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Abstract 

LST (Land Surface Temperature) is a significant parameter that represents the ground energy balance and plays a crucial role in 

understanding climate change. The LST of the Tibetan Plateau (TP) has a direct influence on the climate and environmental changes 

of the TP, and it also has a significant impact on global climate and atmospheric circulation. Although there are various factors that 

drive the spatial and temporal distribution of LST on the TP, the primary driving forces and its seasonal variations of LST are not yet 

well understood. The research focuses specifically on the TP region, selecting three types of LST data, using geodetector model, to 

analyze the driving factors affecting the spatial pattern of LST in different seasons. The results indicate that the three factors, Air 

Temperature (AT), Elevation (Ele), and Permafrost Thermal Stability (PTS), have a significant influence on LST throughout all 

seasons, whereas other variables demonstrate varying contributions to LST depending on the season. This study contributes to the 

understanding of the spatial variability of surface thermal conditions and the intricate relationships between their driving factors. It 

also emphasizes the potential changes in these relationships throughout the year. 

1. Introduction

The Tibetan Plateau (TP), an inland plateau in Asia, is the 

largest plateau in China and the highest in the world. It is also 

known as the "roof of the world" and the "Third pole". TP rises 

over 4 kilometers above sea level, creating a barrier that impacts 

tropospheric circulation and upper air flow over Eurasia. Its 

distinctive topography is essential for global climate and 

atmospheric circulation patterns (Oku et al, 2006). Land surface 

temperature (LST) is a significant factor in the interaction 

between the surface, near-surface atmosphere, and the water 

cycle. It is also a vital parameter in the study of ground energy 

balance and dynamic changes (Anderson et al, 2008; Li et al, 

2013). LST directly affects the climate and environmental 

changes on the TP (Xiao et al, 2015). The LST of the TP is 

affected by many driving factors. Previous studies have found 

that the error between LST and its actual value is related to the 

season and increases with altitude (Salama et al, 2012; Cai et al, 

2017). The warming rate increases at low altitudes (4800m and 

below) but decreases above 5000m (Liu and Chen, 2000; Qin et 

al, 2009; Zhou et al, 2023). Additionally, changes in vegetation 

growth significantly impact the surface energy budget (Jeong et 

al, 2009) and, in turn, surface thermal characteristics, playing a 

crucial role in LST changes (Bindajam et al, 2020). Over the 

past 36 years, the amount of atmospheric precipitable water 

over the TP has been increasing (Lu et al, 2015; Zhang et al, 

2013), consistent with the anomaly changes in rising LST (Yao 

et al, 2015). Clouds (Ma et al, 2020; Pan et al, 2017) and snow 

(Ghatak et al, 2014; Yang et al, 2021) also contribute to 

changes in LST. However, it remains unclear which factors 

among the many influencing factors are the dominant ones. 

Examining the driving factors of LST on the TP will aid in 

comprehending the evolving patterns of LST, enhancing our 

understanding of the surface-atmosphere exchange process in 

the region, and effectively addressing the global challenges 

posed by climate change (Li et al, 2013; Li et al, 2023). 

However, previous studies have mainly focused on analyzing 

the impact of single factors on LST, while rarely discussing and 

analyzing the dominant factors among multiple factors and the 

ranking of influencing factors, whereas comparing with single 

factors, the changes in multiple factors have a greater impact on 

LST. This study aims to address the aforementioned issues by 

utilizing three types of LST data and multiple driving factors for 

seasonal analysis. It employs geodetector model (GD) to 

analyze the spatial heterogeneity of LST and explore the factors 

influencing this heterogeneity, providing the factors importance 

ranking. The main objectives of this research are to determine 

the dominant driving factors and their ranks in different seasons 

in order to promote regional ecological protection and 

sustainable development. 

2. Study Area and Data

2.1 Study Area 

Located in western China, the TP spans between 26°00′~39°47′ 

north latitude and 73°19′~104°47′ east longitude, covering a 

total area of approximately 2.5 million square kilometers. Most 

of TP lies within China and includes all of Tibet and parts of 

Qinghai, Xinjiang, Gansu, Sichuan and Yunnan (Figure 1-a). 

The average altitude of the TP ranges from 3000 to 5000 meters, 

with a majority of the land situated above 4000 meters. The 

predominant surface types are grassland, which covers 55.9% of 

the total area, and bare land, which accounts for 35.99%. Forest 

land is mainly found in the southeast, and the TP also features 

extensive frozen soil and lakes (Figure 1-b). The climate of the 

TP is characterized by a typical alpine plateau climate, with 

intense radiation, abundant sunshine and low air temperatures. 

2.2 Data Sources and Pre-processing 

In order to ensure more comprehensive research results, three 

types of LST data are utilized (Table 1), including MYD11A2, 

Daily 1-km all-weather land surface temperature dataset for 

Western China V2 (TRIMSAQ) (Zhou et al, 2019), Global 
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daily average 1km land surface temperature dataset from 2003 

to 2019 (GLOBALD) (Zhan et al, 2021). The first is 

commercially produced satellite products, while the remaining 

two are independently developed and released by scholars. All 

there LST data used in this study pertain to the year 2018, and 

are with the spacial resolution of 1km. 

LST data 
Spacial 

resolution 

Claimed 

accuracy 

MYD11A2 1 km 1 K 

Daily 1-km all-weather land surface 

temperature dataset for Western China 

V2 (TRIMSAQ) (Zhou et al, 2019) 

1 km 1~3 K 

Global daily average 1km land surface 

temperature dataset from 2003 to 2019 

(GLOBALD) (Zhan et al, 2021) 

1 km 1~2K 

Table 1 LST data used in this study. 

Auxiliary data used in this paper include (1) Land Cover data 

from MODIS MCD12Q1. The original 17 categories are 

merged into 7 categories (Figure 1-b): 1) Forest land, including: 

Evergreen Needleleaf Forests, Evergreen Broadleaf Forests, 

Deciduous Needleleaf Forests, Deciduous Broadleaf Forests, 

Mixed Forests, Closed Shrublands, and Open Shrublands; 2)  

Grass land, including: Woody Savannas, Savannas and 

Grasslands; 3) Farm land, including: Croplands, 

Cropland/Natural Vegetation Mosaics; 4) Urban area: Urban 

and Built-up Lands; 5) Snow and Ice: Permanent Snow and Ice; 

6) Bare land: Barren; 7) Water body, including: Water Bodies

and Permanent Wetlands; (2) Digital Elevation Model from

NASADEM (https://search.earthdata.nasa.gov/search); (3) The

permafrost thermal stability dataset over TP, released by Ran

(Ran et al, 2019); (4) Vegetation Index from MODIS

MYD13A2; (5) The 1km daily soil moisture dataset over the TP

released by Shangguan (Shangguan et al, 2023); (6) 1-km

monthly precipitation dataset for China released by Peng (Peng

et al, 2020); (7) 1-km monthly mean temperature dataset for

China released by Peng (Peng et al, 2019); (8) China Climate

Zone data from the Resource and Environmental Science and

Data Center of the Institute of Geographic Sciences and Natural

Resources, Chinese Academy of Sciences

(https://www.resdc.cn/Default.aspx). The specific details can be

found in Table 2. All auxiliary data are resampled to a spatial

resolution of 1km to be consistent with the LST data

All data analyses are conducted using ArcGIS 10.8, Python 3.9 

and R 4.3.1 (https://www.r-project.org/). The Shapefile data is 

obtained from the TPBoundary_HF published by Zhang on the 

National Tibetan Plateau Data Center (Zhang, 2019). 
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Figure 1. Geographical location of the study area. 

3. Methods

3.1 Delineation of Seasons 

The TP experiences unique seasonal patterns due to factors such 

as terrain, altitude, and latitude. It is characterized by a lack of a 

distinct summer season, with a seamless transition between 

spring and autumn. Each region within the TP exhibits varying 

seasonal start and end dates, as well as differing lengths of 

seasons. For instance, the western Sichuan Plateau experiences 

an early onset of spring and longer durations of spring, summer, 

and autumn. Conversely, the central plateau has no distinct 

summer season due to its higher altitude. In the Yunnan-

Guizhou Plateau, spring and autumn are prolonged. These 

variations in seasonal changes set the TP apart from regions at 

similar latitudes in China, showcasing its unique climatic 

characteristics. Fan proposed the 'Universal Plateau Season 

Division Method' to categorize the four seasons of the TP (Fan 

et al, 2011). According to this method, winter is defined as the 

period with an average temperature consistently below 5°C, 

summer is defined as the period with an average temperature 

consistently above 15°C, and the seasons with average 

temperatures between 5°C and 15°C are classified as spring and 

autumn.  

By combining the above conclusions with the actual air 

temperature changes on the TP in 2018 (Figure 2) and 

considering the time resolution of LST and Vegetation index 

data, the four seasons are divided as follows: spring from May 1 

to July 3 (64 days); summer from July 4 to August 4 (32 days); 
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autumn from August 5 to October 7 (64 days); and winter from 

January 1 to April 30 and from October 8 to December 31 (205 

days). 

Figure 2. Average monthly air temperature on the TP. 

3.2 Influencing Factors Selection 

The TP is characterized by its dense coverage of mountains and 

rivers, featuring steep and ever-changing terrain and complex 

topography. The LST on the TP is influenced by various factors 

such as topography, land cover types and vegetation coverage, 

resulting in a high degree of spatial heterogeneity (He et al, 

2019). To assess vegetation coverage, the commonly used 

indicators are the Enhanced Vegetation Index (EVI) and the 

Normalized Difference Vegetation Index (NDVI) (Yuan et al, 

2007). Additionally, the presence of a significant amount of 

permafrost across the TP and the unique climate conditions of 

the TP also impact LST. In the light of the foregoing, this study 

selected 14 influencing factors, all are obtained from the above 

auxiliary data (Table 2).  

Influencing factors Auxiliary data obtained from 
Spacial 

resolution 

Temporal 

resolution 
Obtained Methods 

Land Cover (LC) MCD12Q1 500m Yearly 

Original obtained through the supervised 

decision tree classification method, 

reclassified in this study 

Permafrost Thermal 

Stability (PTS) 

The mean annual ground temperature 

(MAGT) and Permafrost Thermal 

Stability dataset over Tibetan Plateau 

for 2005-2015 (Ran and Li, 2019) 

1km 10 year 

Obtained by fusing ground observations with 

remote sensing and reanalysis data using a 

support vector regression model. 

Enhanced Vegetation 

Index (EVI) 
MYD13A2 

1km 16 day 
Obtained from daily atmospherically 

corrected bidirectional surface reflectance. Normalized Difference 

Vegetation Index (NDVI) 
1km 16 day 

Soil Moisture (SM) 

A 1 km daily soil moisture dataset 

over the Qinghai-Tibet Plateau 

(2001-2020) (Shangguan et al, 2023) 

1km Daily 

Downscaling the ESA CCI soil moisture data 

using five machine/deep learning methods, 

then fusing using the bayesian generalized 

tricorn hat method. 

Elevation (Ele) 

NASADEM 

30m 
Obtained from the improved algorithm of 

SRTM data, using ASTER GDEM to fill in 

the missing parts. 

Slope (Slp) 30m 

Aspect (Asp) 30m 

Degree of relief (Deg) 30m 

Precipitation (PRCP) 
1-km monthly precipitation dataset 

for China (1901-2022) (Peng, 2020)
1km Monthly 

Generated by downscaling in the Chinese 

region based on the global 0.5° climate data 

set released by CRU and the global high-

resolution climate data set released by 

WorldClim through the Delta spatial 

downscaling scheme. 

Air Temperature (AT) 

1-km monthly mean temperature 

dataset for china (1901-2022) (Peng, 

2019)

1km Monthly 

Climate Zone (CZ) Climate zone data 

Divided based on thermal indicators, China's 

terrain characteristics and historical 

administrative divisions 

Longitude (Lon) Integration dataset of Tibet Plateau 

boundary (Zhang, 2019) 

Calculated from Shapefile data in ArcGIS and 

Python. Latitude (Lat) 

Table 2 Influencing factors of LST used in this study. 

3.3 Statistical Analysis 

Geodetector are employed to evaluate the impact of various 

factors on LST. Geodetectors include four detectors (Wang and 

Xu, 2017): factor detector, interaction detector, risk detector 

and ecological detector. Geodetector is available for free at 

http://www.geodetector.cn/. By considering three LST data as 

dependent variables, 14 influencing factors as independent 

variables, this article utilizes factor detector and interaction 

detector to analyze the independent effects and the joint effects 

of 14 influencing factors on LST in different seasons. 

Additionally, the degree of influence and ranking during 

interactions are examined. 

Factor detector can detect the spatial stratified heterogeneity of 

variable Y and the explanatory power of factor X to the spatial 

stratified heterogeneity of Y. A q-statistic method is proposed to 

measure the degree of spatial stratified heterogeneity and to test 

its significance (Wang et al, 2010), The q-statistic is defined as 

follows: 
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where 1,...,h L=  = the stratum for variable Y or factor X 

hN = composing units of stratum h 

N = composing units of population 
2

h = stratum variance of stratum h 

2 = population variance

SSW = within sum of squares 

SST = total sum of squares 

The q value is within [0,1], and it increases as the strength of 

the stratified heterogeneity increases. (0 if a spatial stratification 

of heterogeneity is not significant, and 1 if there is a perfect 

spatial stratification of heterogeneity). The q value means factor 

X explain 100 %q  of variable Y. 

Interaction detector can identify the interaction between 

different factors 
sX and assess whether factors 

1X and 
2X

together increase or decrease the explanatory power of the 

dependent variable Y, or whether the effects of these factors on 

Y are independent of each other. The evaluation method 

involves calculating the q values 
1q  and 

2q for the two factors 

1X and 
2X with respect to Y individually, and then calculating 

the q values ( )1 2q X X  when they interact (represented by the

new polygon distribution formed by the tangent of the two 

layers of superimposed variables 
1X and 

2X ). These values are 

then compared and the interaction results are given according to 

the description shown in Table 3. 

Description Interaction 

( ) ( ) ( )( )1 2 1 2,  q X X Min q X q X  Weaken, nonlinear 

( ) ( )( ) ( )

( ) ( )( )
1 2 1 2

1 2

,  

,  

Min q X q X q X X

Max q X q X

 


Weaken, uni- 

( ) ( ) ( )( )1 2 1 2,  q X X Max q X q X  Enhance, bi- 

( ) ( ) ( )1 2 1 2q X X q X q X = + Independent 

( ) ( ) ( )1 2 1 2q X X q X q X  + Enhance, nonlinear 

Table 3 Interaction between Explanatory Variables 

Figure 3. The independent influence of different factors on the LST given by the factor detector in (a) Spring, (b) Summer, (c) 

Autumn, (d) Winter. (p value for all factors is less than 0.01) 

4. Results

4.1 Analysis of Independent Effects of Different Influencing 

Factors on LST 

The results of factor detector are shown in Figure 3. All factors 

passed the significance test (p < 0.01). Since factors with q 

values less than 0.1 have minimal influence on LST, only 

factors with q values more than 0.1 for all three kinds of LST 

data are considered in this article. In the case of spring, the 

three factors AT, PTS and Ele exhibit strong explanatory power 

( 0.3q  ) on land surface temperature in all LST data, with 

average q values of 0.62, 0.48 and 0.38, respectively. Followed 

by CZ (0.21), EVI (0.20) and NDVI (0.18). 

During summer, the four factors AT, Ele, CZ and SM have 

strong explanatory power on land surface temperature in any 

LST data. The average q values for the three LST data are 0.51, 

0.38, 0.31 and 0.30 respectively. Additionally, EVI (0.22), PTS 

(0.21), NDVI (0.20) and Lat (0.20) also contribute to 

explaining LST, with Lat having a higher explanatory power for 

MYD21A2-LST compared to the other two LST data, while 

PTS shows the opposite trend.  
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Autumn shows a similar pattern to spring, with the three factors 

AT, Ele and PTS, strongly influencing LST in any data set. The 

average q values for the three LST data are 0.58, 0.50 and 0.36 

respectively. In addition to these three factors, other variables 

that significantly impact LST during autumn include CZ (0.28), 

SM (0.25), Lat (0.14), NDVI (0.13) and LC (0.12). 

Moving on to winter, the five factors AT, PTS, Ele, CZ and Lat 

exhibit the strongest explanatory power for LST in any data set. 

The average q values for the three LST data are 0.81, 0.61, 0.47, 

0.42 and 0.34 respectively. Furthermore, LC (0.27) and PRCP 

(0.25) also contribute to explaining LST during winter. 

The results demonstrate that AT, Ele, PTS and CZ significantly 

impact LST in all seasons. Among these factors, AT has the 

highest explanatory power for LST in winter (0.81), followed 

by spring (0.62), autumn (0.58) and summer (0.51). This 

suggests that the impact of AT on LST diminishes as LST 

increases. Similarly, PTS has the smallest explanatory power in 

summer (0.21) and the largest in winter (0.61). Its explanatory 

power for LST also decreases with higher LST. Additionally, in 

spring, NDVI and EVI; in summer, SM, EVI, NDVI and Lat; in 

autumn, SM, NDVI, LC and Lat; and in winter, Lat, LC and 

PRCP, have a greater influence on LST. 

Figure 4. The joint influence of different factors on the LST given by the interaction detector for all three LST data. 

4.2 Analysis of Joint Effects of Different Influencing 

Factors on LST 

The study employs interaction detector to examine the 

interactive effects of influencing factors on LST and evaluate 

their joint explanatory power. The results (Figure 4) indicate 

that any pairwise combination of factors has a greater 

explanatory power for LST compared to individual factors alone. 

This suggests that the spatial distribution of LST is influenced 

by multiple factors rather than a single factor. However, the 

intensity of factor interactions varies across seasons. Non-linear 

enhancement is dominant in spring, summer and autumn, 

whereas double-factor enhancement is dominant in winter. This 

indicates that the influence of interactions is stronger in spring, 

summer and autumn compared to winter. Similar to the 

contribution of individual factors, the interaction between air 

temperature (AT) and other factors is the most significant. In 

spring, the combination of AT and CZ exhibits the strongest 

explanatory power for LST (0.74). In summer and autumn, the 

combination of AT and SM has the highest explanatory power 

(0.76, 0.77), while in winter, the combination of AT and PTS 

shows the strongest explanatory power (0.85) for LST. 

Furthermore, in the analysis of individual factors, the joint 
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effect after pairwise interaction significantly increases for 

factors with a q value less than 0.1 in all four seasons.  

5. Discussion

Summary of the main factors influencing LST in each season 

are provided in Table 4, based on a comprehensive analysis of 

three types of LST data. The findings indicate that AT and Ele 

are the most significant factors affecting LST, which aligns with 

the research conducted by Yang (Yang MJ et al, 2021) and 

Kerchove (Kerchove et al, 2013). PTS, on the other hand, has 

received limited attention in previous studies. In this study, we 

examined the relationship between five thermally stable types of 

permafrost (extremely stable, stable, substable, transitional, and 

unstable) and LST. The results revealed that the influence of 

permafrost's thermal stability on LST weakens as LST increases. 

This effect is strongest in winter and weakest in summer. 

Additionally, it is observed that lower thermal stability of 

permafrost corresponds to higher LST. 

Season 1 2 3 4 5 6 7 8 

Spring AT PTS Ele CZ EVI NDVI 

Summer AT Ele CZ SM EVI NDVI Lat PTS 

Autumn AT Ele PTS CZ SM Lat NDVI LC 

Winter AT PTS Ele CZ Lat LC PRCP 

Table 4 Main factors influencing LST in each season 

Vegetation plays a crucial role in influencing LST changes. It 

not only controls LST through surface energy balance but also 

affects the visibility of bare soil and vegetation to the sensor. 

The difference in radiant temperature between soil and 

vegetation canopy further impacts the overall LST (Sandholt et 

al, 2002). Statistical analysis reveals that EVI and NDVI 

significantly contribute to LST in spring, summer, and autumn, 

albeit to varying degrees. This indicates that vegetation 

regulates the spatial distribution of LST, aligning with the 

findings of Zou's research (Zou et al, 2020).  

The impact of soil moisture (SM) on LST is limited during 

winter due to permafrost, which restricts heat exchange.  

Generally, precipitation has a greater influence on LST. 

However, this study demonstrates that PRCP alone has a 

relatively minor effect on LST, primarily observed in winter. 

This is because the monsoon-induced high precipitation during 

summer leads to increased vegetation coverage and soil 

moisture (Xu et al, 2013; Wang et al, 2008). As vegetation 

coverage and soil moisture directly participate in surface heat 

exchange, the impact of EVI, NDVI, and SM on LST is more 

significant than that of PRCP. This pattern is consistent in 

spring and autumn as well. 

Referring to published studies, we select 14 influencing factors 

to analyze their effects on LST. However, Snow cover 

distribution, albedo and evapotranspiration also affect LST to 

varying degrees. Interestingly, despite the complex topographic 

conditions of the TP, only Ele has been found to have a 

significant impact on LST. Therefore, the effects of influencing 

factors mentioned above associate with Slp, Asp and Deg on 

LST would be a good choice to analyze in future studies. 

6. Conclusion

In this study, we employ geodetector to investigate the factors 

driving spatial variations in LST across different seasons. The 

findings reveal that for each season, air temperature (AT) and 

elevation (Ele) play a significant role in shaping the spatial 

patterns of LST. As the LST rises, the impact of permafrost 

thermal stability (PTS) diminishes, yet it continues to contribute 

to the LST in all four seasons. Overall, the factors influencing 

LST in spring and their respective order are: AT > PTS > Ele > 

CZ > EVI > NDVI；summer：AT > Ele > CZ > SM > EVI > 

NDVI > Lat > PTS；autumn：AT > Ele > PTS > CZ > SM > 

Lat > NDVI > LC；winter：AT > PTS > Ele > CZ > Lat > 

LC > PRCP. 
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