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Abstract

Training LiDAR point clouds object detectors requires a significant amount of annotated data, which is time-consuming and effort-
demanding. Although weakly supervised 3D LiDAR-based methods have been proposed to reduce the annotation cost, their per-
formance could be further improved. In this work, we propose a weakly supervised LiDAR-based point clouds vehicle detector that
does not require any labels for the proposal generation stage and needs only a few labels for the refinement stage. It comprises two
primary modules. The first is an unsupervised proposal generation module based on the geometry of point clouds. The second is the
pseudo-label refinement module. We validate our method on two point clouds based object detection datasets, namely KITTI and
ONCE, and compare it with various existing weakly supervised point clouds object detection methods. The experimental results
demonstrate the method’s effectiveness with a small amount of labeled LiDAR point clouds.

1. Introduction

3D object detection is a fundamental task in the field of com-
puter vision, encompassing a broad spectrum of applications
in areas such as autonomous driving robot navigation, etc. It
involves the precise identification and localization of 3D ob-
jects within a scene using point cloud data acquired from ad-
vanced 3D sensors such as LiIDAR or depth cameras. In recent
years, with the powerful capabilities of deep neural networks,
3D object detection frameworks (Li et al., 2021), (Chen et al.,
2022) based on lidar point clouds have emerged and demon-
strated high performance on various public benchmark data-
sets (Geiger et al., 2012), (Mao et al., 2021). Despite receiving
significant attention, 3D object detection using LiDAR point
clouds continues to encounter substantial challenges, such as
the requirement for extensive labeled data. The process of la-
beling point cloud data is laborious and time-consuming. Con-
sequently, there exists considerable research significance in ex-
ploring weakly supervised 3D object detection methods.

Existing weakly supervised methods for 3D object detection of-
ten rely on weak forms of supervision rather than fully annot-
ated 3D bounding boxes, such as image-level labels (Peng et al.,
2022), a pre-trained 2D detector (Qin et al., 2020), or partial
annotations like object center in bird’s eye view (Meng et al.,
2020), to reduce the annotation burden. Weakly supervised 3D
object detection reduces the labor cost of data annotation. How-
ever, due to the lack of sufficient accurate annotations, these
methods have a performance gap with fully supervised meth-
ods. Some works focus on semi-supervised learning (Caine et
al., 2021), which usually assists model training by generating
pseudo-labels. Nevertheless, how to fully exploit the geometric
information of point clouds to generate high-quality pseudo-
labels with limited annotations remains an open question.

In order to reduce the burden of data annotation and promote
the development of weakly supervised object detection, we pro-
pose a simple yet effective weakly supervised point clouds-
based vehicle detection method, which can generate high-
quality pseudo-labels to aid in training. As a two-stage method,
it consists of an unsupervised proposal generation (UPG) mod-

ule for the proposal generation stage and a pseudo-label refine-
ment (PLR) module for the refinement stage. At the core of the
UPG module is the estimation of potential locations and ori-
entations of vehicles based on LiDAR point cloud geometry.
Through the UPG module, we can obtain 3D object proposals
in an unsupervised way without requiring annotation informa-
tion. Due to potential noise in the generated predictions, they
cannot be the final output. In order to improve the accuracy of
pseudo-labels, in the refinement stage, the PLR module first re-
fines pseudo-labels with confidence. Next, a clustering-based
approach is employed to classify and filter redundant bound-
ing boxes. Finally, the obtained high-quality pseudo-labels can
be used to train the 3D detector. We have conducted extens-
ive experiments on the KITTI (Geiger et al., 2012) and the
ONCE (Mao et al., 2021) dataset to demonstrate the effective-
ness of our approach. In summary, the primary contributions of
our work are as follows:

1. We propose a proposal generation module that can obtain 3D
object proposals in an unsupervised way.

2. We introduce a pseudo-label refinement module consisting
of two stages to obtain accurate pseudo-labels for training.

3. We present an effective weakly-supervised 3D vehicle de-
tection framework and conduct extensive experiments on two
mainstream 3D object detection datasets. The results demon-
strate the good performance of our method.

The rest of this work is organized as follows: Section 2 outlines
the related works of this study. Section 3 details our framework
including two modules. Section 4 evaluates our method on sev-
eral benchmarks. Finally, Section 5 concludes this work.

2. Related Works
2.1 3D object detection

In recent years, a multitude of methods for 3D object detection
in point cloud data have been proposed. The majority of these
methods can be categorized into three distinct groups: point-
based methods, grid-based methods, and multi-modal fusion-
based methods.
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Figure 1. The overview of our approach.

Point-based methods (Qi et al., 2017) employ multi-layer
perceptrons to directly extract features from unordered point
clouds, thus better preserving the original data information. Shi
et al. (Shi et al., 2019) partitioned the point cloud into fore-
ground and background points, and integrated the semantic in-
formation and local features of the point cloud for precise local-
ization. Grid-based methods utilize rasterization techniques to
convert point clouds into discrete grid representations, such as
voxels (Deng et al., n.d.) or bird’s-eye view (Lang et al., 2019),
and then extract features from these representations. Multi-
modal fusion methods integrate data from different sensors con-
taining both texture and spatial position information (Shi et al.,
2020). Some approaches integrated 3D point clouds with im-
ages to acquire fused data containing both texture and spatial
location information (Xu et al., 2018). Other approaches integ-
rated various forms of point cloud inputs, including points and
voxels, to enhance detection efficiency and achieve a broader
receptive field (Shi et al., 2020), (Qian et al., 2022).

2.2 Weakly-supervised 3D object detection

Exploring weakly supervised 3D object detection methods is
of significant research importance. Weakly supervised meth-
ods utilize weak supervisory signals to train 3D detectors. The
weak supervisions include BEV object centers (Meng et al.,
2020), pre-trained 2D detectors (Qin et al., 2020), 2D image an-
notations (Wei et al., 2021), and sparse annotations (Liu et al.,
2022). These weakly supervised methods effectively reduce the
annotation requirements, but there still exists a performance gap
compared to fully supervised methods. We believe that within
a 3D point cloud scene, objects themselves carry unique geo-
metric properties, such as shape, size, and so on. However, how
to fully exploit these geometric properties for accurate object
recognition remains an open issue. This paper aims to use the
geometric information of point clouds for weakly supervised
object detection. Therefore, we initially generate region pro-
posals in an unsupervised manner based on the density inform-
ation of instances in the scene, which are then classified and
refined in subsequent steps.

2.3 Semi-supervised 3D object detection

Semi-supervised object detection aims to train detectors using
a small amount of labeled data and a large amount of unlabeled
data to approach or even reach the performance of fully super-
vised methods. In semi-supervised 3D object detection, there
are two main approaches: the teacher-student model and the
pseudo-labeling technique. The teacher-student model (Zhao
et al., 2020) typically follows a mean teacher paradigm, which

includes a teacher network and a student network. Specific-
ally, the teacher network is first trained using labeled data and
then guides the training of the student network on unlabeled
data. The pseudo-labeling method (Caine et al., 2021) first util-
izes annotated data to train a 3D detector. Subsequently, this
detector is used to predict unlabeled data and generate pseudo-
labels. Finally, the detector is retrained on the unlabeled scenes
with the pseudo-labels to enhance detection performance. Chen
et al. (Chen et al., 2023) transformed the issue of noise in
pseudo-labels into a noise learning problem and proposed a
noise-resistant supervision module and a feature consistency
constraint module, which helps improve the model’s general-
ization ability and eliminate the impact of noisy annotations.
Semi-supervised methods can mine useful information from un-
labeled data. At the same time, we find that relying solely on
the geometric information of point clouds is insufficient for ob-
ject recognition and localization. Therefore, our approach uses
semi-supervised learning based on the mean-teacher network
and employs a pseudo-label refinement module to remove low-
quality pseudo-labels for providing the model with additional
accurate supervision signals.

3. Methodology

In this section, we introduce the proposed 3D object detection
method in detail. Our method is a two-stage, weakly super-
vised LiDAR point clouds vehicle detection method. Its over-
view is shown in Fig. 1. It consists of two major modules:
the unsupervised proposal generation (UPG) module and the
pseudo-labels Refinement (PLR) module. In the proposal gen-
eration stage, the UPG module generates proposals based on
the geometry of LiDAR point clouds. After data augmenta-
tion, the data are used to train the student model (Tarvainen and
Valpola, 2017). The teacher model is initialized using the stu-
dent model. In the proposal refinement stage, the pseudo-label
refinement (PLR) module adopts a two-stage approach to fil-
ter low-quality pseudo-labels generated by the teacher model.
The precise pseudo-labels and labels are used to supervise the
student model. Then, the teacher model is updated according
to (Tarvainen and Valpola, 2017). The final student model is
used as the object detector.

3.1 Unsupervised proposal generation (UPG) module

3.1.1 Anchors initialization In the absence of annotations,
the object’s location within the scene can be arbitrary. To
address this, we leverage prior knowledge to identify poten-
tial object regions. Most vehicles are typically situated on
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Figure 2. 2D box scaling. The green and yellow points are the points of the same object. The transformation consists of two
components: h(-) horizontal scaling and v(-) vertical scaling. The dashed rectangle and solid rectangle represent the box before and
after transformation, respectively.
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Figure 3. 2D box rotation and scaling for object orientation estimation. When the 2D box fails to accurately estimate the object’s
orientation, we initially rotate the 2D box and then enlarge the 2D box to encompass the entire object. The dashed rectangle and solid
rectangle, respectively, represent the box before and after transformation.

the ground, given a point clouds scene, we employ the ran-
dom sampling consistency method(Fischler and Bolles, 1981)
to eliminate point clouds of ground. Subsequently, we generate
anchor boxes at intervals of 0.2m within the range of 0 to 80m
in front of the LiDAR sensor and 0 to 40m in the left and right
directions. Based on the geometry of point clouds, the anchor
size is 3.9mx 1.6mx 1.56m, and its spatial orientation angles
are 0 degrees and 90 degrees, which are perpendicular to each
other. We then project both the 3D anchor and point cloud to
the front view according to (Qin et al., 2020), which enables
direct processing of the 2D box corresponding to the 3D anchor
box.

3.1.2 2D box scaling In 3D scenes, it is known that the re-
gions of interest typically contain a greater number of points.
We first select the anchor to make sure that the anchor contains
most of the points of the point clouds of the vehicle based on
geometry (i.e., point cloud density). The density of point clouds
is influenced by the number of points inside a 3D anchor and the
sampling distance of LiDAR. As the distance between LiDAR
and a 3D anchor increases, the resulting point clouds become
sparse. Meanwhile, given the fixed size, position, and orienta-
tion of the preset anchors, we utilize the strategy introduced in
(Qin et al., 2020) to resize the 2D box into a square through in-
terpolation. Hence, we quantify the LIiDAR point cloud density
within a 2D box as follows.

aN
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where D is the point cloud density and « is a weight coeffi-
cient, which increases linearly with the increase of the distance
between the vehicle and LiDAR. N is the number of points in-
side the 3D anchor, and R. represents the width and height of
the resized 2D box. 2D boxes with a density below a threshold
7 are filtered out.

Since the placement of the 3D anchor box is determined by pre-
determined parameters, it may not entirely enclose the vehicle.
Consequently, the positions of points tend to be relatively close
to the boundary of the 3D anchor. To make sure that a 3D an-
chor entirely encloses the point clouds of a vehicle, we per-
form horizontal scaling A(-) and vertical scaling v(-) on the 3D
anchor’s 2D box to accurately estimate the bounding boxes of
vehicles. Specifically, the process consists of two steps. First,
we horizontally enlarge the 2D box. When the enlarged 2D box
contains additional points, we choose the enlarged 2D box to
fully encompass the object. Otherwise, we select the original
2D box. Next, we perform vertical enlargement. Similarly, we
only choose the enlarged 2D box when it contains additional
points after enlargement. On the other hand, for 2D boxes con-
taining sparse edge regions, we apply the same method to scale
down the 2D box in both horizontal and vertical directions to
make it more compact. We only choose the scaled-down 2D
box when the number of points contained has not decreased.
The schematic plot of this enlargement process is depicted in
Fig. 2. After the 2D box operations, the corresponding 3D
transformations are applied to the 3D anchors. The 3D visu-
alization result of this transformation process is shown in Fig.
4(a).

3.1.3 Object orientation estimation In addition to determ-
ining the object’s position, it is essential to estimate the object’s
orientation. The UPG module rotates the 2D box and the corres-
ponding 3D anchor if the orientation of the 2D box in a bird’s-
eye view does not match the vehicle’s orientation well. The
UPG module performs 2D box rotation according to the key
vertex and key edge of the 2D box. The key vertex is a vertex
among the four vertices of the 2D box. It exhibits the minimal
sum of the distance from each point within the box. The key
edges are 2D box edges that are connected to the key vertex. A
higher concentration of points close to key edges corresponds
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Figure 4. Visualization results of 3D anchor transformation. (a)
Before translation and scaling (blue box) and after (green box).
(b) Before rotation (green box) and after object rotation
estimation (red box).

Figure 5. Visualization results of unsupervised proposals
generation on the KITTT dataset.

to a potentially more accurate estimation of the object’s orient-
ation. We calculate the point density f around key edges as
follows.

[0l @)
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where Qo denotes:
Qo = {qlq € Q,dist(q,l1) > A Adist(q,l2) > A} (3)

and Q is the set of all the cloud points within the 2D box. The
dist(q,1) is the distance between point ¢ and key edge I, and A
is the distance threshold. We rotate the 2D box incrementally,
at 0.5-degree intervals, from 0 to 90 degrees. The rotation r(-)
with the smallest f is chosen as the direction of the proposal.
In the end, the UPG module adjusts the size and location of
the 2D box through a scaling transformation s(-) (includes h(-)
and v(-)) in the same way as Sec. 3.1.2. This process is illus-
trated in Fig. 3, and the 3D visualization result of the process
is shown in Fig. 4(b). By performing the aforementioned steps
of anchor selection and transformation, we obtain unsupervised
object proposals for vehicles. A part of the results as shown in
Fig. 5.

3.2 Data augmentation

Data augmentation is important for the generalization of the 3D
detectors. Besides typical augmentation methods such as ran-
dom rotation, random scaling, and random flipping, we aug-
ment data by randomly sampling annotated vehicles and con-
catenating them to the point clouds of a scene. The augmented
data are then fed into the teacher-student network to output pre-
dictions, which are further refined via the following PLR mod-
ule.

3.3 Pseudo-label refinement (PLR) module

As a weakly-supervised method, our method adopts the mean-
teacher paradigm (Tarvainen and Valpola, 2017). The teacher

model produces pseudo-labels for training 3D detectors. How-
ever, the pseudo-labels generated by the teacher model are
noisy, which could hurt model performance. The PLR module
refines the generated pseudo-labels using the following proced-
ure.

3.3.1 Confidence-threshold refinement As the augmented
data may be noisy, we use the teacher model to detect these
generated objects to obtain their classes and bounding boxes.
These results may suffer from wrong classification or inaccur-
ate regression. The PLR module uses a classification confid-
ence threshold and an intersection over union (IoU) threshold to
refine these augmented data. Taking the KITTI dataset (Geiger
et al., 2012) as an example, we define predictions with classi-
fication confidence scores below 0.1 or IOU values below 0.3
as negative samples, and the rest as positive samples.

3.3.2 Clustering-based pseudo-label refinement Albeit
we have refined pseudo-labels according to the confidence score
and IoU threshold, there still exist redundant bounding boxes
that may cause false positives. The PLR module adapts a
clustering-based method proposed in (Yin et al., 2022) to fil-
ter these redundant bounding boxes. The boxes are firstly sor-
ted according to confidence score. Then, the PLR modules ag-
gregate boxes that have large IoU with the box with the highest
score. The process is performed iteratively for all the boxes.
After that, all the boxes are grouped into different clusters. For a
cluster with multiple boxes, the features of boxes are extracted,
and they are fed into a 2-layer MLP, which regresses the box
position. Then, the PLR module uses the non-maximum sup-
pression (NMS) method to obtain an accurate box position for
each cluster. In the end, the PLR module obtains high-quality
pseudo-labels, which can be used to train the 3D detector.

3.4 Loss function

Given a series of labeled point clouds and pseudo-labeled point
clouds, our objective is to optimize the model parameters to ac-
curately predict object categories and locations. We use loss
functions similar to SECOND(Yan et al., 2018) for both the
annotated and pseudo-labeled data. For the object classifica-
tion task, we employ the focal loss(Lin et al., 2017), which is
defined as follows.

Ecls = _a(l - Qt)WZOQ(Qt) (4)

where « represents the weight coefficient assigned to positive
and negative samples, - denotes the weight coefficient assigned
to difficult and easy samples, and ¢: signifies the class predic-
tion probability. We use o = 0.25 and v = 2. For parameter
estimation of object regression, such as target center (z, y, z),
size (w, h, 1), and angle (0), we use the loss:

["reg - Z

g€{z,y,2,l,w,h,0}

SmoothL1(Aq) )

where g denotes the predicted result, and Aq represents the pre-
diction errors between ground truth and the predicted result.

For annotated data, the loss function is denoted as:
LY = BiLis + BaLlreg (6)

where 81 and (2 are hyper-parameters.
data, its loss function is defined similarly:

For pseudo-labeled

'CU = B3'Cgls + B4£rUeg (7)
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Table 1. Average precision (AP) results of two proposal generation methods on the validation set of KITTI (Car).

AP (IoU=0.3) AP (1oU=0.5)
Easy Moderate Hard Easy Moderate Hard
VS3D (Qin et al., 2020) + UPM  65.82 60.43 50.35  40.32 38.64 32.06
VS3D (Qin et al., 2020) + UPG  67.26 63.12 53.04 43.31 40.52 35.76

Table 2. Average Orientation Similarity (AoS) results of two proposal generation methods on validation set of KITTI (Car).

AP (IoU=0.3) AP (IoU=0.5)
Easy Moderate Hard Easy Moderate Hard
UPM  73.64 66.56 58.46  61.04 58.76 42.93
UPG  81.89 73.71 68.24  76.92 70.54 65.74

where (33 and B4 are hyper-parameters. We also utilize the con-
sistency loss introduced by SESS(Zhao et al., 2020), denoted
as Leonsistency- The overall loss function can be represented as
follows.

E = [»L + »CU + Cconsistency (8)

4. Experiments

We evaluate the proposed LiDAR-based vehicle detector
based on the popular LiDAR-based object detection dataset:
KITTI (Geiger et al., 2012) and the ONCE (Mao et al., 2021),
with multiple weakly supervised point clouds object detection
methods.

4.1 Dataset

The KITTI dataset(Geiger et al., 2012) serves as a bench-
mark for evaluating computer vision techniques and comprises
a comprehensive collection of resources, including 389 pairs of
stereo images, visual odometry sequences spanning 39.2 kilo-
meters, and over 200,000 annotated 3D objects for object de-
tection. The original dataset is classified into distinct categor-
ies, namely 'Road’, *City’, ’Residential’, ’Campus’, and ’Per-
son’. Regarding 3D object detection, the labels are further di-
vided into car, van, truck, pedestrian, seated pedestrian, cyclist,
tram, and miscellaneous objects. The ONCE dataset(Mao et
al., 2021) consists of one million LiDAR scenes and seven mil-
lion corresponding camera images, covering various regions,
periods, and weather conditions. Notably, there are annotated
16,000 scenes with 3D ground truth boxes encompassing 5 cat-
egories: car, bus, truck, pedestrian, and cyclist. We train our
method with different amounts of labeled and unlabeled data
on the training sets of two datasets and report results on the
KITTI validation set and ONCE test set, respectively.

4.2 Evaluation metrics

To assess the performance of the proposed methods, we report
the popular average precision(AP) with Intersection over Union
(IoU) 0.5 threshold. We can plot the Precision-Recall curve and
determine the average precision by integrating the area under
the curve. Additionally, we use the Average Orientation Simil-
arity indicator (AoS) (Geiger et al., 2012) for object orientation
estimation. AOS is defined as:

1
AoS = I Z max s(7) ©)

T
re{0,0.1,..,1} =~

where r denotes the recall rate, and the orientation similarity
s(7) is the normalized cosine distance between all predicted
samples and the ground truth.

4.3 Implementation details

The presented model is implemented utilizing the OpenPCDet
framework(Team, 2020), while the experimental datasets em-
ployed are KITTI(Geiger et al., 2012) and ONCE(Mao et al.,
2021) datasets. We pre-train the student network with all avail-
able labeled data and initialize the teacher network with the pre-
trained weights. Then, we train the student network on both
labeled and unlabeled data and update the parameters of the
teacher network using the exponential moving average (EMA)
of the student network’s parameters. For the EMA decay value,
we follow (Tarvainen and Valpola, 2017). The training is con-
ducted on NVIDIA GeForce RTX 3090 GPU.

4.4 Experimental results

4.4.1 Experimental results on KITTI dataset We initially
validate the effectiveness of the unsupervised proposal gener-
ation (UPG) module and compare it with the object proposal
module (UPM) of the baseline VS3D (Qin et al., 2020). We
utilize the VS3D (Qin et al., 2020) framework and substitute
the UPM module with our UPG module. Tables 1 and 2 present
the experimental results of the Average Precision (AP) metric
and the Average Orientation Similarity (AOS) metric with [OU
thresholds of 0.3 and 0.5 on the validation set of KITTI. By
introducing a distance threshold to reduce the interference of
sparse point clouds and employing key edge-based rotation to
estimate the direction of objects, our UPG module demonstrates
superior performance in proposal generation.

To further experiment, we compare our approach with the fully
supervised method PVRCNN(Shi et al., 2020) on the car cat-
egory of the KITTI(Geiger et al., 2012) validation set. The In-
tersection over Union (IoU) threshold is set to 0.5. The eval-
uation metric is the average precision for the car category. To
investigate the effectiveness of our proposed weakly supervised
method, we gradually reduce the number of labeled scenes from
100% to 1%, with the number of labeled cars from 15,654 to
178. As it is shown in Table 3, our method performs slightly
worse than PVRCNN(Shi et al., 2020) in the fully supervised
case. However, for the 50% labeled case, the proposed method
performs slightly better than PVRCNN. When there are only
20%, 10% and 1% labeled point clouds scenes, our method con-
sistently outperforms PVRCNN. The primary reason for this
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Table 3. Average precision (AP) results on the validation set of KITTI (Car).

Learning paradigm  Detector Training setting CEaarsy Moderate Hard
Fully supervised PVRCNN(Shi et al., 2020)  Trained on 100% labeled scenes ~ 88.45 77.67 76.30
Weakly supervised  Proposed with 15654 vehicle instances 86.44 74.21 69.85
Fully supervised PVRCNN(Shi et al., 2020)  Trained on 50% labeled scenes 83.62 69.93 66.43
Weakly supervised = Proposed with 7312 vehicle instances 84.36 71.05 65.69
Fully supervised PVRCNN(Shi et al., 2020)  Trained on 20% labeled scenes 72.43 62.69 54.81
Weakly supervised  Proposed with 3634 vehicle instances 74.23 65.14 56.67
Fully supervised PVRCNN(Shi et al., 2020)  Trained on 10% labeled scenes 68.85 60.41 53.26
Weakly supervised  Proposed with 1362 vehicle instances 70.82 62.06 54.09
Fully supervised PVRCNN(Shi et al., 2020)  Trained on 1% labeled scenes 66.14 60.05 52.87
Weakly supervised  Proposed with 178 vehicle instances 68.47 61.72 53.30

Table 4. Average precision (AP) results of weakly supervised methods on validation set of KITTI (Car).

Learning Paradigm  Detector Training setting Car

Easy Moderate Hard
Fully supervised SECOND(Yan et al., 2018) Trained on 500/3712 labeled frames 76.12 67.43 58.30
Weakly supervised ~ VS3D(Qin et al., 2020) with 2716 vehicle instances 42.43 40.67 32.15
Weakly supervised = Proposed 75.39 66.74 56.17

@ ®

Figure 6. Visual detection results on the KITTI dataset. (a) and (b) represent sparse scenes, while (c) and (d) represent dense scenes.
The red boxes depict the ground truth, while the blue boxes represent the detection results.

improvement lies in our method’s ability to accurately identify
candidate areas based on the geometry of point clouds, ensur-
ing the quality of the generated pseudo-labels. The refinement
of these pseudo-labels further provides the model with more
precise supervision signals, ultimately improving its perform-
ance.

Table 4 depicts the comparison results of our method with the
weakly supervised method VS3D (Qin et al., 2020) and the
fully supervised method SECOND on the car category of the
KITTI(Geiger et al., 2012) dataset. The experiment consists of
a total of 3712 point cloud scenes. We experiment the condition
of 500 labeled frames with 2176 labeled objects. Our method
outperforms the weakly supervised method VS3D(Qin et al.,
2020). Furthermore, our proposed method performs compar-
ably to the fully supervised method SECOND(Yan et al., 2018).
This demonstrates the effective utilization of our method on un-
labeled point clouds. The detection results are visualized in Fig.
6., including both sparse and dense scenes.

4.4.2 Experimental Results on ONCE Dataset To valid-
ate the effective utilization of unlabeled data, we compare
our approach with several semi-supervised point cloud object
detection methods on the ONCE (Mao et al., 2021) dataset
(vehicle category). We use the experimental steps introduced

in ONCE (Mao et al., 2021). Firstly, we establish a baseline
by training a detector SECOND(Yan et al., 2018) using labeled
data. Secondly, we use different weakly supervised learning
methods to train the baseline method. We report the detection
performance on the test set for models trained with the different
unlabeled subsets: Usmair, Umedium, and Ujarge, respectively.

As it is shown in Table 5, most weakly supervised methods
demonstrate the capability to enhance detection performance
by leveraging unlabeled data, in contrast to SECOND[45],
which relies solely on labeled data for training. Moreover,
as the quantity of unlabeled data increases, all methods ex-
cept for Pseudo-label(Lee, 2013) can improve detection res-
ults. Pseudo-label(Lee, 2013) initially obtains performance
gain from 72.37% to 73.06%, followed by a subsequent de-
cline. our proposed approach obtains better results than other
semi-supervised methods, which demonstrates the high quality
of the generated pseudo-labels. Fig. 7 illustrates two exemplar
results on ONCE (Mao et al., 2021) dataset.

4.5 Ablation Study

To study the impact of different modules, we conduct experi-
ments on the KITTI dataset. We studied two different ways to
implement the unsupervised proposal generation (UPG) mod-
ule. The first one, point clouds-density (PCD), estimates the
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Table 5. Average precision (AP) results of weakly supervised learning methods on test set of ONCE (Vehicle).

Detector Training setting Vehi;:lle 030 30.50 SOmeint
overa -30m -50m m-in
baseline(Yan et al., 2018) 70.21 85.32 61.47 43.83
Pseudo-label(Lee, 2013) 72.37 87.51 61.69 46.32
SESS(Zhao et al., 2020) Trained on 100,000 unlabeled set Us, o1 72.35 87.23 63.35 49.65
3DIoUMatch(Wang et al., 2021) 72.13 88.34 65.55 50.39
Proposed 72.41 86.06 68.79 53.59
Pseudo-label(Lee, 2013) 73.06 83.52 66.05 51.82
SESS(Zhao et al., 2020) Trained on 500,000 unlabeled set Usedium 74.11 86.78 70.21 56.14
3DIoUMatch(Wang et al., 2021) 75.07 86.94 70.61 56.06
Proposed 76.07 86.83 70.38 56.56
Pseudo-label(Lee, 2013) 72.80 84.46 64.97 51.46
SESS(Zhao et al., 2020) Trained on 1 million unlabeled set Urarge 75.38 86.67 70.48 56.60
3DIoUMatch(Wang et al., 2021) 75.11 86.46 70.44 56.06
Proposed 75.69 86.54 71.74 56.43

(b) dense scene

Figure 7. Example of detection results on the ONCE dataset, with sparse scene on the left and dense scene on the right. The red boxes
are the ground truth, while the blue boxes represent the detection results.

Table 6. Average precision (AP) results of different proposal
generation strategies on validation set of KITTI (Car).

Table 7. Average Orientation Similarity (AoS) results of
orientation estimation (OE) on validation set of KITTI (Car).

Ablations Car Proposal Generation Strategy Car

Easy Moderate Hard Easy Moderate Hard
UPG (PCD) 49.36 41.12 30.97 UPG w/o OE 65.13 48.82 43.96
UPG (DPCD) 50.12 52.87 34.77 UPG 76.92 70.54 65.74
UPG (DPCD)+PLR  74.23 65.14 56.67

density D proposed in Formula (1) as D = N/(RZ). The
second one, distance-based point cloud density (DPCD), es-
timates the density D as Formula (1). As it is shown in the
first two rows of Table 6, UPG(DPCD) performs better than
UPG(PCD). This justifies the design choice of the UPG mod-
ule, which can address the interference caused by distance in
point cloud density computation. Further, to enhance the ac-

curacy of pseudo-labels, the PLR module employs confidence-
threshold and clustering-based methods to refine predictions
generated by the teacher model. We conduct experiments on
the KITTI(Geiger et al., 2012) validation set. As shown in the
third row of the table, the UPG(DPCD)+PLR method performs
better than using the UPG(DPCD) module alone. This indicates
the PLR module is important for good performance.

For object orientation estimation, we employ the AOS evalu-
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ation metric to validate the accuracy in predicting object direc-
tion. As shown in Table 7, without using the object orientation
estimation module, the performance of the UPG module drops.

5. Conclusion

In this work, we present an efficient approach for weakly super-
vised LiDAR point cloud vehicle detection, which consists of
two main modules. First, the unsupervised proposal generation
(UPG) module generates proposals based on the point cloud
geometry of vehicles without any annotations. Second, the
pseudo-label refinement (PLR) module initially refines pseudo-
labels based on the confidence threshold and then uses cluster-
ing methods to obtain accurate pseudo-labels for model train-
ing, effectively reducing the dependence on labeled data. We
adopt the mean-teacher paradigm to train a point cloud detector.
Experimental results based on LiDAR-based KITTI and ONCE
datasets show that the proposed method demonstrates superior
performance compared to existing approaches. Thus, our re-
search can contribute to reducing the annotation workload and
advancing the development of 3D object detection.
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