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Abstract 

 

Surface reflectance data is the basic data source for the hyperspectral parametric remote sensing products and remote sensing 

quantitative application, which is widely used in various application fields such as natural resources and ecological environment 

monitoring. At present, multispectral data takes the leading role among the common land surface reflectance datasets and the 

reflectance data mainly involves the types of ground objects such as farmland, forest land, water body, soil, etc., while the datasets 

relatively less targets the types of rock and mineral surface objects, yet especially the reflectance datasets with the combination of time 

series and multi-scale satellite-earth are even more scarce. In order to better promote the application of hyperspectral surface reflectance 

and explore the advantages of joint application of satellite-earth multi-scale reflectance data, on the basis of field-measured rock and 

mineral target spectral, a comprehensive surface reflectance dataset was generated by using domestically produced hyperspectral 

satellite data as the data source in this study, mainly focusing on the typical ore concentration area in the Hami Remote Sensing test 

field in Xinjiang. The dataset includes multi-period hyperspectral satellite surface reflectance images, field measured rock and mineral 

spectral data, and multi-period sub-pixel spectral data collected based on ground spectral measured points, which can provide 

significant support for the research and development and accuracy verification as well as performance evaluation of algorithms such 

as surface reflectance inversion, mineral identification and ground object classification. 

 

 

1. Introduction 

Surface reflectance is the essential attribute of surface objects, 

and it is the most basic remote sensing surface parameter and one 

of the effective factors to distinguish the categories of surface 

objects (Wen Jianguang et al., 2015; Lin Xingwen et al., 2020; 

Cao Xiaojie et al., 2019). As the most important quantitative 

remote sensing products, surface reflectance data is the basic data 

source of many parametric remote sensing products, which is of 

great significance for quantitative remote sensing applications 

and is widely used in typical application fields such as forestry, 

agriculture, water resources, ecological environment and urban 

environment (Liu Liangyun et al., 2017; Cao Xiaojie, 2018; Shen 

Qian et al., 2021). 

Up to now, the remote sensing datasets which have been made 

public and widely used mainly include two types: multispectral 

and hyperspectral dataset. Multispectral datasets can be divided 

into long-series medium-resolution multispectral datasets and 

high-spatial resolution multispectral datasets. Common long-

series medium-resolution multispectral datasets include 

reflectance products such as MODIS, Landsats and Sentinel-2 

(Vermote et al., 2016; Richter and Schlapfer, 2015; Zhang 

Zhaoming et al., 2020; Peng Yan et al., 2020; Cao Xiaojie, 2019; 

Doxani et al., 2018). Common multi-spectral datasets with high 

spatial resolution include UC-Merced dataset (Yang and 

Newsam, 2010), WHU-RS dataset (Xia et al., 2010), AID dataset 

(Xia et al., 2010), the NWPU-RESISC dataset, the EuroSAT 

dataset (Helber et al., 2019), the RSSCN7 (Zou et al., 2015), and 

the reflectance datasets of GF-2 in the plain area of Beijing (Shen 

Qian et al., 2021).Common hyperspectral datasets, including 

Indian Pines dataset, Pavia University dataset, Salinas dataset, 

Pavia Center dataset, KSC dataset, Cuprite dataset, Botswana 

dataset  (Xu Min et al., 2017; Li Zhuqiang et al., 2018; Huang et 

al., 2017; Zhang et al., 2012; Li et al., 2016)and the domestic tea 

tree dataset of Changzhou City, Jiangsu Province, TG1HRSSC 

dataset and the dataset of Majiwan Village, Xiongan New Area 

(Zhang et al., 2017; Liu Kang et al., 2020; Cen Yi et al., 2020),are 

mostly acquired by airborne photography, and the data phase and 

scale of data acquisition are relatively single. Common multi-

spectral datasets with high spatial resolution are mainly used for 

fine classification of ground object. Compared with the wide 

application of hyperspectral remote sensing datasets in European 

and American countries, the publication and application of 

hyperspectral remote sensing datasets in China are still less. In 

recent years, with the launch of China's GF-5, 5m Optical 

satellites and other series of hyperspectral satellites as well as the 

construction and application of remote sensing geological test 

fields, China's ability to acquire high-quality hyperspectral 

remote sensing data has been greatly enhanced, which has greatly 

improved the types, quantity and quality of China's hyperspectral 

remote sensing data sources and provides significant support for 

promoting China's hyperspectral remote sensing application 

research and operational capabilities (Tong Qingxi et al., 2016; 

Wang Yueming et al., 2016; Zhang Xia et al., 2017; Zhao et al., 

2016; Liang Shuneng et al., 2015; Li Shengyang et al., 2019). 

In this study, taking the typical ore concentration area of Xinjiang 

Hami Remote Sensing Geological test field (hereinafter referred 

to as Hami test field) as the study area, a comprehensive dataset 

of hyperspectral surface reflectance in typical ore concentration 

area of the test field was constructed, basing on multi-period 

domestic hyperspectral satellite images, and using the pre-

processing technologies of radiation correction and atmospheric 

correction, and combining the spectral data of ground rock and 

ore with atmospheric parameter data obtained from field 

measurement in the early construction of the test field. Compared 

with the existing datasets, this dataset, characterizes of high 

spectral resolution, multiple spectral categories and scales of rock 

and ore surface objects, and the complete matching parameters of 

spectral data, can provide good data support for the research and 

development of hyperspectral application technology, and serve 
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the design and demonstration of hyperspectral remote sensing 

payload and the authenticity inspection and verification of 

quantitative remote sensing products. 

2.  General Introduction of the Study Area 

2.1 Overview of Physical Geography 

Located in the southeast of Hami City in the East Tianshan 

Mountains of Xinjiang, about 160km away from the urban area 

of Hami. 

 

Figure 1. Geographical location of hami test field 

 

The Hami test field is situated in Gobi Desert terrain, with 

characteristics of continental climate, lack of rainfall, 

underdeveloped water system and no perennial running water. 

There is a large temperature difference between day and night, 

hot in summer and cold in winter, sparse vegetation and no 

permanent residents. Ore industry is relatively well-developed 

with large or larger mining bases having been built in the 

Huangshandong copper-nickel deposit area. Regional 

geographical conditions are suitable for the research and 

application of remote sensing technology. 

 

Figure 2. Natural physiographic characteristics of test field 

 

2.2 Regional Geological Characteristics 

The test field area is located in the Junggar block of the 

Kazakhstan-Junggar plate, and the regional structure is well-

developed, which is relevant to the multiple stages and 

complexity of the tectonic movement in the area. This is related 

to the multi-stage complexity of tectonic movement in the region. 

Deep faults, major faults and general faults constitute a complex 

fault system, which divides the geotectonic unit system with 

different geological construction characteristics. Intrusive rocks 

and dike rocks are well developed in the area, ranging from 

ultrabasic and basic rocks to medium acid rocks. Affected by 

supergenic geological process, intrusive rocks in the area are 

strongly altered, among which the limonization, chloritization, 

epidotization or serpentinizationa of basic rocks and ultrabasic 

rocks are relatively well developed, and muscovite, sericitization, 

chloritization, aging and pyritizatio of medium acid rocks are 

well developed (Liang Shuleng et al., 2015). 

3. The Research and Development Methods of Dataset 

3.1 Data Source 

The hyperspectral satellite data used in this paper are mainly 20 

scenes of L1A-grade products of Gaofen-5 (hereinafter referred 

to as GF-5) and Ziyuan 1-02D (hereinafter referred to as ZY1-

02D) covering research areas from January 2019 to June 2022. 

The characteristics of data parameters are shown in Table 1. (Liu 

Yinnian et al., 2018; Sun Yunju et al., 2019; Liu Yinnian et al., 

2020; Liang Deyin et al., 2020). 

 

Payload GF-5 ZY1-02D 

Spectral range 

VNIR: 

0.39-1.029μm 

SWIR: 

1.004-2.513μm 

VNIR: 

0.395-1.04μm 

SWIR: 

1.005-2.501μm 

Spectral 

Resolution 

VNIR：5nm 

SWIR：10nm 

VNIR：10nm 

SWIR：20nm 

Number of 

Bands 

VNIR：150 

SWIR：180 

VNIR：76 

SWIR：90 

Spatial 

Resolution 
30m 30m 

Width 60km 60km 

Table 1. Characteristics of hyperspectral satellite data 

 

3.2 Data Acquisition and Processing Methods 

3.2.1 Production of Hyperspectral Satellite Surface 

Reflectance Product: 20 scenes of good quality hyperspectral 

images (L1A-grade) covering the study area with cloud cover 

less than 15% were selected from GF-5 and ZY1-02D 

hyperspectral satellites in transit through the study area from 

January 2019 to June 2022.  

The original L1A-grade data of hyperspectral satellite are DN 

value data with PRC correction parameters, which are processed 

by band synthesis, radiation correction and atmospheric 

correction (Dong Xinfeng et al., 2020; Liu Yao et al., 2022). 

 

Figure 3. Comparison of hyperspectral data cube and typical 

surface reflectance in study area 

 

First, the data of VNIR and SWIR bands are synthesized, and 

overlapping bands of shortwave infrared are eliminated. 

Secondly, the DN value data is converted to radiance data 

through radiometric calibration. Finally, the surface reflectance 

image of hyperspectral satellite in the study area is generated by 

FLAASH atmospheric correction program. 
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Based on the work above, some control data and DEM are used 

to conduct orthorectification to generate a single field ortho-

corrected reflectance data product. The water vapor absorption 

bands near 1400nm and 1900nm can be further removed as 

needed during the data use. 

 

3.2.2 Field Measurement of Ground Object Spectra: Based 

on the main rock types, altered minerals, and ore-bearing rock 

masses, surrounding rocks, and mineralization alteration 

phenomena of strata and rock masses exposed in the study area, 

spectral measurement profiles were arranged according to the 

requirements of rock and mineral spectral measurement 

technology to obtain spectral data of various main types of rocks 

and ore in the study area (Liang Shuneng et al., 2015). 

Based on the well-arranged spectral measurement profile, a total 

of 468 measurement points were set up along the profile line 

according to the changes in lithology and altered minerals of the 

rock mass. In accordance with the standard for rock and mineral 

spectral testing (Wang Runsheng et al., 2011; Yan Baikun et al., 

2014) and the technical requirements for the construction of the 

test field, the portable spectral Radiometer (ASD field 

spectrometer) was used to measure not only the spectral data at 

each measuring point, but also the rock and mineral spectra of 

four auxiliary points within 15-20m around each measuring point. 

The spectral data of a certain range of surface (controlled by 5 

spectral measurement points) in the measurement area around the 

location of the measurement point was obtained, and the rock and 

mineral spectral data of the measurement point was obtained by 

means of average processing value. The matching parameter 

information such as geographical location, rock and ore types, 

measurement environment, field photos and sample collection of 

each measurement point was also recorded and registered 

according to the requirements. 

 

Performance Index Technical Parameter 

Spectral Range 350-2500nm 

Spectral Resolution 
3nm（350-1000nm） 

10nm（1000-2500nm） 

Sample Interval 
1.4nm（350-1000nm） 

2nm（1000-2500nm） 

Data Interval 1nm 

Repeatability Better than 0.3％ 

Wavelength Accuracy +/-1nm 

Wavelength 

Repeatability 
+/-0.02nm 

Stray Light 

Better than 0.02％（350-

1000nm） 

Better than 0.1％（1000-

2500nm） 

Table 2. Performance index of ASD 

 

 

Figure 4. Field measurement of rock and mineral spectrum 

 

3.2.3 Pixel Spectral Data Collection: Taking the spectral 

measurement points measured in the field as the pixel spectral 

reference acquisition points, 6605 pixel spectral data were 

collected by self-developed auto-software of hyperspectral pixel 

spectral acquisition and quality inspection, from the surface 

reflectance images of GF-5 and ZY1-02D hyperspectral satellites 

in 16 periods of 20 scenes covering the study area from January 

2019 to June 2022. The corresponding attribute parameter 

information was recorded for each spectral curve. The pixel 

spectrum acquisition is shown in Table 3. 

 

Imaging 

Time 

Payload 

Name 

Image 

Coverage 

(scene) 

Pixels 

Collected 

20190320 GF-5 1 468 

20190827 GF-5 1 468 

20200727 ZY1-02D 1 56 

20200920 ZY1-02D 2 694 

20201019 ZY1-02D 1 252 

20201022 ZY1-02D 1 468 

20201213 ZY1-02D 1 295 

20210310 ZY1-02D 2 634 

20210507 ZY1-02D 2 741 

20210701 ZY1-02D 1 271 

20210802 ZY1-02D 1 47 

20210926 ZY1-02D 2 936 

20211025 ZY1-02D 1 468 

20211219 ZY1-02D 1 165 

20220114 ZY1-02D 1 174 

20220209 ZY1-02D 1 468 

Table 3. Summary table of Spectrum acquisition period 

 

4. Dataset 

4.1 Introduction on Dataset 

The hyperspectral surface reflectance dataset (HMTSHR-1) of 

the typical ore concentration area of Hami Remote Sensing Test 

Field includes: (1) Surface reflectance images of hyperspectral 

satellite with a spatial resolution of 30 meters; (2) multi-period 

pixel spectral data extracted from surface reflectance images of 

hyperspectral satellites; (3) Spectral data of typical rock and ore 

measured by ASD in the field; (4) matching parameter data. 
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Data name 
Data 

Quantity 
Type Note 

hyperspectral 

Reflectance 

data 

8 periods 

8G 

Standard 

remote 

sensing 

image 

format

（*.tif） 

GF5 or ZY1-02D 

data of 2019-2022, 

with 2 period per 

year 

Hyperspectral 

pixel spectral 

data 

6605 

bands 

ENVI 

Spectral 

Library 

All hyperspectral 

data passing 

through study areas 

were collected 

during Jan. 2019 to 

June 2022 

Parameter 

description of 

pixel spectrum 

data 

20 copies 
Excel 

format 

Geological rock 

and mineral types 

and indicators of 

satellite data 

performance 

Spectral data 

of rock and 

ore measured 

in the field 

468 bands 

ENVI 

Spectral 

Library 

Measured rock and 

mineral spectra by 

ASD in 10:00-

17:30 

Parameters 

description for 

spectral data 

of measured 

rock and ore  

1 copy Excel 

Measurement 

environment, target 

type, measurement 

time, etc 

Table 4. Hyperspectral surface reflectance data set of typical 

ore concentration area in Hami remote sensing test field 

 

4.2 HMTSHR-1dataset Description 

4.2.1 Composition: Figures must be placed in the appropriate 

location in the document, as close as practical to the reference of 

the figure in the text. While figures and tables are usually aligned 

horizontally on the page, large figures and tables can be rotated 

by 90 degrees. If so, make sure that the top is always on the left-

hand side of the page. 

(1) Hyperspectral Satellite Surface Reflectance Image 

Hyperspectral satellite surface reflectance images are stored in 

GeoTIFF format, containing latitude and longitude coordinate 

information, and the file name is in the form of “dataset name _ 

satellite name _ payload name _ imaging date _ dataset name. 

File suffix”. 

(2)Pixel spectral data 

Regarding to the pixel spectral data, the reflectance values is 

stored in the spectral general standard format, and the ground 

spatial information corresponding to each spectral collection 

point and its ground object attribute information, the load index 

parameters corresponding to the image data are all stored in excel 

format. Each of collected spectrum is named in the form of “data 

set name _ measurement point number _ spectrum collection 

date_ batch. File suffix”. 

 

 

Figure 5. Sample display of hyperspectral reflectance data and 

spectrum of different rock types in study area 

 

(3)Measured rock and ore spectral data in the field 

The reflectance value of the field measured rock and ore spectral 

data is stored in the general standard spectrum format, and the 

ground spatial information corresponding to each spectral 

measurement point and its measurement environment, rock and 

ore type and other matching parameters are stored in excel format. 

Each of measured spectrum is named in the form of “dataset 

name measurement point number _ measurement date. File 

suffix”. 

 

4.2.2 Spatial, Temporal and Spectral Characteristics of 

the Dataset:  

(1)Geological Element Unit and Distribution 

The dataset contains different geological elements such as strata, 

rock mass, fault tectonic zones, etc. The exposed area and spatial 

distribution characteristics are different. The distribution of each 

geological element unit and its corresponding measured spectral 

points as well as pixel spectral collection points is shown in 

Figure 6. 

 

 

Figure 6. Spatial distribution of geological element unit and 

measure points in study area 
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(2)Time Distribution 

The imaging time of the hyperspectral satellite surface 

reflectance image is from January 2019 to June 2022, and the 

time distribution is shown in Figure 7. 

 

Figure 7. Imaging time of Hyperspectral image 

 

The measurement time of rock and mineral spectral data 

measured in the field is from 10:00 to 17:30 every day 

during August to November in 2010, 2011 and 2012, and 

the time distribution is shown in Figure 8. 

 

Figure 8. Field measurement time of rock and mineral spectrum 

 

(3)Spectral Type and Scale 

The spectral range covers the short-wave infrared band of visible 

light, and its spectral resolution includes 3nm/10nm, 5nm/10nm, 

10nm/20nm. The spectral curve characteristics of typical ground 

objects at different payload scales are shown in Figure 9. 

 

 

Figure 9. Spectrum characteristics of typical ground objects at 

different payload scale 

 

4.3 Data Quality Control and Accuracy Evaluation 

In accordance with relevant industry technical standards and 

technical specifications of test field construction, to conduct 

quality control of data products at all levels to ensure the quality 

and accuracy of data products. 

Firstly, the spectral data of rock and mineral measured in the field 

in the study area are evaluated objectively from waveform 

characteristics and general trend of spectral curves. Secondly, the 

accuracy of hyperspectral surface reflectance data is evaluated 

based on the rock and mineral spectral data measured in the field. 

The evaluation indexes used in this paper are Root Mean Square 

Error (RMSE), Correlation Coefficient R and Spectral Angle α 

(SA). 

The mean square error reflects the degree of dispersion between 

the observed value and the reference truth value, and it is 

calculated as follows: 

 

 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑅𝑚(𝑖) − 𝑅𝑐(𝑖))2𝑁

𝑖=1   , (1) 

 

The correlation coefficient ranges from 0 to 1, reflecting the 

degree of linear relationship between the observed value and the 

reference truth value. The closer the correlation coefficient is to 

1, the better the consistency is. The formula is as follows: 

 

 𝐶𝐶 =
∑ (𝑅𝑚(𝑖)−�̄�𝑚)𝑁

𝑖=1 (𝑅𝑐(𝑖)−�̄�𝑐)

√∑ (𝑅𝑚(𝑖)−�̄�𝑚)2𝑁
𝑖=1 ∑ (𝑅𝑐(𝑖)−�̄�𝑐)2𝑁

𝑖=1

 , (2) 

SAM regards the spectrum as a multidimensional vector and 

evaluates the similarity between the two spectra by calculating 

the Angle between the pixel and end element spectra in the 

hyperspectral image. The formula for calculating the spectral 

Angle is as follows: 

 

 
𝛼 = 𝑐𝑜𝑠−1 ∑ 𝑅𝐶(𝑖)𝑅𝑚(𝑖)𝑁

𝑖=1

√∑ 𝑅𝐶(𝑖)𝑁
𝑖=1

2
√∑ 𝑅𝑚(𝑖)2𝑁

𝑖=1

 , 
(3) 

 

where  N = number of bands of the hyperspectral image 

 Rc (i)= the reflectance of the reference spectrum in the 

i band 

Rm (i) = the observation spectrum in the i band 
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4.3.1 Quality Evaluation of Field Measured Spectral Data: 

According to the apparent color of rock, the ASD spectral 

instrument parameters were adjusted to ensure the acquisition of 

high-quality spectral data during field measurement, mainly 

including the uniform frequency of spectral measurement, dark 

current measurement and whiteboard measurement. 

 

Figure 10. Comparison of parameter settings of rock and 

mineral spectrum measuring instrument in study area 

 

The field measured rock and mineral spectral data of the same 

rock type in the study area are overlaid and compared. As shown 

in Figure 11, the spectral curves of rock and mineral are different 

in reflectivity, and the overall waveform characteristics of each 

district and county, especially the diagnostic absorption 

characteristics of major altered minerals, are significantly 

consistent. 

 

Figure 11. Measured spectrum features of tuff (Left) and 

andesitic porphyrite (Right) in study area 

 

4.3.2 Accuracy Evaluation of Pixel Spectral Data: In 

addition to the factors affected by human activities such as 

mining activities and wind power, the change process of rock ore 

is relatively slow. 

During the 10 year cycle, the material composition and internal 

structure of the rock and ore change slowly, and the spectral 

characteristics of the rock and ore spectral data are relatively 

stable. Therefore, the historical data is highly reliable and can be 

used as a reference data source. 

Taking the historical data of rock and mineral spectra measured 

in the field as reference data, the accuracy evaluation of multi-

period pixel spectra was carried out. The accuracy evaluation 

results of single period were shown in Figure 12, and the 

accuracy evaluation results of each period were shown in Table 

5. 

 

Figure 12. Accuracy evaluation results of surface reflectance 

 

The accuracy evaluation results show that there is a high 

correlation between hyperspectral surface reflectance pixel 

spectral curve and field measured historical spectral curve.  

 

Imaging 

time 

Mean value 

of R 

Mean value of 

RMSE 

Mean value 

of SA 

20190320 0.868 0.139 0.130 

20190827 0.922 0.106 0.092 

20200727 0.945 0.070 0.046 

20200920 0.909 0.102 0.092 

20201019 0.914 0.093 0.056 

20201022 0.881 0.114 0.085 

20201213 0.898 0.113 0.098 

20210310 0.931 0.093 0.076 

20210507 0.883 0.112 0.084 

20210701 0.931 0.100 0.093 

20210802 0.933 0.081 0.057 

20210926 0.897 0.109 0.081 

20211025 0.902 0.106 0.081 

20211219 0.889 0.090 0.054 

20220114 0.957 0.075 0.056 

20220209 0.911 0.102 0.080 

Table 5. Accuracy evaluation results of surface reflectance 

 

In the accuracy evaluation of single-period surface reflectance 

data, the mean value of correlation coefficient is 0.921, the mean 

value of root-mean-square error is 0.087, and the mean value of 

spectral Angle is 0.074°.In the accuracy evaluation of surface 

reflectance data of each period, the correlation coefficient of each 

period is between 0.868 and 0.957, the average correlation 

coefficient of all periods is 0.911, the root-mean-square error of 

all periods is between 0.0700 and 0.139, and the average root-

mean-square error of all periods is 0.100. The spectral Angle is 

between 0.046 and 0.130°, and the average spectral Angle for all 

periods is 0.079°. By comparing the inversion reflectance data of 

hyperspectral image with the field measured surface reflectance 

data, the results show that the hyperspectral surface reflectance 

data has high accuracy. 
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5. Conclusion 

As an important common product in quantitative remote sensing 

applications, surface reflectance data is the basic data source for 

most parametric remote sensing products, and it can widely 

support quantitative applications in natural resources 

management, ecological environment monitoring as well as 

urban environment monitoring and other business. Based on the 

domestic hyperspectral satellite data and the field measured rock 

and mineral spectral data and spectral measurement points, this 

paper completed the research on the construction of hyperspectral 

surface reflectance dataset in the typical ore concentration area 

of Hami remote sensing test field. The dataset includes GF-5 and 

ZY1-02D hyperspectral satellite images with 30-meter spatial 

resolution from 2019 to 2022, multi-period sub-pixel spectral 

data extracted from hyperspectral satellite surface reflectance 

images, regional typical field measured rock and mineral spectra 

and matching parameter data, featuring multi-time series, multi-

scale and high spectral resolution. Based on the field measured 

spectrum data and the matching attribute parameter data, the 

accuracy of the hyperspectral satellite surface reflectance data is 

evaluated. The results show that the accuracy of the surface 

reflectance dataset is good, and the overall correlation coefficient 

is better than 88%. 

The hyperspectral multi-scale surface reflectance dataset in this 

paper combines rich and detailed spectral information with fine 

spatial information and it can provide good data support for the 

precise study of spectral characteristics of ground objects (Xiao 

Xin et al., 2019), simulation and classification of remote sensing 

application scene (Liang Shuneng et al., 2012; Liang Shuneng et 

al., 2014), multi-source, multi-feature and well-matched method 

of altered minerals mapping. Besides, the dataset can also serve 

the payload design, simulation and demonstration of 

hyperspectral remote sensing applications on different platforms. 
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