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Abstract 

Cloud detection is a necessary step before the application of remote sensing images. However, most methods focus on cloud 

detection in daytime remote sensing images. The ignored nighttime remote sensing images play more and more important role in 

many fields such as urban monitoring, population estimation and disaster assessment. The radiation intensity similarity between 

artificial lights and clouds is higher in nighttime remote sensing images than in daytime remote sensing images, which makes it 

difficult to distinguish artificial lights from clouds. Therefore, this paper proposes a deep learning-based method (MFFCD-Net) to 

detect clouds for day and nighttime remote sensing images. MFFCD-Net is designed based on the encoder-decoder structure. The 

encoder adopts Resnet-50 as the backbone network for better feature extraction, and a dilated residual up-sampling module (DR-UP) 

is designed in the decoder for up-sampling feature maps while enlarging the receptive field. A multi-scale feature extraction fusion 

module (MFEF) is designed to enhance the ability of the MFFCD-Net to distinguish regular textures of artificial lights and random 

textures of clouds. An Global Feature Recovery Fusion Module (GFRF Module) is designed to select and fuse the feature in the 

encoding stage and the feature in the decoding stage, thus to achieve better cloud detection accuracy. This is the first time that a deep 

learning-based method is designed for cloud detection both in day and nighttime remote sensing images. The experimental results on 

Suomi-NPP VIIRS DNB images show that MFFCD-Net achieves higher accuracy than baseline methods both in day and nighttime 

remote sensing images. Results on daytime remote sensing images indicate that MFFCD-Net can obtain better balance on 

commission and omission rates than baseline methods (92.3% versus 90.5% on F1-score). Although artificial lights introduced 

strong interference in cloud detection in nighttime remote sensing images, the accuracy values of MFFCD-Net on OA, Precision, 

Recall, and F1-score are still higher than 90%. This demonstrates that MFFCD-Net can better distinguish artificial lights from clouds 

than baseline methods in nighttime remote sensing images. The effectiveness of MFFCD-Net proves that it is very promising for 

cloud detection both in day and nighttime remote sensing images. 

1. Introduction

Satellite sensors are designed to collect electromagnetic wave 

data across various spectral bands, enabling the formation of 

satellite remote sensing images. These images are integral in 

executing a range of tasks, including feature identification, 

target detection, target tracking, and issuing disaster warnings. 

However, cloud cover significantly impacts the quality of 

satellite remote sensing imagery. According to a study by the 

International Satellite Cloud Climatology Project (ISCCP), 

clouds obscure about 67% of the Earth at any given time (Zhang 

et al., 2004). The efficacy of most remote sensing applications 

hinges on the precision and surface detail richness of these 

satellite images. 

Over the past few decades, there has been considerable 

scholarly interest in the area of cloud detection in satellite 

remote-sensing images. Pioneering studies and advancements 

have been made (Li et al., 2017; Li et al., 2022). Presently, the 

techniques for cloud detection in remote-sensing images are 

broadly classified into four categories: physical rule-based, 

temporal phase-difference-based, machine learning-based, and 

deep learning-based methods (Li et al., 2022). These 

methodologies utilize a combination of spectral and spatial 

features, along with temporal data and integrated features, to 

effectively differentiate clouds from clear segments in satellite 

imagery. 

1.1 Physical Rule-based Methods  

Physical rule-based methods, initially employed for cloud 

detection in remote sensing imagery, capitalize on the distinct 

high reflectivity and low temperature characteristics of cloud 

layers. These methods implement specific rules tailored for 

different spectral channels to facilitate cloud detection. A 

notable example is the ISCCP cloud detection approach 

(Schiffer et al., 1983), which distinguishes clouds from clear 

skies based on the disparity in radiation between them in visible 

and near-infrared channels, using empirical thresholds for 

identification. Similarly, the Automatic Cloud-Cover 

Assessment (ACCA) methodology (Irish et al., 2006) leverages 

satellite spectral reflectance data from the second to fifth bands 

of the Landsat-7 ETM+ imagery. Physical rule-based methods 

mainly utilize cloud and surface spectral analysis to achieve 

cloud detection, which is simple and easy to use. However, the 

selection of physical rules for this type of method relies on 

empirical judgment and parameter sensitivity analysis. 

Moreover, owing to the complexity and variability of the 

surface environment, the diversity of cloud geometries, and the 

limited spectral information, it is usually difficult to determine 

the optimal thresholds with full consideration of the influencing 

factors, which leads to varying degrees of cloud-coverage 

estimation bias. 

1.2 Temporal Phase-Difference-based Methods  

In time-series imagery of the same geographical area, cloud 

coverage often results in abrupt shifts in reflectivity. 

Consequently, temporal phase-difference-based methods 

typically identify clouds by assessing the reflectivity contrast 

between cloud pixels and clear-sky pixels, or simulated clear-

sky pixels. Pixels exhibiting reflectivity exceeding a 

predetermined reference value are classified as clouds (Zhu et 

al., 2012). The foundational principle of these methods is the 

differential analysis between pairs of images. For instance, 

Wang et al. (1999) initially employed a histogram-based 
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approach to broadly distinguish between cloud-covered and 

clear-sky areas. Subsequently, they integrated this technique 

with a differential analysis of Landsat TM (Thematic Mapper) 

images, taken at different times, to enhance the precision of 

cloud detection.Another notable method, the Tmask approach 

(Zhu et al., 2014), exploits time-series data from Landsat to 

develop a model that predicts apparent reflectance. It then 

compares this predicted reflectance with the actual measured 

apparent reflectance of the pixel under examination for cloud 

detection. Methods based on temporal phase differences, which 

merge spectral and temporal data, can notably improve cloud 

detection accuracy. They are particularly effective in reducing 

the misidentification between bright surfaces and clouds. 

However, the efficacy of these methods is heavily contingent 

upon the time series data quality. Challenges arise in regions 

with significant surface type variations over time, leading to 

potential misclassifications of clouds and surface features. 

1.3 Machine-learning-based Methods  

Machine learning-based methods for cloud detection approach 

the task as a binary classification problem. These methods 

extract spectral and spatial features from a large dataset of 

training samples, iteratively refining and optimizing model 

parameters to develop robust classifiers for cloud identification. 

In traditional machine learning, the methods are broadly divided 

into supervised and unsupervised learning categories. 

Supervised learning encompasses techniques like Support 

Vector Machine (SVM) (Ma et al., 2017; Joshi et al., 2019), 

Decision Trees (Jang et al., 2012), Bayesian classifiers (Xu et 

al., 2017), and Random Forest (RF) (Wei et al., 2020). On the 

other hand, unsupervised learning includes methods such as the 

Principal Component Analysis (PCA) (Mackie et al.,2010), and 

Singular Value Decomposition (SVD) (Hurley et al., 2009), all 

of which have seen extensive application in cloud detection 

research within the realm of remote sensing. Machine learning-

based methods leverage both spectral and spatial attributes of 

clouds and surfaces for automated cloud detection. Compared to 

physical rule-based and temporal phase-difference methods, 

machine learning approaches offer greater efficiency in 

implementation and automation, enhancing cloud detection 

accuracy to some degree. Nevertheless, in vast and highly 

heterogeneous regions, the generalization capabilities of 

traditional machine learning models can be limited. As a result, 

cloud identification performance may vary across different 

scenes. 

1.4 Deep-learning-based Methods 

In recent times, deep learning networks have gained significant 

traction in cloud detection tasks, demonstrating superior 

performance over traditional methods. Notable examples 

include the U-Net (Ronneberger et al., 2015), SegNet 

(Badrinarayanan et al., 2017), and DeepLabV3+ (Chen et al., 

2017). These deep learning-based cloud detection methods not 

only enhance cloud recognition effectiveness but also boost the 

efficiency of cloud detection models and simplify the detection 

process (Yang et al., 2019; Li et al., 2019; Li et al., 2022). 

However, purely convolutional network architectures often fall 

short in capturing global contextual information, a critical 

aspect when dealing with targets varying greatly in texture, 

shape, and size. To address this challenge, research efforts have 

focused on enlarging the receptive field to better capture 

contextual details. For example, Chen et al. (2017) introduced 

the concept of dilated convolution in DeepLab networks to 

expand the receptive field, coupled with a conditional random 

field (CRF) to enhance detail capture in the model. Similarly, Li 

et al. (2022) developed the Global Context Dense Block 

(GCDB UNet) within the UNet architecture, effectively 

improving the detection of thin clouds by integrating global 

context dense blocks. Additionally, Shi et al. (2019) presented 

an Enhanced Fully Convolutional Network (EFCN) based on 

the VGG-16 framework, substituting VGG-16’s fully connected 

layers with convolutional layers and employing up-sampling 

predictions for improved detection results. 

1.5 VIIRS DNB 

Launched in 2011, NPP is NASA's satellite dedicated to global 

environmental observation, equipped with the VIIRS (Visible 

Infrared Imaging Radiometer Suite) as its primary multispectral 

imager. VIIRS captures radiometric imagery of the atmosphere, 

land, and oceans across various channels, including visible and 

infrared bands. The sensor features 22 bands: five I-bands with 

a 370-meter spatial resolution, one Day/Night Band (DNB), and 

sixteen M-bands with a 750-meter spatial resolution. The DNB 

on the VIIRS sensor represents a significant advancement in 

remote sensing technology, capable of capturing detailed Earth's 

surface imagery under both day and night conditions. 

The primary distinctions between day and night imaging modes 

lie in the lighting conditions and the adaptability of the imaging 

technology. During the day, the DNB utilizes sunlight as the 

main source of illumination to record reflected radiation from 

the Earth's surface and atmosphere. In contrast, the DNB's night 

mode showcases its exceptional low-light imaging capabilities, 

relying on moonlight, starlight, and terrestrial artificial light 

sources. Nighttime images, while dimmer and less contrasted 

compared to daytime, still provide valuable insights into human 

activity patterns and geographical distribution. In analyzing 

DNB images from the VIIRS sensor, manmade lights are 

typically characterized by bright spots with clear boundaries and 

regular shapes, reflecting human activities like road networks 

and urban centers. Conversely, clouds in remote sensing images 

often display irregular shapes and diffuseness, covering 

extensive areas with blurred edges. Spectrally, even in grayscale, 

artificial lights manifest as uniformly bright areas, whereas 

cloud-reflected light appears darker, with lower brightness and a 

more consistent tonal range. Leveraging these characteristics, 

algorithms can be tailored to effectively focus on and 

distinguish between these disparate elements in nighttime 

remote sensing images. 

Although recent advancements in cloud detection using satellite 

remote sensing images have been considerable, there remain 

several areas requiring further exploration and improvement. 

Currently, key challenges in deep learning-based cloud 

detection of remote sensing images include: 

1) Owing to the complexity of the cloud structure, different

scales of clouds have different boundary scales, and existing

deep-learning-based methods tend to discriminate clouds and

backgrounds within the global scale, which leads to the model's

omission and misdetection of fragmented clouds as well as

clouds with smaller scales;

2) Since the VIIRS DNB image is a single-band image, the

color features of clouds and lights may be similar, which

increases the difficulty of differentiation in a nighttime image;

3) Fewer explorations of existing methods have aimed at the

detection of night-lighting remote sensing clouds. Moreover,

there is no publicly available cloud-masked dataset of night-

lighting remote sensing imagery.

The information mining ability of a deep learning model is one

of the factors affecting cloud detection accuracy, so mining and

using more effective information are important ways to improve

cloud detection accuracy. Aiming at addressing the above-

mentioned problems, we propose MFFCD-Net in this paper to

realize cloud detection of daytime and nighttime remote sensing

images. MFFCD-Net is implemented through an encoder-
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decoder architecture that acquires the multi-scale information of 

the image through the multi-scale feature extraction module 

(MFEF Module) and associates the shallow detail features with 

the distinguishing features of lights and clouds through the 

Global Feature Recovery Fusion Module (GFRF Module) to 

achieve a better cloud detection effect. The main contributions 

of this paper are as follows: 

1) In this paper, the designed MFEF module is added at the

lowest end of the encoder to extract image multi-scale

information and select noteworthy cloud information from

different scale feature maps to improve the network's ability to

focus on the spatial background region that is most relevant to

clouds. In addition, the designed DR-UP Block is used in the

decoding stage to expand the network sensory field so that the

network can capture cloud features at different scales;

2) The MFEF module can capture the large-scale features of

urban lights and more dispersed lights in rural areas, filter and

optimize  the multi-scale feature maps, strengthen the model's

ability to recognize regular textures of urban lights and random

textures of clouds, and reduce the misdetection rate of lights.

The edge-detail information in the encoding stage and the

feature information after filtering out lights in the decoding

stage are fused by the GFRF module to achieve better cloud

boundary segmentation accuracy and lighting discrimination;

3) Aiming at the lack of publicly available nighttime remote

sensing cloud mask datasets, we produced day-night remote-

sensing cloud mask datasets by manual labeling. Remote

sensing data captured by the day-night band (DNB) of the

Visible Infrared Imaging Radiometer Suite (VIIRS) on board

the Soumi NPP satellite were mainly used, and a total of 14,894 

256 × 256 cloud mask images were obtained, including 2,708 

nighttime remote sensing images. 

2. Method and Experiment

2.1 Overview of the MFFCD-Net 

The overall architecture of MFFCD-Net designed in this paper 

is shown in Fig.1. MFFCD-Net is realized based on an encoder-

decoder architecture. The encoder adopts Resnet50 as the 

backbone network to extract the features at different layers, and 

the decoder recovers the image features and dimensions from 

the fused multi-scale feature maps by means of the dilated 

residual module up-sampling (DR-UP Blocks). Each DR-UP 

Block is composed of three convolutional layers with different 

dilated rates and one up-sampling layer, and the DR-UP Block 

expands the feature-sensing field of the network while 

recovering the image size. The MFEF module is added to the 

bottom layer of the encoder to mine the multi-scale information 

of the feature map and improve the network's ability to 

recognize the fragmented clouds as well as the clouds with 

different boundary scales. To better realize the combination of 

shallow and deep features, we replaced the traditional simple 

jump-joining structure with an GFRF, which fuses the edge 

detail information of different scales and the feature maps after 

the MFEF module processing to discriminate the lights, thus 

improving the cloud-boundary segmentation accuracy and 

lighting discrimination effect. 
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 Fig.1.The overall architecture of MFFCD-Net.

2.2 DR-UP Block 

Traditional convolution aims to use a convolution kernel to 

perform a convolution operation on the neighboring elements in 

the tensor, while the cavity convolution can be convolved on 

two non-neighboring elements, which can increase the 

convolution kernel's receptive field and reduce the amount of 

computation. Different expansion rates have different receptive 

fields, and multi-scale features can be extracted so that the 

network can capture cloud features at different scales. The DR-

UP Block was designed in the decoder by combining the cavity 

convolution and up-sampling layers, and the DR-UP Block 

consists of three cavity convolution layers and one up-sampling 

layer. The same dilated rate of adjacent cavity convolutional 

layers leads to the problem of a discontinuous convolution 

center. To solve this problem, we designed the dilated rate as a 

cyclic sawtooth structure of [1, 2, 5]. Fig. 2 shows the structure 

of the DR-UP Block designed in this paper. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1-2024 
ISPRS TC I Mid-term Symposium “Intelligent Sensing and Remote Sensing Application”, 13–17 May 2024, Changsha, China

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-1-2024-115-2024 | © Author(s) 2024. CC BY 4.0 License. 117



Fig. 2. Structure of DR-UP block 

2.3 MFEF module 

In nighttime remote-sensing-image cloud detection, the high 

radiation intensity of artificial lights and their similarity in color 

to clouds on the image often lead to their misidentification as 

clouds. However, the regular arrangement and consistent 

brightness of lights provide discriminative features between 

lights and clouds for nighttime cloud detection. In view of this, 

this study designed an MFEF module, which consists of two 

parts: a multi-scale spatial pyramid and a multi-scale feature 

selection module. In the multi-scale spatial pyramid, multilevel 

features are extracted through hollow convolutional layers with 

different expansion rates and global pooling operations, 

allowing the network to capture large-scale urban lights and 

more dispersed rural area lights. Subsequently, the multi-scale 

feature selection module is used to filter the multi-scale feature 

maps and optimize the model to recognize the regular texture of 

city lights and the random texture of clouds. The MFEF module 

realizes the distinction between lights and clouds, significantly 

improves the accuracy of cloud detection in nighttime remote 

sensing images, and provides new perspectives and methods for 

solving the similar remote sensing image processing problems. 

In addition, the MFEF module designed in this paper not only 

performs well in nighttime cloud detection but likewise 

optimizes the ability to capture clouds at different scales during 

daytime. This is attributed to its multi-scale spatial pyramid and 

feature selection mechanism, which enables the module to 

accurately recognize and distinguish clouds of different scales 

and types. This advancement significantly improves the 

network's cloud identification and classification performance in 

daytime environments, and it enhances the model's application 

flexibility and robustness under different environmental 

conditions.

Fig. 3. Structure of MFEF module 

2.4 GFRF module 

Global features and inter-pixel correlation in the image play an 

important role in target recognition, and the lack of global 

information leads to the loss of effective recognition features for 

clouds and background, affecting cloud detection accuracy. 

Since the feature map processed by the encoder residual module 

may be from background information, and although the feature 

map processed by the MFEF module can achieve better 

separation of clouds and the background, the use of the dilated 

convolution in the decoder results in the loss of some of the 

detailed features. This lack of information leads to the model 

encountering difficulties in recognizing the subtle differences 

between the cloud and the background, which affects the 

segmentation of the cloud boundary effectiveness. In the 

decoding stage, it is necessary to effectively utilize the 

multilayer contextual information acquired by the network in 

the encoding stage as well as the semantic information extracted 

from the deep network. Therefore, the network adds an GFRF 

between the encoder and decoder to combine shallow spatial 

information and deep semantic information. The structure of the 

GFRF is shown in Fig. 4. The input image retains a lot of 

background information after the encoder, especially the high-

bright artificial lights, which brings interference, and it loses 

part of the feature information after the decoder owing to the 

use of the dilated convolution. Through the design of GFRF to 
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integrate the detail information in the encoding stage with the 

multi-scale features after separating the lights through the 

processing of the MFEF module, we can achieve a better cloud-

boundary segmentation effect while filtering out the lights.

Fig. 4. Structure of AFF 

2.5 Datasets 

Owing to the lack of publicly available cloud mask datasets of 

nighttime remote sensing images, we produced a cloud mask 

dataset of day-night remote sensing images by manual labeling. 

The remote sensing data captured by the DNB of the VIIRS on 

board the Soumi NPP satellite were mainly used, covering bare 

ground and ocean, for example. The data were labeled to obtain 

18 daytime raw images, four nighttime raw images, and four 

daytime raw images. A total of 18 views of daytime raw images 

and four views of nighttime raw images were labeled, of which 

four views of daytime images and one view of nighttime images 

were used to test the model accuracy, and the rest were used to 

train the model. The training set was chosen to segment the 

whole scene 4,064 pixels × 3,072 pixels night remote sensing 

images into 256 pixels × 256 pixels blocks, with 50% overlap in 

every two blocks, and the set was discarded when the whole 

scene image had been insufficiently segmented, and a total of 

14,894 images were obtained for training. Of these, there were a 

total of 2,708 nighttime images. Some of the raw images with 

truth-labeled data are shown in Fig. 5, where the cloud mask’s 

black pixels indicate non-cloudy regions, and white pixels 

indicate cloudy regions. 

Fig. 5. Schematic of cloud-mask dataset for diurnal remote sensing imagery 

2.6 Experimental setup 

The experiments in this paper were conducted on a manually 

labeled cloud mask dataset of day and night remote sensing 

imagery, and the equipment used for the experiments were as 

follows: CPU, Intel Core i5-12400F; and GPU, NVIDIA 

GeForce RTX 3060Ti. The experiments and network 

development were conducted using Python 3.7 and Pytorch 

1.7.1. In this paper, we used the Adam optimizer to train the 

network. The maximum learning rate was set to 0.0001, training 

to convergence to reduce the learning rate for training; the 

minimum learning rate was 0.000001, the batch_size was set to 

2, and the epoch was set to 100. 

2.7 Evaluation methodology 

To evaluate the performance of the method proposed in this 

paper, we selected five models in the field of semantic 

segmentation for comparison with the method proposed in this 

paper, including U-Net, Deeplab-v3+, CDnetv2 (Guo et al., 

2021), and CloudU-Net (Shi et al., 2021). CDnetV2 combines 

multiple attention mechanisms to adaptively fuse multi-scale 

features to achieve better cloud detection results; moreover, it 

provides cloud location information for abstract features 
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through an advanced semantic information guided flow. Shi et 

al. (2021) utilized dilated convolution to improve the network-

sensing field and optimized the network output by combining 

fully connected CRF to construct a CloudU-Net network for 

circadian cloud detection task. They compared it with the 

current state-of-the-art semantic segmentation network, and the 

improved model showed better cloud detection results. 

Experiments were conducted on a test set including 720 daytime 

cloud-mask data points and 180 nighttime cloud-mask data 

points, and the results were compared in terms of evaluation 

metrics and visualization comparisons. 

In this paper, overall accuracy (OA), precision, recall, and F1-

score were selected to evaluate the network model prediction 

results. They were calculated as follows: 

TP TN
OA

TP TN FP+TN

+
=

+ + , (1) 

TP
Precision

TP FP
=

+ , (2)

TP
Recall = 

TP FN+ , (3) 

2
1

precision recall
F

precision recall

 
=

+
, (4) 

where TP is true positive, indicating the number of originally 

cloudy predictions that are also cloudy; TN is true negative, 

indicating the number of original background predictions that 

are also background; FP is false negative, indicating the number 

of original background predictions that are incorrectly predicted 

to be cloudy, and FN is false negative, indicating the number of 

original clouds incorrectly predicted to be background. The 

higher of the four evaluations metrics in the testing phase 

indicates higher accuracy. 

2.8 Analsis of cloud detection results 

The performance of different models at daytime on the 

evaluation metrics is shown in Table 1. As can be seen in Table 

1, the Overall Accuracy(OA), precision, recall, and F1-score of 

MFFCD-Net in daytime image cloud detection were 92.1%, 

90.8%, 93.9%, and 92.3%, respectively, which are higher than 

those of the comparison methods. Through quantitative analysis, 

it was shown that MFFCD-Net could effectively realize cloud 

detection in daytime remote sensing images and substantially 

improve the cloud detection accuracy. 

Table 1 Comparison of prediction accuracy of different methods 

during daytime 

Method OA Precision Recall F1-score 

U-Net 85.8 85.3 86.2 85.7 

Deeplab-v3+ 87.4 85.7 93.1 89.3 

CDNetv2 84.6 86.2 85.4 85.8 

CloudU-Net 90.4 90.3 90.7 90.5 

MFFCD-Net 92.1 90.8 93.9 92.3 

Figure 6 shows the comparison results of cloud detection by 

MFFCD-Net and other models for daytime remote sensing 

images in the test set. From the first line in Fig. 6, it can be seen 

that there are many small broken clouds in the remote sensing 

image, and the gap between the clouds is small. the U-Net, 

Deeplab-v3+, and CDnetv2 networks can effectively detect the 

area where the clouds are located in the image, but the 

identification of the cloud boundary of the broken clouds is 

more ambiguous, and the MFFCD-Net model can be used to 

detect the clouds in the remote sensing image, and the MFFCD-

Net model can be used to detect the clouds in the remote 

sensing image. The CloudU-Net model performs better in 

recognizing cloud boundaries compared to the above 

comparison methods, but some broken clouds are not well 

recognized, while MFFCD-Net can accurately recognize broken 

clouds in the image. In the second row of remote sensing image 

there are thick as well as thin clouds with large area, from the 

results, it can be seen that U-Net, Deeplab-v3+, CDNetv2, and 

CloudU-Net in the comparison experiments failed to recognize 

the thin cloud boundary in the image efficiently, whereas the 

present research method detects the cloud boundary clearly. 

Overall, U-Net, Deeplab-v3+, and CDnetv2 show a large 

number of misdetections in their detection results and are not 

very accurate in recognizing cloud boundaries; CloudU-Net 

does not show a large number of misdetections but still misses 

on broken clouds, and MFFCD-Net outperforms the other four 

models on all of the datasets. 

Fig.6. Comparison of daytime remote sensing cloud detection results by different methods 

The performance of different models at daytime on the 

evaluation metrics is shown in Table 2. As can be seen in Table 

2, the OA, precision, recall, and F1-score of MFFCD-Net in 

daytime image cloud detection were 90.4%, 90.2%, 91.5%, and 

90.8%, respectively, which are higher than those of the 

comparison methods. Therefore, the quantitative comparison 

method results show that MFFCD-Net could effectively 

improve the cloud detection performance of the network at 

nighttime and accomplish the day and night cloud detection 

tasks at the same time. 

Table 2 Comparison of prediction accuracy of different 

methods 

Method OA Precision Recall F1-score 
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Method OA Precision Recall F1-score 

U-Net 80.8 85.5 79.1 82.2 

Deeplab-v3+ 86.7 86.1 90.8 88.4 

CDNetv2 81.8 85.6 81.2 83.3 

CloudU-Net 89.3 89.9 85.1 87.4 

MFFCD-Net 90.4 90.2 91.5 90.8 

Figure 7 shows the comparison results of cloud detection 

between MFFCD-Net and other models for nighttime remote 

sensing images in the test set. From the first line of the figure, it 

can be seen that there are lights in the city area of the nighttime 

remote sensing image, and these lights are more similar to the 

tiny broken clouds, which are easy to be misdetected, and the 

lights are misdetected as clouds in the detection results of 

Deeplabv3+ as well as CloudU-Net in the comparison methods; 

at the same time, in the red ellipse area, the cloud boundary of 

the comparison methods is not clearly recognized, while the 

cloud boundary segmentation effect of MFFCD-Net is better. In 

the second row of the figure, there are more broken clouds and 

thin clouds, U-Net, Deeplab-v3+, CDnetv2 recognize the cloud 

boundary more ambiguously, CloudU-Net cloud boundary 

segmentation is clearer than the other comparative methods, but 

the detection of broken clouds within the red ellipse area is less 

effective. MFFCD-Net, on the other hand, can accurately 

recognize broken clouds, thin clouds, and cloud boundaries in 

the image. There are more broken clouds and thin clouds in the 

second row of the figure, U-Net, Deeplab-v3+, CDnetv2 

recognize the cloud boundary more ambiguously, CloudU-Net 

cloud boundary segmentation is clearer compared to other 

comparative methods, but the detection of broken clouds within 

the red ellipse area is less effective. MFFCD-Net, on the other 

hand, can accurately recognize broken clouds, thin clouds, and 

cloud boundaries in the image. 

Fig.7. Comparison of nighttime remote sensing cloud detection results by different methods

3. Conclusion 

In this paper, MFFCD-Net was proposed to realize cloud 

detection in diurnal remote sensing images. Compared with the 

existing methods, MFFCD-Net adds the designed MFEF 

module, GFRF module, and expanded residual up-sampling 

module, which improve the model's ability to detect clouds at 

different scales and achieve better cloud boundary segmentation. 

These enhancements also improve the ability of MFFCD-Net to 

distinguish between the regular texture of artificial light and the 

random texture of a cloud, which significantly improves the 

cloud detection effect at night. Moreover, owing to the lack of 

publicly available cloud mask datasets of night remote sensing 

images, we produced a cloud-mask dataset of day and night 

remote sensing images by manual labeling, obtained a total of 

14894 256×256 cloud mask images, and conducted a precision 

test on the labeled dataset. Its precision was 92.1%, 90.8%, 

93.9%, and 92.3%, respectively, and the precision, OA at night, 

recall, and F1 score were 90.4%, 90.2%, 91.5% and 90.8%, 

respectively. The experimental results on VIIRS DNB images 

indicate that MFFCD-Net can realize the cloud detection task 

for both daytime and nighttime remote sensing images and can 

effectively improve the network's ability to capture clouds at 

different scales, the segmentation effect of cloud boundaries, 

and the discrimination of light. This is the first time that a deep 

learning method is utilized to realize the day and night cloud 

detection task simultaneously. In the future, we can explore the 

cloud detection method that combines the reflectivity 

information of the ground surface with the characteristics of 

SAR images penetrating clouds, and we can reduce the 

influence of high-brightness ground surface on cloud detection 

by combining the reflectivity information of the ground surface. 
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