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ABSTRACT: 

The facial features of the Terracotta Warriors unearthed from the Mausoleum of the First Emperor of Qin are authentic depictions of 

the appearance of soldiers from the same period. Recognizing facial features to classify the Terracotta Warriors is one of the crucial 

aspects of archaeological research. Due to limitations in the collection of facial samples from the Terracotta Warriors, an enhanced 

SqueezeNet model is proposed for deep learning facial recognition. The FaceNet backbone feature extraction network has been 

improved by replacing the initial 7×7 convolution kernel with three 3×3 convolution kernels. The model's feature extraction layer is 

composed of alternating convolution layers, pooling layers, Fire modules, and pooling layers, with the introduction of an exponential 

function to smooth the shape of the loss function. Finally, facial classification of 295 Terracotta Warriors is accomplished using 

Agglomerative Clustering. The model demonstrates a facial recognition accuracy of 95.6%, showing a respective improvement of 4.1% 

and 2.8% compared to the classical SqueezeNet and Inception_ResNetV1 models. This approach better meets the requirements for 

facial recognition and classification of Terracotta Warriors, providing intelligent and efficient technical support for technological 

archaeology. 

1. INTRODUCTION

The Terracotta Army of the Mausoleum of the First Emperor of 

Qin is listed on the UNESCO World Heritage List and acclaimed 

as the 'Eighth Wonder of the World.' It provides crucial physical 

evidence for the study of the history of the Qin Dynasty. The 

intricately carved facial features of the Terracotta Warriors are 

vivid and lifelike, showcasing an artistic characteristic of 'a 

thousand faces,' known for its realism. The research on their 

classification, feature recognition, and the similarities and 

differences with real people has garnered widespread attention 

from archaeologists and the public(Fei Yicheng,2017). In the 

archaeological report of Pit 1 of the Terracotta Army, the facial 

types are categorized into eight types such as 'Tian,' 'You,' 'Guo,' 

etc (Zhao Zhen,2015). Additionally, studies have utilized three-

dimensional laser scanning to reconstruct high-precision models 

of the Terracotta Warriors' heads and faces, extracting features 

for comparative analysis with the facial characteristics of modern 

ethnicities (Hu Yungang,2022). In recent years, with the 

widespread application of deep learning in facial recognition, its 

application to the recognition and classification of Terracotta 

Warrior faces can intelligently yield effective results. This has 

significant implications for introducing artificial intelligence into 

archaeology. 

At present, with the development of the DeepFace algorithm 

proposed by the Facebook team(Taigman Y,,2014)and the 

FaceNet algorithm introduced by the Google team(Schroff F, 

2015), deep learning has successfully been applied in various 

fields such as access control systems(Yan Zifeng,2022), emotion 

recognition(Abiram R N,2021), gender recognition(Mansanet 

J,2016), and age estimation(Zhang Liangliang,2020). Key steps 

in deep learning algorithms for facial recognition and 

classification include facial detection and key point localization 

alignment, facial feature extraction, and facial clustering. 

Algorithms such as Cascade CNN(Qin H,2016), MTCNN(Zhang 

K,2016), and CMS-RCNN(Zhu C,2017) are mature methods for 

facial detection and key point localization alignment. Traditional 

feature extraction methods include PCA(Turk M,1991), 

LDA(Belhumeur P N,1997), LBP (Ahonen T,2006), but these 

methods require manually designed features, and the results are 

often influenced by human expertise. Deep Convolutional Neural 

Networks (CNNs) are the main models used for facial feature 

extraction, with commonly used models including 

DenseNet(Huang G,2017), VGG(Yan Z,2015), Inception-

ResNetV1(Szegedy C,2015). However, these models contain a 

large number of parameters, and inadequate sample sizes can lead 

to poor model fitting and unsatisfactory results. In addition, the 

choice of loss function during model training directly impacts the 

results. For example, the Triplet Loss loss function used in the 

FaceNet algorithm aims to ensure that samples of the same 

category are closer together in the feature space, while samples 

of different categories are farther apart, focusing on difficult-to-

classify samples. However, this approach may cause the model 

to overlook easily classifiable samples, thus reducing the model's 

generalization ability. For facial feature clustering, commonly 

used algorithms include K-Means(Hartigan J A,1979), 

DBSCAN(Ester M,1966), Agglomerative Clustering(Gowda K 

C,1978). Among them, Agglomerative Clustering is a merging-

based hierarchical clustering algorithm, mainly used for handling 

data with unclear density differences, and it performs better for 

clustering small-scale data. 

According to the excavation report of Pit 1 of the Terracotta 

Army in the Mausoleum of the First Emperor of Qin, over 1587 

Terracotta Warriors have been unearthed, and the restoration and 

repositioning work for 714 of them have been completed. 

Considering various factors, this study utilized a Nikon D810 

digital single-lens reflex (DSLR) camera to capture frontal and 

side view photographs of the faces of 295 Terracotta Warriors in 

the exhibition area of Pit 1, totaling 1209 images. From the 

perspective of deep learning, the facial data of the Terracotta 

Warriors can be considered as a small-sample dataset. The 

existing facial recognition models designed for large samples 

may not be suitable, necessitating the selection of a lightweight 

convolutional neural network suitable for small samples. 

Therefore, an improved model based on the SqueezeNet 

lightweight convolutional neural network model is proposed. 

This model replaces the original convolutional kernels with 

multiple small convolutional kernels and constructs a new feature 

extraction layer by alternately using convolution layers, pooling 

layers, Fire modules, and pooling layers. This architecture is 

designed to train facial sample data of the Terracotta Warriors. 

Additionally, improvements have been made to the triplet loss 

function by introducing an exponential function to smooth the 

shape of the loss function, addressing the issue of imbalance 

between challenging and easy samples. 
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2. DATA PREPROCESSING

Firstly, the MTCNN algorithm is applied to perform facial 

detection on the original images, outputting rectangular regions 

bounding the faces. Next, facial key points are matched to locate 

key features including eyes, nose tip, mouth, etc. Subsequently, 

facial images of the Terracotta Warriors are aligned to obtain 

uniformly sized frontal or side-view facial images, as shown in 

Figure 1. 

Figure 1. Terracotta warrior facial detection and key point 

localization alignment 

After cropping and aligning the Terracotta Warrior images, they 

were annotated following the format of the Labeled Faces in the 

Wild (LFW) dataset and stored in the corresponding labeled 

folders, organizing them into a Terracotta Warrior Facial Dataset. 

Due to the limited number of samples, data augmentation 

techniques such as random rotation and random flipping were 

employed. In the end, the Terracotta Warrior Facial Dataset 

comprises a total of 12,439 photos from 295 statues, as illustrated 

in Figure 2. 

Figure 2.   Partial display of terracotta warrior facial dataset 

3.FEATURE EXTRACTION AND CLUSTERING OF

TERRACOTTA WARRIOR FACIAL FEATURES BASED 

ON THE IMPROVED FACENET SYSTEM 

FaceNet is a deep learning framework for face recognition 

proposed by the Google team, utilizing the CNN+Triplet loss[3] 

approach. The structure of this framework is illustrated in Figure 

3. The main feature extraction network of FaceNet employs the

complex deep convolutional neural network model 

Inception_ResNetV1. This model is intricate, with parameters 

seven times that of the classical SqueezeNet model, resulting in 

a size of 135MB. It requires a substantial amount of training 

samples to ensure model fitting. Given the limited number of 

Terracotta Warrior samples compared to regular human facial 

samples, optimizations were made to enhance the algorithm's 

efficiency. The optimizations include: (1) Adoption of an 

improved lightweight SqueezeNet network model to replace the 

Inception_ResNetV1 network model as the feature extraction 

model for Terracotta Warriors; (2) Introduction of transfer 

learning concepts and utilization of L2 regularization and 

learning rate schedulers to accelerate model training, thereby 

enhancing model generalization and training stability; (3) 

Optimization of the Triplet Loss function to make it smoother, 

addressing the issue of imbalance between challenging and easy 

samples. 

Figure 3  FaceNet framework architecture 

3.1 SqueezeNet Convolutional Neural Network Model 

SqueezeNet is a lightweight neural network model that, 

compared to the traditional AlexNet model, has only 1/50th of 

the parameters, resulting in a model size of 12.9 MB, while 

achieving similar network recognition performance(Alhichri H, 

2019). The core building block of this model is the Fire Module, 

consisting of two parts: Squeeze and Expand, as illustrated in 

Figure 4. The Squeeze part utilizes a 1×1 convolutional kernel to 

reduce the dimensionality of the input feature map, thus reducing 

the number of parameters in the network. Meanwhile, the Expand 

part expands the feature map output from Squeeze by parallelly 

using 1×1 and 3×3 convolutional kernels, increasing the 

network's width(Huo Aiqing,2020). The overall structure of the 

SqueezeNet model, composed of 8 Fire modules along with 

standard convolutional layers, pooling layers, etc., is shown in 

Figure 5. The model parameters are listed in Table 1. Despite 

these advantages, the first convolutional layer in the SqueezeNet 

model, which uses a 7×7 convolutional kernel, is still relatively 

large, resulting in a complex network structure that may not be 

suitable for small-sample data.

Figure 5  SqueezeNet structure diagram 

Table 1  Classical SqueezeNet model parameters 

Layer Name Channel 

Count, 

Convolutional Kernel 

Size 

Convolution kernels Pooling mode/nucleus size Activation 

Function 

Conv1 96 7×7 96 Maximum pooling /3×3/2 ReLU 

Fire1 128 （3×3）and（1×1） 16 and 64 ReLU 
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Fire2 128 （3×3）and（1×1） 16 and 64 ReLU 

Fire3 256 （3×3）and（1×1） 32 and 128 Maximum pooling /3×3/2 ReLU 

Fire4 256 （3×3）and（1×1） 32 and 128 ReLU 

Fire5 384 （3×3）and（1×1） 48 and 192 ReLU 

Fire6 384 （3×3）and（1×1） 48 and 192 ReLU 

Fire7 512 （3×3）and（1×1） 64 and 256 Maximum pooling /3×3/2 ReLU 

Fire8 512 （3×3）and（1×1） 64 and 256 ReLU 

Conv2 1000 （1×1） 1000 ReLU 

Global-avgpool 1000 Global average pooling 

Figure 4  Fire Module structure 

3.2 Improved SqueezeNet Convolutional Neural Network 

Model 

In order to reduce the model parameters, increase the model's 

non-linear capability, and better utilize local features, multiple 

smaller convolutional kernels were employed instead of a large-

sized convolutional kernel. Taking inspiration from the VGG16 

model, which replaces a 7×7 convolutional kernel with three 3×3 

convolutional kernels to achieve the same receptive field while 

increasing the network depth and reducing the number of 

parameters(Tammina S,2019), a similar approach was applied to 

the classic SqueezeNet model. In this improved model, three 3×3 

convolutional kernels replaced one 7×7 convolutional kernel. 

The advantages include: (1) Parameter optimization - by 

replacing the first layer's 7×7 convolutional kernel with three 3×3 

convolutional kernels, the model's parameter count is 

significantly reduced. If the size of the previous layer's feature 

map channels and the current layer's convolutional kernel is 

denoted as C, the parameter count for one 7×7 convolutional 

kernel is 7×7×C×C=49C2, while the parameter count for three 

3×3 convolutional kernels is 3×(3×3×C×C)=27C2. This results 

in a reduction of parameters by approximately 1.8 times. (2) 

Introduction of more non-linearity - each layer of the 3×3 

convolutional kernel includes an activation function, whereas the 

7×7 convolutional kernel layer has only one activation function. 

This implies that the stacking of three 3×3 convolutional kernels 

introduces more non-linear transformations compared to a single 

7×7 convolutional kernel, making the network more expressive 

and better at capturing complex relationships in the data. (3) 

Increased network depth - multiple 3×3 convolutional kernels 

increase the depth of the network, helping improve the model's 

performance in recognizing complex features. (4) Maintaining 

the receptive field - although the receptive field of each 3×3 

convolutional kernel is relatively small, through multiple layers 

of stacking, a larger receptive field is captured, allowing the 

identification of larger-sized features. 

To address the issue of facial texture feature loss when using 

small convolutional kernels, an approach was taken to increase 

the number of pooling layers while appropriately reducing the 

usage of Fire modules. Specifically, a new SqueezeNet 

convolutional neural network model was constructed by 

alternately using convolutional layers, pooling layers, three Fire 

modules, and pooling layers. The advantages of this approach 

include: (1) Appropriately increasing the number of pooling 

layers, which helps the network better capture fine features and 

contextual information. (2) Appropriately reducing the number 

of Fire module layers, which can effectively lower the parameter 

count and improve the computational efficiency of the network. 

The structure of the improved SqueezeNet model is shown in 

Figure 6, and its parameters are listed in Table 2. 

Figure 6  Structure diagram of the improved SqueezeNet model in this article 

Table 2  Parameter of the SqueezeNet model in this article 

Layer Name Channel 

Count, 

Convolutional Kernel 

Size 

Convolution 

kernels 

Pooling mode/nucleus size Activation 

Function 

Conv1 96 3×3 96 Maximum pooling/3×3/2 ReLU 

Fire1 128 （3×3）and（1×1） 16 and 64 ReLU 

Fire2 128 （3×3）and（1×1） 16 and 64 ReLU 
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Fire3 256 （3×3）and（1×1） 32 and 128 Maximum pooling/3×3/2 ReLU 

Conv2 192 3×3  192 Maximum pooling/3×3/2 ReLU 

Fire4 384 （3×3）and（1×1） 48 and 192 ReLU 

Fire5 384 （3×3）and（1×1） 48 and 192 ReLU 

Fire6 512 （3×3）and（1×1） 64 and 256 Maximum pooling/3×3/2 ReLU 

Conv3 384 3×3 384 ReLU 

Conv4 1000 1×1 1000 ReLU 

Global-avgpool 1000 Global average pooling 

3.3 Optimization of Deep Learning Model Training 

In the process of training deep learning models, various 

optimization strategies are employed, including loading 

pretrained weights, freezing and unfreezing layers, weight decay, 

and learning rate schedulers. Among them, loading pretrained 

weights is a commonly used optimization technique. Pretrained 

weights are typically obtained through training on an extensive 

dataset. These weights are then loaded as initial weights and fine-

tuned on a specific task's dataset to meet the requirements of that 

particular task.Freezing and unfreezing layers are primarily 

applied in the process of transfer learning and fine-tuning models. 

Weight decay is a regularization technique, often implemented 

by setting the weight_decay parameter in the optimizer, 

commonly interpreted as L2 regularization. The main purpose of 

weight decay is to penalize the complexity of the model by 

imposing penalties on large weights, preventing the model from 

becoming overly complex and thereby reducing the risk of 

overfitting.Learning rate is a crucial hyperparameter that controls 

the pace of updating model parameters. Dynamic adjustment of 

the learning rate is an effective optimization strategy that allows 

for timely adjustments based on the model's training progress. 

This dynamic adjustment helps enhance the training performance 

and convergence speed of the model. 

For the issue of a relatively small-scale Terracotta Warriors 

dataset, a more lightweight convolutional neural network (CNN) 

is adopted. Simultaneously, the training process incorporates the 

concept of transfer learning to expedite model training and 

enhance its performance. L2 regularization and a learning rate 

scheduler are employed to improve the model's generalization 

ability and training stability. The specific implementation details 

are as follows: 

(1)Loading Pretrained Weights Training: Utilizing a well-trained

face model on the large-scale CASIA-WebFace dataset, the

pretrained weights are loaded into the backbone network. This

approach allows the Terracotta Warriors model to initiate training

from these pretrained weights, accelerating the convergence of

the model. The incorporation of pretrained weights provides a

valuable starting point for the model, leveraging the knowledge

learned from the diverse and extensive CASIA-WebFace dataset

to boost the efficiency of training on the Terracotta Warriors

dataset.

(2)Freezing and Unfreezing Training: The training process is

divided into freezing and unfreezing stages. During these stages,

the weights of the pretrained model's backbone network are

respectively set as non-trainable and trainable. When the weights

are non-trainable, only the fully connected layers of the model

are trained on the Terracotta Warriors facial data. This preserves

the feature extraction capabilities of the face model and

accelerates the training speed since only the final layers are

updated. When the weights are trainable, the facial data of the

Terracotta Warriors is used to train the entire model based on the

pretrained face model weights. This fine-tuning process

improves the performance of the recognition task by adjusting the

pretrained face model to better suit the characteristics of the

Terracotta Warriors dataset. 

(3)Weight Decay and Learning Rate Scheduler: The Adam

optimizer is employed with the use of the weight_decay

parameter to introduce L2 regularization. This regularization

technique is crucial for constraining the complexity of the model

and mitigating the risk of overfitting. Simultaneously, a learning

rate scheduler is implemented. After each training epoch, the

learning rate is multiplied by 0.94, gradually decreasing the

learning rate. This dynamic adjustment of the learning rate

enhances training stability and convergence speed, ensuring

effective model optimization over the course of training. The

combination of weight decay and the learning rate scheduler

contributes to improved generalization ability and stability

during the training of the Terracotta Warriors model.

3.4 Optimization of Triplet Loss Function

The Triplet Loss function is a commonly used loss function in 

tasks such as face recognition and image retrieval. However, the 

Triplet Loss function tends to focus excessively on samples that 

are difficult to classify, causing the model to overlook those that 

are easy to classify, thereby affecting the model's generalization 

ability. Specifically, when there is an imbalance between difficult 

and easy samples, the training speed of the model may decrease, 

ultimately leading to the model's failure to converge. 
In order to address this issue, an optimization has been applied to 

the Triplet Loss function by introducing an exponential function 

to smooth the shape of the loss function. The relative order of 

samples is adjusted using the exponential function instead of 

sorting them based on distance, making the loss function 

smoother and partially alleviating the problem of gradient 

explosion. Gradient explosion refers to a situation in which 

gradient values become extremely large during the 

backpropagation process, leading to significant updates in 

network weights and making the network unstable. The 

optimized formula is as follows (1): 

  L(A, P, N) = log(1 + exp(beta ∗ (d(A, P) −
  d(A, N) +  alpha)                                             (1) 

·A represents the feature representation of the anchor sample

·P represents the feature representation of the positive sample

belonging to the same category as the anchor

·N represents the feature representation of the negative sample

not belonging to the same category as the anchor

·d(x, y) represents the distance between sample x and sample y

·beta is a hyperparameter used to control the slope of the

exponential function, thereby adjusting the smoothness of the

loss

· alpha is a hyperparameter used to control the difference

between the distance from the anchor sample to the positive

sample and the distance from the anchor sample to the negative

sample

3.5 Cluster Algorithm Selection

While feature extraction plays a decisive role in clustering results, 

the choice of an appropriate clustering algorithm is equally 
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important. Agglomerative hierarchical clustering is a hierarchical 

clustering algorithm that groups samples in a dataset into 

different clusters. The algorithm adopts a bottom-up strategy, 

where each sample is initially treated as an independent cluster 

and then gradually merges the most similar clusters until all 

samples belong to the same cluster or reach a preset stopping 

condition. This process utilizes distance or similarity measures to 

assess the similarity between samples or clusters. Common 

distance metrics include Euclidean distance, Manhattan distance, 

and cosine similarity, among others.In comparison to the K-

Means clustering algorithm, agglomerative hierarchical 

clustering does not require the pre-specification of the number of 

clusters, providing greater flexibility. Compared to the DBSCAN 

clustering algorithm, it exhibits superior performance in handling 

data with less distinct density differences.Therefore, 

agglomerative hierarchical clustering, utilizing Euclidean 

distance as the distance metric, has been selected as the clustering 

algorithm for the facial features of the terracotta warrior heads. 

3.6 Results Verification Method 

The feature extraction accuracy is verified from two perspectives: 

model accuracy and Euclidean distance. Additionally, the 

credibility of clustering results is validated using the K-means 

clustering method in SPSS software. 

The recognition accuracy of the Terracotta Warrior test set is the 

most commonly used metric for evaluating the model's 

performance. A higher accuracy indicates a better-trained model. 

The size of the trained model indirectly reflects the number of 

network parameters, with a smaller model suggesting a more 

concise network structure and fewer parameters. The formula for 

calculating model accuracy is as follows (2): 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃
 (2) 

The comparison of Euclidean distance involves extracting 

features from different photos of the same Terracotta Warrior 

using different models and calculating the Euclidean distance 

between the features. A smaller Euclidean distance between 

different photos of the same Terracotta Warrior indicates a better 

model. 
4. DATA PROCESSING AND ANALYSIS

4.1 Dataset Partitioning 

A random selection of 236 Terracotta Warrior data out of 295 

statues is used for dataset partitioning according to the typical 

machine learning split ratio of 7:3, creating a training set and a 

validation set. The remaining 59 Terracotta Warrior photos are 

designated as the test set for conducting Terracotta Warrior 

clustering experiments. Detailed data distribution is shown in 

Table 3. 

Table 3  Data information table 

Dataset 

type 

Terracotta 

warriors and 

horses 

Total number of photos (the 

number of photos that are 

not enhanced） 

Training 

set 

166 8800（800） 

Validation 

set 

70 3850（350） 

Test set 59 59 

4.2 Training Environment 

The primary hardware and software configuration for the training 

experiment of the Terracotta Warrior feature extraction network 

model is detailed in Table 4. 

Table 4  Configuration information table 

Number Name Disposition 

1 CPU Intel(R) Core(TM) i7-

11700 

2 GPU NVIDIA T600 

3 Operating system Windows 11 

4 Programming 

language 

Python 

5 Deep learning 

framework 

PyTorch 

4.3 Clustering Results 

Facial features are extracted using the improved SqueezeNet, and 

the Agglomerative clustering algorithm is applied to cluster the 

existing 295 Terracotta Warriors. The clustering results are 

presented in Table 5. Additionally, a separate clustering is 

performed on the test set of 59 Terracotta Warriors, and the 

results are illustrated in Figure 7. 

Table 5  Clustering results of terracotta warrior facial features 

Terracotta Warriors Clustering Results 

Number 

of 

clusters 

Cluster1 002.jpg, 008.jpg, 010.jpg, 023.jpg, 025.jpg, 070.jpg, 071.jpg, 073.jpg, 081.jpg, 082.jpg, 083.jpg,

085.jpg, 086.jpg, 087.jpg, 090.jpg, 091.jpg, 092.jpg, 100.jpg, 114.jpg, 123.jpg, 125.jpg, 126.jpg,

130.jpg, 135.jpg, 142.jpg, 152.jpg, 153.jpg, 155.jpg, 161.jpg, 169.jpg, 173.jpg, 174.jpg, 176.jpg,

177.jpg, 183.jpg, 186.jpg, 191.jpg, 192.jpg, 193.jpg, 198.jpg, 199.jpg, 201.jpg, 203.jpg, 204.jpg,

206.jpg, 207.jpg, 208.jpg, 211.jpg, 214.jpg, 221.jpg, 231.jpg, 233.jpg

52 

Cluster2 009.jpg, 013.jpg, 027.jpg, 067.jpg, 084.jpg, 088.jpg, 089.jpg, 094.jpg, 096.jpg, 097.jpg, 098.jpg,

107.jpg, 113.jpg, 117.jpg, 124.jpg, 128.jpg, 129.jpg, 131.jpg, 137.jpg, 139.jpg, 141.jpg, 143.jpg,

144.jpg, 145.jpg, 146.jpg, 149.jpg, 156.jpg, 157.jpg, 159.jpg, 160.jpg, 167.jpg, 179.jpg, 180.jpg,

189.jpg, 195.jpg, 196.jpg, 200.jpg, 202.jpg, 212.jpg, 217.jpg, 218.jpg, 222.jpg, 225.jpg, 232.jpg,

281.jpg, 284.jpg

46 

Cluster3 018.jpg, 024.jpg, 029.jpg, 032.jpg, 034.jpg, 038.jpg, 042.jpg, 045.jpg, 050.jpg, 053.jpg, 057.jpg,

058.jpg, 062.jpg, 064.jpg, 065.jpg, 069.jpg, 076.jpg, 187.jpg, 237.jpg, 239.jpg, 240.jpg, 241.jpg,

242.jpg, 243.jpg, 245.jpg, 246.jpg, 247.jpg, 248.jpg, 249.jpg, 250.jpg, 251.jpg, 252.jpg, 254.jpg,

255.jpg, 256.jpg, 257.jpg, 258.jpg, 260.jpg, 261.jpg, 262.jpg, 263.jpg, 264.jpg, 265.jpg, 266.jpg,

267.jpg, 268.jpg, 269.jpg, 270.jpg, 271.jpg, 272.jpg, 273.jpg, 275.jpg, 276.jpg, 277.jpg, 279.jpg,

280.jpg, 282.jpg, 283.jpg, 288.jpg, 289.jpg, 290.jpg, 291.jpg

63 

Cluster4 003.jpg, 006.jpg, 011.jpg, 014.jpg, 015.jpg, 017.jpg, 028.jpg, 030.jpg, 035.jpg, 036.jpg, 037.jpg,

039.jpg, 040.jpg, 047.jpg, 054.jpg, 060.jpg, 072.jpg, 075.jpg, 077.jpg, 078.jpg, 079.jpg, 080.jpg,

148.jpg, 215.jpg, 236.jpg, 238.jpg, 259.jpg, 274.jpg, 278.jpg, 292.jpg

30 
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Cluster5 004.jpg, 005.jpg, 012.jpg, 016.jpg, 020.jpg, 021.jpg, 022.jpg, 026.jpg, 033.jpg, 041.jpg, 043.jpg,

046.jpg, 048.jpg, 049.jpg, 051.jpg, 052.jpg, 056.jpg, 059.jpg, 061.jpg, 063.jpg, 066.jpg, 068.jpg,

074.jpg, 163.jpg, 166.jpg, 171.jpg, 178.jpg, 181.jpg, 235.jpg, 244.jpg, 285.jpg, 295.jpg

32 

Cluster6 104.jpg, 105.jpg, 108.jpg, 112.jpg, 115.jpg, 116.jpg, 118.jpg, 121.jpg, 132.jpg, 140.jpg, 150.jpg,

151.jpg, 154.jpg, 158.jpg, 162.jpg, 164.jpg, 170.jpg, 172.jpg, 175.jpg, 185.jpg, 188.jpg, 194.jpg,

210.jpg, 213.jpg, 216.jpg, 223.jpg, 227.jpg, 228.jpg, 229.jpg, 230.jpg, 234.jpg

31 

Cluster7 019.jpg, 044.jpg, 099.jpg, 102.jpg, 110.jpg, 111.jpg, 119.jpg, 120.jpg, 122.jpg, 127.jpg, 134.jpg,

136.jpg, 138.jpg, 168.jpg, 209.jpg, 224.jpg, 226.jpg
17 

Cluster8 001.jpg, 007.jpg, 031.jpg, 055.jpg, 093.jpg, 095.jpg, 101.jpg, 103.jpg, 106.jpg, 109.jpg, 133.jpg,

147.jpg, 165.jpg, 182.jpg, 184.jpg, 190.jpg, 197.jpg, 205.jpg, 219.jpg, 220.jpg, 253.jpg, 286.jpg,

287.jpg, 293.jpg, 294.jpg

25 

Figure 7. Clustering results of the test set (partial)

4.4 Terracotta Warrior Feature Extraction Results and 

Analysis 

Two different feature networks, namely Inception_ResNetV1 

and SqueezeNet, are employed for accuracy comparison with the 

proposed method. Inception_ResNetV1 is the original backbone 

network for feature extraction in FaceNet, while SqueezeNet is a 

lightweight feature extraction network. The evaluation metrics 

during the experimental process include the recognition accuracy 

on the custom Terracotta Warrior test set and the model size. The 

specific performance of the three backbone networks is detailed 

in Table 6. 

Table 6  Comparative performance of facial recognition for 

three network models 

Network model Accuracy/% Model size/M 

Inception_ ResNetV1 92.8 135 

SqueezeNet 91.5 18.1 

Improved SqueezeNet 95.6 12.9 
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From Table 6, it can be observed that the accuracy of the 

improved model is increased by 2.8% and 4.1% compared to the 

control network model, while the model parameters are reduced 

by 116.9M and 5.2M, respectively. The improved model not only 

significantly reduces the number of parameters but also enhances 

accuracy. Therefore, the improved network demonstrates faster 

operational efficiency and improved detection accuracy. 

In the experiment comparing Euclidean distances, facial 

correction and cropping were applied to images before testing. 

When two different photos were tested, the results for the three 

main feature extraction networks are presented in Table 7 and 

Figure 8. 

Network model Self-made training 

set 

Self-made test 

set 

Inception_ 

ResNetV1 

0.3513 0.3501 

SqueezeNet 0.4581 0.4588 

Improved 

SqueezeNet 

0.2081 0.2337 

In Figure 8, Inception_ResNetV1, SqueezeNet, and the improved 

SqueezeNet all have input dimensions of 160×160. As indicated 

in Table 7, the improved model exhibits smaller Euclidean 

distance test results, with values of 0.2081 and 0.2337 for the 

custom training set and test set, respectively. This suggests that 

the network model's judgment of the same Terracotta Warrior is 

more accurate after the improvement.

Figure 8. Euclidean distance test results of three network models on different test sets t 

4.5 Optimization Results and Analysis of Triplet Loss 

Function 

The Terracotta Warrior dataset was trained using both the 

traditional Triplet Loss function and the optimized Triplet Loss 

function. The loss for each epoch was recorded, and the training 

loss curves were plotted for comparison, as shown in Figure 9. 

Training loss curves serve as a monitoring tool for tracking the 

model's training progress. From the graph, it is evident that the 

optimized Triplet Loss function accelerates model convergence 

during the initial 50 frozen epochs and controls convergence 

smoothly during the subsequent 50 unfrozen epochs, resulting in 

a more gradual decline in loss. 

Figure 9 Training loss curve comparison 

4.5 Clustering results and analysis of terracotta warrior 

The facial features of 80 figurines were randomly selected from 

the terracotta dataset, and the 128-dimensional features of each 

figurine's face were extracted. Two clustering methods were used, 

one was clustered by the Agglomerative clustering algorithm, 

and the other was clustered by the K-means clustering method in 

SPSS software, and the clustering results of the two were 

compared and analyzed to verify the feasibility of the proposed 

method. The comparison of clustering results is shown in Table 

8 below. 

Table 8  Comparative results of terracotta warrior facial 

clustering 

SPSSClustering results The results of the clustering of 

the method in this paper 

Cluster1 11 Cluster1 11 

Cluster2 11 Cluster2 11 

Cluster3 8 Cluster3 8 

Cluster4 12 Cluster4 12 

Cluster5 7 Cluster5 7 

Cluster6 9 Cluster6 8 

Cluster7 7 Cluster7 8 

Cluster8 15 Cluster8 15 

From the above clustering results, it can be observed that the 

improved method aligns well with the overall results of the SPSS 

clustering method. The main differences are evident in clusters 6 

and 7, particularly in G10-32. 

5. CONCLUSIONS

In addressing the challenge of small sample sizes in facial 

recognition of Terracotta Warriors using deep learning, we 

proposed an improved SqueezeNet model for Terracotta Warrior 

facial feature extraction. This model effectively compressed the 

parameters involved in the Terracotta Warrior facial feature 

extraction process, leading to an enhanced recognition accuracy. 

Experimental results demonstrate that the proposed improved 

Table 7  Comparative euclidean distance results of three 
network models on different test sets 
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SqueezeNet model reduced the model size by 5.2M while 

improving recognition accuracy by 4.1%. Compared to the 

baseline models, this method achieved more precise recognition 

results on small sample data.By combining automated 

recognition of Terracotta Warrior facial features with 

Agglomerative clustering, we achieved high-accuracy clustering 

of Terracotta Warrior facial features. In future work, we plan to 

compare this method with graph convolutional neural network 

clustering methods that perform better on large-scale facial 

datasets, aiming to find the most suitable approach for Terracotta 

Warrior facial classification. Additionally, with the incorporation 

of facial recognition technology, this method can be extended to 

devices such as FPGA, enabling a portable Terracotta Warrior 

facial recognition system. 
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