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Abstract 

 

Synthetic aperture radar (SAR) has emerged as a promising technology for monitoring crop plant height due to its ability to capture 

the geometric properties of crops. Radar vegetation index (RVI) has been extensively utilized for qualitative and quantitative remote 

sensing monitoring of vegetation growth dynamics. However, the combination of crop, growing environment, and temporal dynamics 

makes crop monitoring data a complex task. Despite the relatively simple underlying mechanisms of this phenomenon, there is still a 

need for more research to identify specific vegetation structures that correspond to changes in the response of vegetation indices. 

Building upon this premise, this study utilized a dynamic monitoring model to conduct dynamic monitoring of plant height for three 

common crops: rice, wheat, and maize. The findings revealed that (1) models developed for specific spatial and temporal scales of 

particular crop varieties may not accurately predict crop growth in different regions or with different varieties in a timely manner, due 

to growth variations; (2) these models maintain accuracy over a range of plant heights, such as rice at around 70cm, wheat at around 

50cm, and maize at around 150cm; (3) among the three crops, planting density was identified as the main factor influencing the 

differences in RVI response. This research contributes to our comprehension of the dynamic response of RVI to different growth 

conditions in crops, and offers valuable insights and references for agricultural monitoring. 

 

1. Introduction 

Plant height (PH) is a crucial indicator that dynamically measures 

the health and overall growth condition of crops. It reflects the 

ability of crops to vertically extend and provides a reliable basis 

for assessing crop growth, guiding farm management, and 

predicting grain yield (Chang et al., 2017; Erten et al., 2016). 

Traditional methods of measuring plant height primarily rely on 

field surveys, which are resource-intensive and time-consuming. 

However, satellite remote sensing has emerged as the primary 

method for obtaining crop information at local, regional, and 

global scales by revealing the spatial and temporal dimensions of 

crop growth status and production (Weiss et al., 2020; Wu et al., 

2023). Synthetic Aperture Radar (SAR) stands out among 

different types of remote sensing payloads due to its unparalleled 

advantages in monitoring crops in regions affected by weather 

conditions. Moreover, SAR exhibits excellent sensitivity to 

differences in crop canopy structure, making it a proven method 

for measuring plant height (McNairn and Shang, 2016; Pang et 

al., 2021; Steele-Dunne et al., 2017).  

 

The backscattering coefficient is a measure of how well a target 

scatters radar signals in the direction of radar incidence. Many 

researchers have studied the use of backscatter coefficients to 

develop vegetation indices that can improve vegetation signals. 

Several studies have investigated different vegetation indices 

derived from polarimetric synthetic aperture radar (SAR) data. 

Blaes et al. (2006) examined the sensitivity of the polarization 

ratio index (PRI) to plant growth. They found that PRI had a 

stronger correlation with fresh grain biomass and the normalized 

difference vegetation index (NDVI) compared to the single-

channel backscattering response. Kim and Van Zyl (2009) 

proposed the full-pol radar vegetation index (RVI), which was 

later modified for Sentinel-1 dual-pol data (VV and VH) as  

4𝜎𝑣ℎ
0 /(𝜎𝑣𝑣

0 + 𝜎𝑣ℎ
0 ) . This index focuses on the contribution of 

volume scattering, as indicated by the cross-polarized response 

(Nasirzadehdizaji et al., 2019). Periasamy (2018) introduced the 

dual-polarization SAR vegetation index (DPSVI) by studying the 

physical scattering behavior of multiple targets in the 

polarimetric and cross-polarization channels of Sentinel-1. 

DPSVI demonstrated a high R2 value (>0.70) for both optical 

NDVI and ground biomass. Chang et al. (2018) developed the 

polarimetric radar vegetation index (PRVI) based on the degree 

of polarization of partially polarized waves, which exhibited a 

strong correlation with shrub biomass (R2 = 0.75). Mandal et al. 

(2020b) utilized scattering information, including the degree of 

polarization and the eigenvalue spectrum, to derive the dual-pol 

radar vegetation index (DpRVI) from dual-pol SAR data. The 

linear regression model based on DpRVI accurately estimated 

biophysical parameters for three different crops. 

 

The sensitivity of SAR parameters to crop height has been 

extensively studied (Erten et al., 2016). The key to this type of 

method is to establish relationships between radar features like 

backscatter coefficient and radar vegetation index, and crop 

height. This involves deriving expressions from observed data to 

determine the target parameters (McNairn and Shang, 2016). 

However, the combination of crop type, growing environment, 

and temporal dynamics adds complexity to crop monitoring. 

Models based on empirical statistics are challenging to apply in 

highly complex field environments. Firstly, plant height 

inversion requires ground-based observation experiments that are 

synchronized with satellite imaging. Models developed at 

specific points in time cannot account for changes in RVI 

responses caused by growth process differences. Secondly, 

models constructed from observational data have limitations and 

define the boundaries of the model. They are unable to accurately 

predict crop types with significant differences in population 

growth compared to the observed data populations. 

 

In recent studies, researchers (Li et al., 2022b; Liu et al., 2023; 

Yang et al., 2022b; Zhao et al., 2022) have explored the 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1-2024 
ISPRS TC I Mid-term Symposium “Intelligent Sensing and Remote Sensing Application”, 13–17 May 2024, Changsha, China

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-1-2024-225-2024 | © Author(s) 2024. CC BY 4.0 License.

 
225



 

relationship between physiological parameters (such as 

aboveground biomass and plant area index) and vegetation 

indices during different growing seasons. They have developed 

models that capture the continuous relationship between discrete 

segmented vegetation indices and physiological parameters by 

parameterizing the vegetation indices, physiological parameters, 

and regression coefficients of specific crop canopies. A crucial 

assumption in this modeling approach is that the growth stages 

of crops can be digitized. Li et al. (2022b) have demonstrated that 

using phenological scales as continuous variables is highly 

effective for predicting model coefficients. While obtaining 

phenological scales through field surveys at the field scale is 

relatively straightforward, obtaining regular phenological 

information at the regional scale presents more challenges. The 

research idea of incorporating a temporal dimension to address 

the issue of estimating crop growing status is widely adopted in 

phenology estimation (Mascolo et al., 2021; McNairn et al., 2018; 

Silva-Perez et al., 2022; Yang et al., 2021), enabling the 

monitoring of crop growing status over multiple years. While 

other remote sensing studies are also employing this technique, 

further research is necessary to understand how to consider the 

dynamic context in plant height estimation. 

 

The growth cycle of a crop involves changes in its structure, crop 

cover, and appearance, which in turn affect how it responds to 

vegetation indices. Previous studies (Kushwaha et al., 2022; 

Mandal et al., 2021; Nasirzadehdizaji et al., 2019) have shown 

that the SAR signal interacts more effectively with the entire crop 

structure during the pre-growth phase when there is less canopy 

cover. However, when the crop has a dense canopy cover, this 

interaction with the SAR signal is limited. Although the 

mechanisms behind this phenomenon are relatively simple, there 

is still a need for more research to identify specific vegetation 

structures that correspond to changes in the response of 

vegetation indices. 

 

RVI has demonstrated good coherence in estimating plant height 

dynamics (Liu et al., 2023). Therefore, this study develops a 

dynamic model based on RVI for crop monitoring throughout the 

entire growing period. The objective is to investigate the impact 

of crop growth differences, including growth process differences 

and population growth differences, on the RVI response 

mechanism and plant height estimation. The research objectives 

are as follows: (1) Analyse the interrelationship between plant 

height and RVI at different fertility stages. (2) Assess the 

predictive performance of dynamic monitoring models 

throughout the entire growth period. (3) Explore and compare the 

vegetation structure of rice, wheat, and maize at the RVI 

saturation stage. (4) Discuss the factors influencing the 

differences in response to RVI among the three crops. 

 

2. Materials and Methods 

2.1 Study area 

Field experimental data was collected from two provinces in 

China: Jiangsu and Shandong (Figure 1). The data included 

information on different crop rotation systems, growing seasons, 

varieties, and field management practices for rice, wheat, and 

maize crops. The types of crops grown varied across regions due 

to the differences in crop rotation systems among the study areas. 

 

 
Figure 1.  Geographical location of the study area. 

 

2.2 Datasets 

The data used in this study include: (a) Sentinel-1 IW Level 1 (L1) 

Ground Range Detected (GRD) products, which provide dual-

polarization images of VV and VH; and (b) field data obtained 

from on-site surveys, including information on geographic 

location, crop types, crop height, and phenology. 

 

We utilized Google Earth Engine (GEE) to obtain the backscatter 

coefficients for the study areas of Liyang, Changshu, and 

Yucheng. GEE officially preprocesses the GRD products 

(Gorelick et al., 2017), mainly by updating the orbital metadata 

with the orbital files; removing GRD boundary noise; removing 

thermal noise; radiometric calibration; and terrain correction 

(ortho-correction). The RVI proposed (Kim and Van Zyl, 2009) 

for quad-polarized SAR data, was modified for Sentinel-1 dual-

pol data (VV and VH) as 

 

𝑅𝑉𝐼 = 4𝜎𝑣ℎ
0 /(𝜎𝑣𝑣

0 + 𝜎𝑣ℎ
0 ) (1) 

 

Where  𝜎𝑣𝑣
0 = the backscattering coefficient of co-polarization 

 𝜎𝑣ℎ
0 = the backscattering coefficient of cross-polarization 

 

 
Figure 2. Data acquisition schedule for the study area. 
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Figure 2 summarizes the acquisition dates for each study area. 

The dates of field surveys or the Liyang region corresponded to 

the satellite image acquisition dates, suitable for training and 

validating samples for monitoring models. Field data from the 

Changshu and Yucheng regions between 2016 and 2020, were 

used as test samples to verify the height estimation. These 

historical data may not be synchronized with satellite data, 

requiring interpolation of observed values to obtain the best 

estimate of image acquisition dates.  

 

To determine the natural plant height of the crops, we measure 

the vertical distance from the ground to the top of the main stem 

using a sampling method. The average value of these 

measurements represents the overall condition of the field. The 

phenological information of the crops is recorded using the 

BBCH scale. This scale assigns continuous numbers from 0 to 99 

to describe the growth stages of crops (Lancashire et al., 1991), 

as shown in Table 1. It is worth noting that the BBCH code for 

maize is different from other crops as it lacks BBCH 20-29 and 

BBCH 40-49. To ensure the continuity of values, this study 

adjusted the BBCH Code for maize.  

 

BBCH 

code 
Rice Wheat 

Mazie 

Before 

adjustment 

After 

adjustment 

00-09 Germination - 

10-19 Leaf development - 

20-29 Tillering - Germination 

30-39 Stem elongation 
Leaf 

development 

40-49 Booting - 
Stem 

elongation 

50-59 Inflorescence emergence, heading 

60-69 Flowering, anthesis 

70-79 Development of fruit 

80-89 Ripening 

90-99 Senescence 

Table 1. Phenological growth stages and BBCH code. 

 

2.3 Conventional method for predicting PH 

The conventional crop physiological parameters inversion 

research often uses single or segmented models to describe these 

relationships. In order to accurately describe the relationship 

between crop height and RVI at different growth stages, a least 

squares regression model based on different growth stages is 

constructed. 

 

𝑃𝐻 = 𝑘 × 𝑅𝑉𝐼 + 𝑏 (2) 

 

where 𝑘 = the coefficient of the least squares regression model  

   𝑏 = the intercept of the least squares regression model 

 

2.4 Development of dynamic monitoring model 

Most models are developed and tested at specific time points, 

usually associated with a fixed phenological stage. Recent studies 

(Li et al., 2022b; Liu et al., 2023; Yang et al., 2022b; Zhao et al., 

2022) have shown that models for different growth stages exhibit 

a changing relationship with increasing growth stages, 

specifically related to phenological advancement. The intercepts 

and coefficients within these models should also demonstrate a 

changing relationship with the stage of crop development. 

 

𝑘 = ∑ 𝑤′
𝑖 × 𝐵𝐵𝐶𝐻𝑖

𝑛

𝑖=0

(3) 

 

𝑏 = ∑ 𝑤′′
𝑖 × 𝐵𝐵𝐶𝐻𝑖

𝑛

𝑖=0

(4) 

 

where 𝐵𝐵𝐶𝐻 = the crop phenological scale 

𝑛 = the order of the polynomial 

    𝑤′
𝑖, 𝑤

′′
𝑖 = polynomial parameters 

 

Through the use of polynomial continuous functions with 

specific forms described in (2), (3), and (4), it is possible to 

estimate PH during any phenological period. 

 

𝑃𝐻 = ∑(𝑤′𝑖

𝑛

𝑖=0

× 𝑅𝑉𝐼 + 𝑤′′𝑖) × 𝐵𝐵𝐶𝐻𝑖 (5) 

 

2.5 Interpolation of measured data 

Despite the diverse growing conditions, crops generally exhibit a 

consistent growth pattern. Growth curves offer valuable insights 

into the expected values of crop biophysical parameters at each 

growth stage, aiding in the determination of adaptive parameters 

(Marinakis, 2012; Yoshimoto, 2001). The Richards growth 

equation was employed to simulate the curve of plant height. The 

equation's basic form is as follows 

 

𝑃𝐻 = 𝑎/(1 + e𝑏−𝑐∗𝐵𝐵𝐶𝐻)1/𝑑 (7) 

 

where 𝑎 = the maximum plant height value 

   𝑏 = the initial value parameter 

   𝑐 = the growth rate parameter 

   𝑑 = the curve trait parameter 

 

2.6 Shape model fitting 

In this study, shape model fitting method (Liu et al. 2022; 

Sakamoto 2018) was used to suitably adjust and optimize (3) and 

(4) for different crops. The method uses a preliminarily defined 

time series shape model 𝑔(𝑥) to match the time series (3) and (4) 

based on linear offset and scaling steps, which are represented as 

 

�̂�(𝑥) = 𝑦𝑠𝑐𝑎𝑙𝑒 × [𝑔(𝑥𝑠𝑐𝑎𝑙𝑒 × (𝑥 + 𝑡𝑠ℎ𝑖𝑓𝑡)) + 𝑏𝑖𝑎𝑠] + 𝑏𝑖𝑎𝑠 (8) 

 

where 𝑔(𝑥) = the preliminarily defined shape models  

   �̂�(𝑥) = geometrically transformed from 𝑔(𝑥)  

  𝑥𝑠𝑐𝑎𝑙𝑒 = the scaling parameters in x directions 

           𝑦𝑠𝑐𝑎𝑙𝑒 = the scaling parameters in y directions 

  𝑡𝑠ℎ𝑖𝑓𝑡= displacement parameter 

           𝑏𝑖𝑎𝑠 = the value fixed for each crop species 

 

3. Results and Discussion 

3.1 Impact of growth process differences on conventional 

method  

Dense time series data help distinguish different crop growth 

stages. In this subsection, we took rice as an example and selected 

data from the Liyang area in 2021, focusing on different growth 

stages for comparison. Figure 3 shows the temporal dynamics of 

crop height, temporal variations of RVI, the relationship between 

RVI and PH at different phenological periods, and the temporal 

variations of model parameters, respectively. 
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Figure 3 (a) shows the variation in the measured PH and rice 

growth rate with the phenological scale. Before the maturity 

period, the crop had grown rapidly, and the PH had continually 

increased. During the maturity period, the plant stopped growing, 

and the PH fluctuated within a small range. RVI showed good 

sensitivity in early rice growth stages. However, the temporal 

curves were not monotonically increasing or decreasing. In 

addition, RVI saturated prematurely before plant height growth 

stopped. Therefore, it was difficult to directly identify the 

response of RVI to PH and to estimate PH using simple methods. 

Further analysis of rice data is needed. 

 

Conventional regression method is commonly used to estimate 

crop biophysical parameters due to their simplicity. However, 

these methods often overlook the phenological variations of 

crops. The scatter plots between PH and RVI indicate a strong 

relationship at all stages. However, there is no consistent 

mapping from RVI to PH throughout the entire growing season. 

The regression model developed for a specific phenological 

period is effective only for a single time phase or a portion of the 

rice growth cycle, which introduces errors in PH estimation. For 

instance, when RVI = 1, it may correspond to multiple PHs in 

different phenological periods. Figure 3 (d) illustrates the time-

series relationship of the linear VI-PH model parameters, 

specifically the slope and intercept. The introduction of a time 

dimension may help to address the dynamics of the model 

parameters, which is a commonly used approach in other remote 

sensing fields. 

 

 
Figure 3. (a) Temporal dynamics of crop height. (b) Temporal 

variation of RVI. (c) The relationship between RVI and PH at 

different phenological periods. (d) Temporal variations of model 

parameters. The positions of the upper and lower ends of the light 

region correspond to the upper and lower quartiles (Q3 and Q1) 

of the inverted plant height. 

 

3.2 Predictive performance of dynamic monitoring models  

This study calibrates the dynamic monitoring models for the 

three crops using 2021 rice data, 2018 wheat data and 2019 maize 

data, respectively. Building on previous research, this study 

adopts a 5th-order polynomial for fitting. The limited amount of 

actual measurement data in the Yucheng region may result in 

poor performance of the model in other phenological stages. This 

study uses simulated plant height values to calibrate dynamic 

monitoring models for wheat and maize. The fitting results are 

illustrated in Figure 4. To enhance the accuracy of the dynamic 

monitoring model for maize, we have individually processed and 

adjusted BBCH 42-48 during the calibration process. 

 

 
Figure 4. k and b fitting results for the three crops. 

 

In Figure 5, the estimated plant height values of dynamic 

monitoring models are compared with the ground truth data. In 

general, plant height inversion accuracy was highest for wheat 

(R2 = 0.8799, RMSE = 5.6667 cm, MAPE = 8.5172 %) and 

poorer for rice (R2 = 0.2742, RMSE = 17.2895 cm, MAPE = 

18.1418 %) and maize (R2 = 0.9720, RMSE = 16.5877 cm, 

MAPE = 14.1513 %). Although the accuracy of the inversion 

varies among the three crops, they all exhibit a similar pattern. 

Specifically, the plant height monitoring results maintain a high 

accuracy within a certain height range. However, once this 

threshold is surpassed, the accuracy gradually declines. The 

height thresholds for the respective crops are indicated by red 

dashed lines in the accuracy plot. For rice, the threshold is 75 cm, 

for wheat it is 52 cm, and for maize it is 150 cm. We attribute this 

phenomenon to the limitations of SAR penetration and premature 

saturation of RVI caused by the attenuation effect as the crop 

plant grows taller and denser. 

 

 
Figure 5. Inversion accuracy of plant height for rice, wheat and 

maize. 

 

Considering the asynchrony between field measurements and 

remote sensing data, the temporal inversion results of the model 

are compared to the regression results of ground truth values in 

Figure 6 The inversion plant height curves showed a consistent 

trend with the observed plant height curves. However, the 

estimation errors gradually increased as the growth differences 

between crops became more evident, particularly in rice and 

maize. In terms of crop growth stage, the three crops had the 

highest accuracy in most cases before the jointing or mid- 

jointing stage. From the tillering stage onwards, the plants 

develop distinct vertical structures and interact well with SAR 

signals, leading to a steady increase in RVI. As the height of the 

plants and the density of the leaves reach a certain level, the 

surface of the rice area becomes uniform and dense. This 

uniformity and density limit the penetration and reflection of 

SAR signals, resulting in the RVI approaching saturation and 

maintaining relative stability. Previous studies have also 

confirmed that during the early vegetation stage of crops, 

specifically between the tillering and booting stages, the 

sensitivity of Sentinel-1 backscattering coefficients to crop 

biophysical parameters is the highest. 
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Figure 6. Comparison between the retrieved plant height and the 

ground truth values. The positions at the upper and lower ends of 

the light green area correspond to the upper and lower quartiles 

(Q3 and Q1) of the retrieved plant height. 

 

3.3 Impact of population growth differences on dynamic 

monitoring models 

The maximum plant height of crop growth can vary significantly 

due to the influence of growth environment and crop species. 

Figure 7 illustrates the correlation between the difference in 

maximum crop height and the RMSE between the calibration and 

validation datasets. The analyses showed that the greater the 

growth differences between crops, the worse the plant height 

estimates. The disparities in crop growth between the calibration 

dataset and the validation dataset are significant factors 

influencing the accuracy of plant height monitoring. Therefore, 

models developed exclusively for specific spatial scales and crop 

varieties cannot accurately and promptly predict crop growth in 

other regions or varieties. 

 

 
Figure 7. Statistical analysis of crop growth differences and 

precision of plant height estimation. 

 

 
Figure 8. Comparison of statistical and inverse plant height 

thresholds and their corresponding phenological periods. 

 

As shown in Figure 6, these models maintain precision until a 

certain period, even though differences in crop populations affect 

the accuracy of models. This discrepancy arises because RVI 

reaches saturation earlier than PH in different crop linear RVI-

PH relationships. To provide further clarification on the crop 

growth conditions and corresponding phenological nodes for 

RVI saturation, Figure 8 displays the plant heights at which the 

inverse growth curves of the test set began to deviate from the 

measured growth curves. It also shows the corresponding 

phenological periods and compares them with the statistical 

thresholds of plant heights and their respective phenological 

periods for each year. In the case of rice, most of the plant heights 

at which the inverse growth curves deviated from the measured 

growth curves were either less than or close to the statistical 

threshold of 75 cm. These deviations mainly occurred during the 

pre- or mid-jointing stage, with only the monitoring results in 

2019 performing well at the heading stage. For wheat and maize, 

the inversion structure exhibited fine agreement with the 

statistical threshold. Wheat reached RVI saturation at the pre-

booting stage, while maize reached saturation at the pre-jointing 

stage. Previous studies by Kushwaha et al. (2022) found that the 

SAR signal exhibited the strongest correlation with plant height 

during the BBCH 21-49 stages of rice, with estimated values 

ranging from 40-80 cm. Similarly, Nasirzadehdizaji et al. (2019) 

and Liao et al. (2018) discovered through correlation analysis that 

the optimal wheat height is below 53 cm and the sensitivity of 

SAR parameters begins to decline when maize height exceeds 

150 cm. These findings are consistent with our experimental 

results, although further research is necessary to investigate the 
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reasons for the differences in SAR parameter sensitivity to plant 

height among the three crops. 

 

3.4 Differences in the effects of the three crops on RVI 

response 

Rice, wheat, and maize are distinct crop types that differ in leaf 

sizes, orientations, and canopy structures. Leaf Area Index (LAI), 

which measures the area covered by vegetative leaves per unit of 

land surface, is a crucial vegetation parameter that characterizes 

leaf sparsity and canopy structure. It also plays a significant role 

in influencing the response of RVI. Additionally, planting 

density may limit SAR penetration capacity. Therefore, Figure 9 

presents statistical data on the LAI and planting density 

corresponding to the inversion plant height threshold for crop 

vegetation structure.  

 

The LAI values corresponding to plant height thresholds in 

different years were not concentrated within a specific range. For 

rice, the planting density was 25 plants or holes/m2 from 2016 to 

2020, and the corresponding LAI varied greatly at the similar 

plant height level. Hence, LAI may not be the primary cause of 

premature saturation of RVI. Maize, being a broadleaf crop, has 

a sparse planting density (averaging 6 plants or holes/m2), 

resulting in a plant height threshold of approximately 150 cm. In 

comparison, wheat plants are densely planted (averaging 580 

plants or holes/m2), causing wheat to reach the inversion 

threshold earlier at the same LAI level. Therefore, planting 

density may be the primary factor limiting the vegetation 

structure characterized by RVI. 

 

 
Figure 9. Statistics on LAI and planting density corresponding to 

inverse thresholds of plant height. 

 

3.5 Study Limitations and future direction 

The dynamic monitoring model addresses the limitations of 

traditional agricultural remote sensing models, which only work 

effectively on a single time phase or part of the growth cycle. It 

allows us to analyse the RVI response from the perspective of 

crop growth differences. However, the model itself has some 

limitations. Firstly, the fitting error of the model may result in 

outliers in plant height estimation during certain growth cycles, 

which can affect the determination of the plant height threshold. 

Future research could explore the use of machine learning or deep 

learning methods to solve this nonlinear problem and develop a 

more accurate plant height estimation model. Secondly, the 

model requires crop phenology information as input, which is 

typically characterized by BBCH and needs to be confirmed 

through field surveys. However, different observers may record 

BBCH differently, which can affect the assessment of growth 

differences in response to RVI. An alternative solution could be 

to use growing degree days (GDD) instead of BBCH to 

characterize crop growth stages (Li et al., 2022b; Yang et al., 

2022b). 

 

In terms of vegetation indices, this study primarily focuses on 

assessing the limitations of RVI for crop monitoring. However, 

other SAR parameters such as DPSVI, PRVI, and DpRVI, which 

have shown high correlation with crop biophysical parameters, 

need to be further discussed. Additionally, this study collected 

relatively few crop data and did not consider the effects of leaf 

scale and soil background on RVI saturation. Therefore, it is 

important to include datasets for more crop varieties or types and 

consider these factors in future research. 

 

4. Conclusion 

RVI has been extensively utilized for qualitative and quantitative 

remote sensing monitoring of vegetation growth dynamics. 

However, the phenomenon of premature saturation of RVI 

imposes limitations on its ability to characterize surface 

vegetation over dense vegetation canopy structures. Despite the 

relatively simple underlying mechanisms of this phenomenon, 

there is currently a lack of specific metrics to quantify the effect 

of vegetation structure on RVI. Building upon this premise, this 

study utilized a dynamic growth model to conduct dynamic 

monitoring of plant height for three common crops: rice, wheat, 

and maize. Furthermore, the study explores the limitations of 

RVI in accurately determining crop height. The experimental 

findings are summarized as follows: 

 

(1) Models developed for specific spatial and temporal scales of 

particular crop varieties may not accurately predict crop growth 

in different regions or with different varieties in a timely manner, 

due to growth differences. 

 

(2) These models maintain accuracy over a range of plant heights, 

such as rice at around 70cm, wheat at around 50cm, and maize at 

around 150cm. 

 

(3) Among the three crops, planting density was identified as the 

main factor influencing the differences in RVI response. 

 

Overall, traditional monitoring models face challenges in being 

widely applicable in highly complex field environments due to 

growth differences. However, the RVI demonstrates a strong 

correlation during the pre-growth period of crops, which can 

enhance our understanding of how radar signals respond to 

vegetation structure and planting techniques. The results of this 

study will contribute to integrating agronomic knowledge with 

spatio-temporal remote sensing data, and serve as a reference for 

the development of quantitative remote sensing models for smart 

agriculture. 
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