰𝑘  denotes the process noise. The EKF 

provides an iterative means to predict and update the system 

state by linearizing the nonlinear state transition function 

around the current estimate. The 𝑓(𝐱𝑘−1, 𝐮𝑘)  based on the 

constant-velocity model, can be represented as Equation (10),  

𝑓(𝐱𝑘−1, 𝐮𝑘) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑥𝑘−1
W + 𝑣𝑘−1,𝑥

W ⋅ Δ𝑡

𝑦𝑘−1
W + 𝑣𝑘−1,𝑦

W ⋅ Δ𝑡

𝑧𝑘−1
W + 𝑣𝑘−1,𝑧

W ⋅ Δ𝑡

𝑣𝑘−1,𝑟,𝑥
W + 𝑎𝑘−1,𝑥

W ⋅ Δ𝑡

𝑣𝑘−1,𝑟,𝑦
W + 𝑎𝑘−1,𝑦

W ⋅ Δ𝑡

𝑣𝑘−1,𝑟,𝑧
W + 𝑎𝑘−1,𝑧

W ⋅ Δ𝑡

𝑏𝑎,𝑘−1,𝑥
B

𝑏𝑎,𝑘−1,𝑦
B 

𝑏𝑎,𝑘−1,𝑧
B 

𝑏𝑔,𝑘−1,𝑥
B

𝑏𝑔,𝑘−1,𝑥
B

𝑏𝑔,𝑘−1,𝑥
B

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                   (10) 

where Δ𝑡 is the time difference between the relative data.  

In addition, the measurement model of the EKF can be 

represented as the Equation (11),  

𝒁𝐾 = ℎ(𝑿𝑘) + 𝒆𝑘                           (11) 

where 𝒁𝐾 = (𝑥𝑘
𝐺𝑁𝑆𝑆, 𝑦𝑘

𝐺𝑁𝑆𝑆 , 𝑧𝑘
𝐺𝑁𝑆𝑆)𝑇  are the positioning 

measurements in the ENU frame which are converted the 

positioning solution from the GNSS receiver, while 𝒆𝑘 represent 

the Gaussian noise along with the measurements, which can be 

described using a covariance matrix.  

 

Figure 2. The structure of factor graph optimization. 
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2.6 Fusion Stage 2: LIO-GNSS/INS Fusion  

In the second stage of optimization, a factor graph optimization 

structure is implemented to calculate the optimal state, based on 

the GNSS-INS positioning solution, LiDAR-Inertial Odometry, 

and IMU pre-integration. The structure of the FGO is shown in 

Figure 2. The state motion function and detailed error function 

are introduced as following.  

 

The state function of the proposed factor graph optimization can 

be represented as Equation (12),  

x = [RT, pT, vT, bT]T,                             (12) 

where  R = rotation matrix, 𝑅 ∈ 𝑆𝑂(3) 

 p = position vector, 𝑝 ∈ 𝑅3 

 v = speed 

 b = IMU bias 

The estimation process then can be formulated as the 

minimization problem by solving the nonlinear least-squares 

problem, as Equation (13),  

T𝐵
𝑊∗

= argmin∑  𝑘=0,1,…,𝐾 (∥∥e𝑘
GNSS/INS

∥∥Σ𝑘
GNSS/INS 

2
+

+∥∥e𝑘
𝐼𝑀𝑈∥∥Σ𝑘

IMU 

2
+ ∥∥e𝑘

𝐿𝐼𝑂∥∥Σ𝑘
LIO 

2
)(13) 

where the defined three error factors are GNSS-INS factor 

e𝑘
GNSS/INS, IMU pre-integration factor e𝑘

𝐼𝑀𝑈 and LiDAR-Inertial 

odometry factor e𝑘
𝐿𝐼𝑂. Especially, the error function of each factor 

can be represented as following:  

∥∥𝐞𝑘
𝐼𝑀𝑈∥∥𝚺𝑘

𝐿𝐷𝐴𝑅𝑅

2
= ∥∥

∥
‖𝐓𝐵,𝑘−1

𝑊 −1
𝑻𝐵,𝑘

𝑊 ‖
2

∥∥
∥
𝚺𝑘

𝐼𝑀𝑈

2

 (14) 

∥∥e𝑘
𝐿𝐼𝑂

∥∥Σ𝑘
LIO 

2
= ∥

∥(𝐓𝐵,𝑘−1
𝐸𝑁𝑈 −1

𝑻𝐵,𝑘
𝐸𝑁𝑈) ⊖ (𝐓𝐵,𝑘−1

𝐿 −1
𝑻𝐵,𝑘

𝐿 )∥
∥
𝚺𝑘

𝐿𝐼𝑂

2
 (15) 

∥∥e𝑘
𝐺𝑁𝑆𝑆/𝐼𝑁𝑆

∥∥Σ𝑘
GNSS/INS 

2
= ∥

∥(𝐓𝐵,𝑘−1
𝐸𝑁𝑈 −1

𝑻𝐵,𝑘
𝐸𝑁𝑈)∥

∥
𝚺𝑘

𝐺𝑁𝑆𝑆/𝐼𝑁𝑆

2
    (16) 

where ∥𝐞∥∑𝑘
2  is the error function between keyframe 𝑘 − 1 and 

𝑘, while the operation ⊖ is the minus operation.  

 

3. Experimental Results 

3.1 Experiment details 

In our study, we assess the effectiveness of the proposed TPSF 

strategy through a series of experiments conducted along an 

urban trajectory characterized by dense, urban canyon-like 

environments (Hsu et al., 2021). This trajectory was specifically 

chosen to test the robustness of the TPSF strategy under 

challenging urban conditions. 

 

To rigorously evaluate the TPSF strategy, we designed a set of 

ablation experiments, each focusing on a different aspect of the 

sensor fusion process. These experiments were conducted using 

the Robot Operating System (ROS) on an Ubuntu Linux platform 

and include: 

 

(1). GNSS/INS Integration via Extended Kalman Filter (EKF): 

This experiment tests the baseline performance of integrating 

Global Navigation Satellite System (GNSS) data with Inertial 

Navigation System (INS) outputs using an EKF. 

(2). Direct GNSS Positioning with Factor Graph Optimization 

(FGO): Here, GNSS positioning is fixed and directly fused with 

Table 1. Translational error analysis.  

Dataset  

(ape) 

Error type EKF GNSS- 

LIO-SAM 

LIO Proposed 

solution 

Translation STD 2.230 1.372 1.373 1.269 

(m) Max 8.240 5.063 5.207 5.013 

 RMSE 3.180 2.905 3.318 2.836 

 

 

Figure 3. The 3D map results using proposed TPSF scheme. 
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LiDAR-Inertial Odometry (LIO) and IMU pre-integration factors 

using FGO, bypassing the EKF step. 

(3) Lidar-Inertial Odometry Optimization via FGO: This setup 

focuses on optimizing the Lidar-Inertial odometry factor with 

FGO, evaluating the performance improvement when LIO data 

is directly optimized. 

 

The performance of the TPSF strategy across these experiments 

is quantitatively evaluated based on translational errors, 

employing the following metrics: 

 

STD (Standard Deviation): Measures the variability or 

dispersion of the error distribution. 

RMSE (Root Mean Square Error): Provides a measure of the 

magnitude of the error, combining both the variance and the bias 

of the predictions. 

MAX (Maximum Error): Identifies the worst-case error 

scenario, offering insights into the extreme outliers in the data. 

 

These metrics collectively offer a comprehensive view of the 

TPSF strategy's accuracy, reliability, and robustness in 

navigating complex urban environments. 

3.2 Mapping results and performance evaluation  

Figure 3 illustrates the 3D mapping results achieved with the 

proposed TPSF solution in a complex urban environment, 

characterized by dense structures and dynamic objects. The 

detailed zoom-in views highlight the superior structural detail 

and clearer delineation of building boundaries achieved by the 

TPSF solution. This enhancement is attributed to the innovative 

two-stage optimization and SLAM (Simultaneous Localization 

and Mapping) strategy, which notably mitigates drift errors, 

particularly in the z-direction. 

Table 1 presents the outcomes of our ablation study, comparing 

the performance of the proposed TPSF solution against baseline 

methods in terms of translational errors. The results underscore 

the TPSF's effectiveness in significantly reducing errors. 

Notably, the TPSF solution demonstrates a marked improvement 

 

Figure 4. The estimated trajectories and ground truth. 

 

Figure 5. Translational errors in different directions.  
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in translational RMSE over conventional EKF and LIO 

approaches. Furthermore, when compared to methods utilizing 

GNSS positioning as a constraint, the TPSF solution achieves 

superior performance, reducing the translational STD from 1.4 m 

to 1.3 m, showcasing its robustness and accuracy. 

 

Figures 4 and 5 further validate the TPSF's performance through 

visual comparison of estimated trajectories and translational 

differences across three axes. Figure 4(a) reveals the TPSF's 

capability to maintain a stable initial position relative to other 

solutions. A closer examination of a significant turn in the 

trajectory (Figure 4(b)) demonstrates the TPSF's ability to 

counteract drift, maintaining accuracy even in the presence of 

substantial rotational changes. The translational trajectory, 

depicted by black points, closely aligns with the ground truth (red 

points), highlighting the precision of the TPSF solution. Notably, 

the absence of TPSF output prior to successful initialization is 

indicated within a blue box, emphasizing the initialization 

process's critical role. 

4. Conclusion and Future work  

This study introduces a novel two-phase sensor fusion strategy, 

the TPSF, which integrates LiDAR, IMU, and GNSS data to 

significantly enhance SLAM robustness in challenging urban 

canyon environments. The TPSF employs a dual-stage approach 

for precise pose estimation and mapping in complex urban 

settings. Initially, the system leverages GNSS positioning and 

IMU pre-integration for system initialization and initial global 

positioning estimation. Subsequently, it incorporates LiDAR-

Inertial odometry, further IMU pre-integration, and GNSS-INS 

data within a factor graph optimization framework to refine 

global pose estimation and mapping. 

 

Distinct from conventional single-stage sensor fusion 

approaches, the TPSF presents two primary advantages: (1) It 

enables early estimation of IMU parameters, significantly 

enhancing the performance of both LIO and IMU pre-integration. 

(2) It effectively mitigates the risk of the system converging to 

local minima, a common challenge in sensor fusion applications, 

particularly under conditions of signal degradation. 

 

However, the study acknowledges a limitation in its assumption 

that no outliers in relative pose estimation occur during the 

second stage of optimization. The presence of significant outliers, 

especially in the z-direction, can lead to considerable drift if 

LiDAR odometry estimates converge to local minima. 

Addressing this, future work will focus on enhancing outlier 

detection and removal mechanisms to bolster the SLAM system's 

resilience and reliability. 
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