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Abstract

The preparation of laser scanning missions is important for efficiency and data quality. Furthermore, it is a prerequisite for automated
data acquisition, which has numerous applications in the built environment, including autonomous inspections and monitoring of
construction progress and quality criteria. The scene and potential scanning locations can be discretized to facilitate the analysis
of visibility and quality aspects. The remaining mathematical problem to generate an economic scan strategy is the Viewpoint
Planning Problem (VPP), which asks for a minimum number of scanning locations within the given scene to cover the scene under
pre-defined requirements. Solutions for this problem are most commonly found using heuristics. While these efficient methods scale
well, they cannot generally return globally optimal solutions. This paper investigates the VPP based on a problem description that
considers quality-constrained visibility in 3D scenes and suitable overlaps between individual viewpoints for targetless registration
of acquired point clouds. The methodology includes the introduction of a preprocessing method designed to simplify the input data
without losing information about the problem. The paper details various solution methods for the VPP, encompassing conventional
heuristics and a mixed-integer linear programming formulation, which is solved using Benders decomposition. Experiments are
carried out on two case study datasets, varying in specifications and sizes, to evaluate these methods. The results show the actual
quality of the obtained solutions and their deviation from optimality (in terms of the estimated optimality gap) for instances where
exact solutions can not be achieved.

1. Introduction

Laser scanning has an increasing importance for applications
in the built environment. While digital, model-based methods
are becoming common practice globally, applications involving
operations and refurbishment, or projects within existing struc-
tures in general face additional challenges because the digital
data basis for the application of digital methods needs to be
collected from the real-world environment first (Borrmann et
al., 2018). Laser scanning has become an important part of the
solution to this problem (Valero et al., 2022). To achieve good
results both in terms of data quality and efficient execution,
scanning missions need to be planned thoroughly. Especially
for the case of recurring scanning in environments such as in-
dustrial facilities or large-scale construction sites with continu-
ous progress monitoring, automating the process of scan plan-
ning is a worthwhile exercise; firstly, because the savings ob-
tained from the implementation of an automated solution grow
with each iteration, and secondly because recurring data ac-
quisition in short cycles means that the environment is expec-
ted to change in limited extents between iterations and the data
acquired in a previous cycle contains information well-suited
for the planning of the next scanning mission (Wakisaka et al.,
2019). Furthermore, applications on construction sites and in-
dustrial plants usually require high precision, which is only
achievable with static, terrestrial laser scanning, which prohib-
its the application of faster but less accurate mobile laser scan-
ning systems. Scanning missions often involve hundreds of
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scanning locations, as reported by Hullo (2016). In such cases,
implementing an efficient scan planning strategy that effectively
reduces the number of necessary scanning locations by a not-
able percentage can lead to substantial economic benefits.

The presented work does not describe an end-to-end method for
scan planning but focuses explicitly on the last step of optimal
viewpoint selection or the so-called Viewpoint Planning Prob-
lem (VPP) (Aryan et al., 2021).

The paper is structured as follows: Section 2 presents related
work, focusing on scan planning and specifically on the VPP.
Section 3 outlines the methodology, detailing the input data and
techniques for addressing the VPP. Section 4 applies the presen-
ted methods to two distinct scenarios of varying complexity,
followed by a discussion of the results. The paper concludes in
Section 5, summarizing the findings and exploring their poten-
tial impact on future research in this field.

2. Related Word

The Scan Planning problem can be defined as ”the problem of
finding the minimum number of predefined viewpoints that give
a full coverage of the scanning targets while satisfying the data
quality requirements” (Aryan et al., 2021). This is a precon-
dition for automated scanning using robotic platforms (Adán
et al., 2019) and helps to avoid sub-optimal decision-making
in the manual process (Mozaffar and Varshosaz, 2016). As in-
troduced, for this work, we assume knowledge of the scene is
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available in the form of 3D models or prior scans, which is an
assumption made in the context of our above-explained target
use cases of industrial plants and construction progress monit-
oring and contribute to their development towards autonomous
data acquisition (Wetzel et al., 2022).

Conventional approaches for Scan Planning are based on 2D
floorplans, as they are the most commonly available represent-
ation of existing buildings (Jia and Lichti, 2019; Zeng et al.,
2022). However, the complex reality of the built environment of
construction sites, structural systems, industrial facilities, and
others cannot be sufficiently depicted by such 2D representa-
tions. Solving the problem of Scan Planning in 3D poses ad-
ditional problems due to the computational complexity (Jia and
Lichti, 2019; Aryan et al., 2021). Therefore, instead of con-
tinuous approaches or discretization of the existing data, most
3D-based approaches make use of simplifications made pos-
sible in structures with highly repetitive element types (Li et al.,
2022) or laser scan simulation (Rougeron et al., 2022; Wujanz
and Neitzel, 2016; Biswas et al., 2015). Some recent works
use conventional representations such as voxels (Wakisaka et
al., 2019) or triangulated meshes (Noichl et al., 2024), making
application possible for a wider range of input data.

Viewpoint candidates are placed in the scene on rectangular
grids (Jia and Lichti, 2019) or nodes generated using triangula-
tion methods (Frı́as et al., 2019; Wakisaka et al., 2019). Visib-
ility analysis can be done based on discretized scene represent-
ation directly (Jia and Lichti, 2019; Li et al., 2022) or indirectly
through laser scan simulation (Biswas et al., 2015; Rougeron et
al., 2022). Evaluation results can be stored in table-like format,
such as the visibility score table described by Jia and Lichti
(2019).

After this evaluation is complete, the VPP needs to be solved.
The most prominent method to approximate a suitable solu-
tion is the greedy algorithm (Jia and Lichti, 2019; Wujanz and
Neitzel, 2016; Frı́as et al., 2022). The greedy algorithm can be
described as a sequential search heuristic, providing a series of
choices built sequentially, selecting the option that seems most
advantageous or optimal at each step without considering future
consequences. This approach generally leads to locally optimal
solutions, but does not guarantee a global optimality. Random-
ized selection algorithms, like evolutionary algorithms, offer a
contrasting approach to the deterministic nature of greedy al-
gorithms. Evolutionary algorithms use randomness and selec-
tion principles inspired by natural evolution. These algorithms
start with a population of potential solutions and iteratively ap-
ply genetic operations such as mutation, crossover, and selec-
tion. The randomness in evolutionary algorithms allows for
exploration of the solution space beyond local optima, poten-
tially leading to better overall solutions than the locally-focused
greedy method. This makes evolutionary algorithms particu-
larly suitable for complex problems where the solution land-
scape is poorly understood. The related works of Jia and Lichti
(2017); Ibrahim et al. (2022) investigate the applicability of
various randomized selection algorithms to solve the VPP. Ex-
act solutions can be achieved through optimization techniques
like Mixed-Integer Linear Programming (MILP). While evol-
utionary algorithms can navigate large and complex solution
spaces through iterative and randomized processes, MILP takes
a more direct and precise approach, formulating the problem
as a set of linear equations and inequalities to find an optimal
solution that satisfies all constraints. This method guarantees
the discovery of a globally optimal solution by exhaustively ex-
ploring the feasible solution space. Amongst others, Dehbi et

al. (2021) apply such methods to solve a version of the prob-
lem considering walls as lines in 2D and floor areas; Wakisaka
et al. (2019) apply MILP for scan planning based on a voxel
representation that is derived from a mesh representation ob-
tained from a prior scan. The trade-off is that MILP can be
computationally expensive, especially for large-scale problems,
where heuristic methods like sequential search and evolutionary
algorithms might provide solutions of sufficient quality much
more efficiently.

Still, the question remains of how good the results of sequential
heuristics actually are – in comparison to solutions found apply-
ing exact methods. This paper aims to investigate this question
by applying several sequential search heuristics to exemplary
case study scenes based on a description of the VPP that allows
the consideration of point cloud and overlap criteria in complex
environments.

3. Method

The VPP is presented in the following form, as described by
Noichl et al. (2024): The scene itself is described as a set of
triangular faces F = {f1, . . . , fm} with their respective areas
a1, . . . , am stored in the area vector a ∈ Rm

+ . All viewpoint
candidates are collected in the set V P = {vp1, . . . , vpn}.

Faces in the scene that are visible and covered following the
pre-defined coverage criteria are stored in the coverage table
C = (ci,j) ∈ {0, 1}m×n with

ci,j =

{
1 face fj is covered by viewpoint vpi

0 otherwise.
(1)

If a viewpoint is selected, it will be used to capture a point cloud
using static laser scanning. The individual point clouds should
be registered using targetless registration. For k ∈ {1, . . . , n},
we define Jk = {j ∈ {1, . . . ,m} | cj,k = 1} as the set of
face indices visible from viewpoint candidate vpk. The pairwise
overlap between viewpoint candidates is stored in the relative
overlap table Orelk,l

= (orelk,l
) ∈ Rn×n

+ with

orelk,l
=

∑
i∈Jk∩Jl

aj∑
j∈Jk∪Jl

aj
(2)

Based on this input data, we use two approximation methods
and one exact algorithm to determine solutions to the VPP. All
three approaches are introduced in the following. For ease of
understanding, they are written in pseudo-code.

3.1 Greedy algorithm

The greedy algorithm is a straightforward method for obtain-
ing approximate solutions for the VPP. The value of all poten-
tial viewpoint candidate points is evaluated, and then the most
valuable candidate is added to the solution. This process is
repeated until the coverage requirement set in the SP is met.
This principle logic structure is described in Algorithm 1, taken
from Noichl et al. (2024). Due to its strictly sequential nature,
this approach can also be referred to as forward selection and is
prone to return sub-optimal solutions.
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Algorithm 1: Greedy algorithm
initiate empty solution
while coverage criterion is not met do

calculate score per viewpoint candidate
append candidate with the highest score to solution

end
return solution

3.2 Oscillating search

Sequential search can also be executed in the opposite direction
of the greedy algorithm: Starting from a complete solution, the
loss connected with removing single viewpoint candidates is
calculated for all viewpoint candidates in the solution. After re-
moving the point with the least individual impact on the overall
strategy, this procedure is repeated until the remaining solution
no longer fulfills the coverage requirement. This approach can
also be referred to as backward elimination. Although it is de-
terministic, due to the high number of necessary evaluations, it
leads to high computational costs with increasing numbers of
viewpoint candidate points. It is possible to combine forward
selection and backward elimination to mitigate the limitations
of these approaches. This approach is detailed in Algorithm 2,
which we refer to as oscillating search, as described in Noichl
et al. (2024).

Algorithm 2: Oscillating search
initiate empty solution
while solution does not meet requirements do

for i in nf do
forward selection

end
evaluate solution
for j in nb do

backward elimination
end

end
for k in no do

oscillate with ao

evaluate solution
if solution OK then

store the solution
end

end
pick best solution from stored solutions
return solution

In contrast to the greedy algorithm, this approach has paramet-
ers that can be changed: nf is the number of steps of forward
selection in a sequence, nb the number of steps of backward
elimination. After the solution has reached the requirements,
there are additional oscillations, describing subsequent phases
of forward selection and backward elimination, with fixed or
varying numbers of steps ao each.

3.3 Benders decomposition

Apart from heuristics, the VPP can be solved exactly by apply-
ing a Benders decomposition algorithm. In its general form, the
Benders decomposition algorithm tries to decompose a mixed-
integer linear program (MILP) into a master- and a subproblem
(Benders, 2005). This is done by reformulating the initial MILP
into an equivalent problem such that a subset of variables is pro-
jected out. Instead of considering the complete reformulated
problem, a relaxed version, called master problem, is solved to
optimality. After a new solution is found, the subproblem is

used to evaluate its optimality with respect to all constraints of
the reformulated problem. If the found solution is not an op-
timal solution, the subproblem produces a violated constraint,
which is added to the master problem, and the process repeats.

This method is guaranteed to converge but may come with many
drawbacks, such as time-consuming iterations and slow con-
vergence towards the end of the algorithm (Rahmaniani et al.,
2017).

One possible way to decrease the necessary time per iteration is
to use a branch-and-benders-cut framework. Instead of solv-
ing the master problem to optimality in each iteration, it is
solved only once via the branch-and-bound algorithm. When
a new (integral or fractional) solution is found, the subproblem
is used to evaluate its optimality with respect to all reformu-
lated constraints. An additional constraint, called cut, is added
to the master problem if the found solution violates any of these
constraints. This procedure avoids redundancies in eliminating
non-optimal solutions when repeatedly solving the master prob-
lem.

Cordeau et al. (2019) develop a branch-and-bender-cut algorithm
that can be utilized for a large variety of (partial) covering prob-
lems. Due to their special structure, the evaluation of a solution
to the master problem and the generation of a cut can be per-
formed in linear time. Clearly, the VPP falls into this class if
only coverage constraints are considered.

In order to also incorporate overlap constraints, the master prob-
lem is initialized with additional constraints that ensure the re-
gistrability of the selected candidate points. Dehbi et al. (2021)
formulate the registrability constraints by ensuring the exist-
ence of a multi-commodity-flow in a connectivity graph, that
represents the sufficient overlap between viewpoint candidates.
This approach is also used in this paper, hence, the master prob-
lem of the branch-and-cut-benders-cut algorithm is initialized
with these constraints in order to ensure the registrability of the
delivered scanning plan. The branch-and-bender-cut approach
is summarized in Algorithm 3.

Algorithm 3: Branch-and-benders-cut
initiate master problem with registrability constraints
solve masterproblem via branch-and-bound
while branch-and-bound is not terminated do

if incumbent solution is found then
solve subproblem using the incumbent solution
if incumbent solution is not optimum then

add produced cut to master problem
end
else

continue brach-and-bound
end

end
end
return solution

3.4 Preprocessing

To reduce the size of the problem and the resulting computation
time, instances are simplified as follows. For all following oper-
ations, we denote the input variables by x, intermediate results
by x̂, and final preprocessing results by x̄. The initial cover-
age table C is filtered in this process: Faces that are not visible
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from any of the viewpoint candidates are deleted from the in-
stance, which yields Ĉ = {rowi(C) | ∃j : aij ̸= 0}. This
step adheres to the logic of the established method of back-face
culling, an effective standard technique in graphics processing
(Vaněkčkek Jr, 1994).

If two distinct faces fi ̸= fj are covered by the same view-
point candidate points, we call them redundant and merge them
in the instance representation, which yields C̄ = {rowi(Ĉ) |
rowi(Ĉ) is unique in Ĉ}.

Accordingly, for each unique row i for which the (identical)
rows k ∈ K have been removed from the coverage table, the
area vector needs to be updated with āi = ai +

∑
k∈K ak.

These operations are designed to simplify the problem without
actual information loss by removing superfluous and redund-
ant information from the instance description. The only in-
formation that is lost is the geometric description of individual
covered faces, which plays a role in describing geometric con-
trast in overlapping areas for targetless registration (Wujanz
and Neitzel, 2016). Under the assumption of sufficient view-
point candidate grid resolution, this can be neglected.

Further operations can be applied to simplify the problem, for
example, by merging viewpoints based on coverage similarity,
inversely to the above-described removal of redundant faces. To
be applied effectively, it is useful to introduce certain thresholds
within which loss of information is acceptable. In the scope of
this paper, we only consider loss-free preprocessing and neglect
the latter. In our preprocessing, the number n of viewpoints
remains unchanged, while the number m of faces is reduced
to m̄ ≤ m.

4. Experiments

The introduced methods to find solutions for the VPP can be
applied to all mentioned scene representations and candidate
grid layouts introduced in Section 2. For the experimental part
of this paper, simple 3D geometries are considered as the scene,
represented by triangulated mesh representation; potential view-
point candidates are located on a rectangular grid.

4.1 Datasets

Figure 1. Experiment scene 1: Single-level building model.

Two simple building models are used in our experiments. Scene 1
depicts a simple, single-level house (Figure 1), and scene 2 de-
picts a more complicated geometry, where scene 1 is extended

Figure 2. Experiment scene 2: Two-level building model.

dataset scene 1 scene 2

surface area 707.0m2 1387.7m2

no. n of viewpoints 511 945
no. m of faces 50 040 104 308
m̂ after preprocessing 31 330 71 263

Table 1. Key data of experiment scenes 1 and 2.

by a second floor (Figure 2). In scene 2, two openings connect
the two levels: A rectangular opening (right corner) and a ramp
to connect the two floors (middle, left) as depicted in Figure 2.
All outer surfaces are modeled as single surfaces for simplicity
and inner structures such as inner walls and the slab separating
the levels in scene 2 are modeled as cuboids, requiring cover-
age from both sides. Both figures show the scene geometry as
discretized triangular faces (black outlines) and viewpoint can-
didate locations (orange circles).

4.2 Experiments

All three viewpoint selection algorithms are applied to the presen-
ted problem instances to investigate their behavior in direct com-
parison. For the Benders decomposition algorithm, we report
both the objective value of best obtained solution and the provided
lower bound on the objective value of a globally optimal solu-
tion. If the two values are not equal, the algorithm cannot
obtain an optimal solution within the pre-defined time limit
of 30 000 s.

Before applying the viewpoint selection algorithms, the prob-
lem instances are preprocessed using the introduced filtering
steps. This leads to a significant reduction in problem size by
37.4% for scene 1 and 31.7% for scene 2 (absolute values see
Table 1).

As shown in Figure 3, the required viewpoints for scene 1 range
between three and six. Both heuristic methods return the same
values, and Benders decomposition reaches an optimal solu-
tion within the time limit. In a relative comparison between the
methods, for a relative coverage requirement of 90% and 99%,
both heuristic approaches require one more viewpoint candid-
ate. Figure 5 shows the solution for 99% obtained using the
greedy algorithm as green circles in the scene.

Figure 4 summarizes the results for scene 2, where the required
number of viewpoints ranges between four and 14. Within the
pre-defined time limit, Benders decomposition does not reach
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Figure 3. Evaluation of results for experiments in scene 1, bd
indicates results obtained using Benders decomposition.
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Figure 4. Evaluation of results for experiments in scene 2, bd
indicates results obtained using Benders decomposition.

an optimal solution; the two heuristic methods return equal res-
ults consistently. For values of 85% and 90% relative cover-
age, the required number of viewpoints are equal for the solu-
tions returned by Benders decomposition and the two heuristic
approaches. Above 90%, the heuristic methods lead to solu-
tions that each require one viewpoint less to fulfill the coverage
requirement. For scene 2, the provided lower bound on the ob-
jective value of a globally optimal solution ranges between four
and nine viewpoints and is not reached by any of the generated
solutions. Figure 5 shows the solution for 99% obtained using
the greedy algorithm as green circles in the scene.

Between the heuristic methods of the greedy algorithm and os-
cillating search, there is no difference in the results for scenes 1
and 2. Other studies have found that oscillating search can
lead to improvements compared to the conventional greedy al-
gorithm (Noichl et al., 2024), but in the presented examples,
this is not the case.

5. Conclusion

This paper presents an approach for determining the exact solu-
tion for the Viewpoint Planning Problem, considering sufficient
pairwise overlap as a constraint for viable solutions. Beyond
the introduction of methods to find solutions to the problem
by using optimization techniques, we explain existing heuristic

Figure 5. Experiment scene 1 with selected viewpoint
candidates for 99% relative coverage (greedy algorithm).

Figure 6. Experiment scene 2 with selected viewpoint
candidates for 99% relative coverage (oscillating search).

methods to find suitable solutions and perform experiments on
two simple scenes represented by 3D models to investigate per-
formance and solution quality.

In our experiments, heuristic methods matched the exact solu-
tion in terms of the required number of viewpoints for half
of the coverage requirement values tested for both scenes. In
instances of deviation, solutions from Benders decomposition
outperformed heuristic approaches in scene 1, showcasing their
effectiveness in less complex scenarios. For the more com-
plex scene 2, no method achieved the estimated lower bound.
Here, conversely to scene 1, for the non-identical results, heur-
istic solutions required fewer viewpoints than those generated
by Benders decomposition, indicating their efficiency in more
complex environments.

While further investigation is necessary to provide more com-
prehensive data to support these findings, the results show that
the presented heuristics are able to find sensible solutions effi-
ciently. With increasing complexity, heuristics-based solutions
deviate from the estimated optimal solution – but in some cases
less so than the much more computationally expensive exact
solutions using Benders decomposition.

A limitation of the presented preprocessing method is that it
exclusively considers the faces of the scene and does not con-
sider viewpoint candidate point simplifications. While includ-
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ing such simplifications might introduce some loss of informa-
tion, it would be an interesting extension to this work – the same
pertains to an extension of the presented method for model re-
dundancy reduction.

In future work, it could be interesting to investigate the extent
of problems that exact methods like the ones presented here
can be applied to and whether combinations between different
algorithms can outperform the existing ones.

Related research in the field of drone operations and data ac-
quisition for photogrammetric processes includes benchmark
data that are openly accessible, which allows easy comparisons
of results (Rocha and Vivaldini, 2022). This could be another
worthwhile addition to the literature on the topic of scan plan-
ning and the VPP for static laser scanning.
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tion for very large scale partial set covering and maximal cov-
ering location problems. European Journal of Operational Re-
search, 275(3), 882–896.

Dehbi, Y., Leonhardt, J., Oehrlein, J., Haunert, J.-H., 2021. Op-
timal scan planning with enforced network connectivity for the
acquisition of three-dimensional indoor models. ISPRS Journal
of Photogrammetry and Remote Sensing, 180, 103–116.

Frı́as, E., Dı́az-Vilariño, L., Balado, J., Lorenzo, H., 2019. From
BIM to scan planning and optimization for construction control.
Remote Sensing, 11.

Frı́as, E., Previtali, M., Dı́az-Vilariño, L., Scaioni, M.,
Lorenzo, H., 2022. Optimal scan planning for surveying large
sites with static and mobile mapping systems. ISPRS Journal
of Photogrammetry and Remote Sensing, 192, 13-32. ht-
tps://linkinghub.elsevier.com/retrieve/pii/S0924271622002039.

Hullo, J. F., 2016. Fine registration of kilo-station networks -
a modern procedure for terrestrial laser scanning data sets. 41,
International Society for Photogrammetry and Remote Sensing,
485–492.

Ibrahim, A., Golparvar-Fard, M., El-Rayes, K., 2022. Mul-
tiobjective Optimization of Reality Capture Plans for Com-
puter Vision–Driven Construction Monitoring with Camera-
Equipped UAVs. Journal of Computing in Civil Engineering,
36. https://ascelibrary.org/doi/10.1061/

Jia, F., Lichti, D. D., 2017. A Comparison of Simulated An-
nealing, Genetic Algorithm and Particle Swarm Optimization
in Optimal First-Order Design of Indoor TLS Networks. ISPRS
Annals of the Photogrammetry, Remote Sensing and Spatial In-
formation Sciences, 4, 75-82.

Jia, F., Lichti, D. D., 2019. A model-based design system for
terrestrial laser scanning networks in complex sites. Remote
Sensing, 11.

Li, D., Liu, J., Zeng, Y., Cheng, G., Dong, B.,
Chen, Y. F., 2022. 3D model-based scan planning
for space frame structures considering site condi-
tions. Automation in Construction, 140, 104363. ht-
tps://linkinghub.elsevier.com/retrieve/pii/S0926580522002369.

Mozaffar, M. H., Varshosaz, M., 2016. Optimal placement of
a terrestrial laser scanner with an emphasis on reducing occlu-
sions. Photogrammetric Record, 31, 374-393.

Noichl, F., Lichti, D. D., Borrmann, A., 2024. Automating ad-
aptive scan planning for static laser scanning in complex 3d en-
vironments. http://dx.doi.org/10.2139/ssrn.4684037.

Rahmaniani, R., Crainic, T. G., Gendreau, M., Rei, W., 2017.
The Benders decomposition algorithm: A literature review.
European Journal of Operational Research, 259(3), 801–817.

Rocha, L., Vivaldini, K., 2022. A 3d benchmark for uav path
planning algorithms: Missions complexity, evaluation and per-
formance. 2022 International Conference on Unmanned Air-
craft Systems (ICUAS), 412–420.

Rougeron, G., Garrec, J. L., Andriot, C., 2022. Optimal pos-
itioning of terrestrial LiDAR scanner stations in complex 3D
environments with a multiobjective optimization method based
on GPU simulations. ISPRS Journal of Photogrammetry and
Remote Sensing, 193, 60-76.
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