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Abstract

Generating wide-area digital surface models (DSMs) requires registering a large number of individual, and partially overlapped
DSMs. This presents a challenging problem for a typical registration algorithm, since when a large number of observations from
these multiple DSMs are considered, it may easily cause memory overflow. Sequential registration algorithms, although can sig-
nificantly reduce the computation, are especially vulnerable for small overlapped pairs, leading to a large error accumulation. In
this work, we propose a novel solution that builds the DSM registration task as a motion averaging problem: pair-wise DSMs are
registered to build a scene graph, with edges representing relative poses between DSMs. Specifically, based on the grid structure
of the large DSM, the pair-wise registration is performed using a novel nearest neighbor search method. We show that the scene
graph can be optimized via an extremely fast motion average algorithm with O(N) complexity (N refers to the number of images).
Evaluation of high-resolution satellite-derived DSM demonstrates significant improvement in computation and accuracy.

1. Introduction

Generating wide-area digital surface models (DSMs) is pivotal
in establishing foundational geospatial datasets. This often in-
volves registering a large number of individual DSMs gener-
ated either from the same or different sources, such as from
satellite stereo-based reconstruction (e.g. WorldView 2 & 31,
PlanetScope (Huang et al., 2022, Qin and Gui, 2023)), aerial
sensors (Xu et al., 2024, Huang and Qin, 2023), lidar, Synthetic
Aperture Radar (SAR) (e.g. SRTM (JPL, 2013)). These indi-
vidual DSMs, however, may have varying degrees of absolute
geometric accuracy, as well as partial and even very minimal
overlap. Thus, registering DSMs under this context presents
as a challenging problem both due to both the scale of the
problem, as well as the sub-optimal quality of input. For ex-
ample, registering these DSMs may require minimizing geo-
metric errors between billions of points, easily causing memory
overflow, at the same time, registering partial and low-overlap
DSMs easily brings large errors leading to error accumulation
when multiple DSMs are registered. To this end, We propose
a framework based on motion averaging, which entails enu-
merating all overlapped DSM pairs to establish a scene graph.
Our approach involves the utilization of an efficient pair-wise
registration method to eliminate systematic errors at the pair-
wise level and subsequently redistribute these errors across the
graph. This process aims to reduce and evenly distribute sys-
tematic errors among multiple DSMs.

As mentioned above, the task of registering multiple DSMs
raises several unique and difficult challenges. To be more spe-
cific, first of all, the huge volume of data adds to the difficulty
of memory and computation. The standard method is the iter-
ative closest point (ICP) (Besl and McKay, 1992), which iterat-
ively minimizes the cloud-to-cloud distance between a pair of
1 https://resources.maxar.com/data-sheets/worldview-2

3D data. The correspondences are formed by searching for the
nearest neighbor (NN) point of reference data for each query
point, which usually can be sped up by k-d tree (Besl and
McKay, 1992, Greenspan and Yurick, 2003), or octree (Eggert
and Dalyot, 2012), but the initialization of a k-d tree necessit-
ates caching the entire reference data into memory, requiring
O(N) space, O(NlogN) time. Such methods become imprac-
tical for city or terrain-level data. For instance, caching a single
WorldView-2 DSM (usually around 20000× 20000 equals 400
million points) consumes 22GB for the construction of k-d tree.
Another challenge is accurately estimating global poses from
pair-wise registration results. The prevailing method adopts a
greedy approach, initiating with the initial pair and estimating
subsequent DSMs based on maximum overlap. However, as the
DSM count increases, this approach accumulates small registra-
tion errors, resulting in a significant deviation from the actual
scene.

To address the above-mentioned challenges, we propose a mo-
tion averaging-based framework for removing the systematic
errors among multiple unaligned DSMs, as shown in Figure 1.
We first propose an ICP-based pair-wise registration method
that can perform fast and exact NN searching by utilizing the
grid structure of DSM (termed as DSM-ICP). Its space and
computation complexity are independent of the data volume, al-
lowing excellent scalability to large-scale datasets. Based on it,
we perform pair-wise registration to all possible pairs of DSM,
establishing a reliable scene graph, where each edge represents
the relative poses and carries weights based on its overlap and
registration error. Finally, a motion averaging approach over
the weighted edge graph is performed to redistribute the re-
gistration error for the estimation of the global poses. In our
experiments, we quantitatively and qualitatively evaluate our
proposed method using a large number of individual satellite-
stereo-based DSMs against the ground-truth lidar point cloud
data. The rest of this paper is organized as follows: section 2
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Figure 1. Overview of the proposed method. Given N unaligned DSMs, our target is to remove their systematic errors to produce
seamless registered DSMs (the unaligned and registered DSMs are color-coded based on their heights). We first construct a scene
graph G(V, E) with edges denoting all possible pairs of DSMs.Then, the proposed DSM-ICP (see Section 3.1) is performed for all

edges determining their pair-wise transformation {Tij |(i, j) ∈ E}. Finally, a motion averaging approach is performed to estimate the
global poses {Ti|i = 1, ..., N} (see Section 3.2)

reviews the related works of 3D registration methods. section 3
introduces the proposed motion averaging framework in detail.
section 4 presents the experimental results, comparative studies,
and our analysis. section 5 concludes this work.

2. Related Work

Pair-wise 3D registration is the process of estimating the
transformation (rigid-body transformation in our case) between
a pair of 3D data sets to minimize the systematic error between
two 3D data, which is widely used in 3D mapping and change
detection (Xu et al., 2021) tasks. It can be categorized into
coarse and fine registration according to the registration accur-
acy. Coarse registration assumes no initial alignment, involving
the extraction of key primitives (e.g. key points (Rusu et al.,
2009, Ao et al., 2021), lines (Chen and Yu, 2019), planes (Chen
et al., 2019), 4-points congruent set (Mellado et al., 2014)), cor-
respondence construction (Bai et al., 2021, Zhang et al., 2023),
and transformation estimation (Barath and Matas, 2018, Yang
et al., 2020). Such methods often yield suboptimal accuracy
due to errors in primitive localization and matching, necessit-
ating subsequent fine registration (Xu et al., 2023). The stand-
ard fine registration method is the ICP algorithm, which iter-
atively refines the transformation by searching for NN points
and estimating the transformation. Variants of ICP aim to en-
hance its robustness (Sparse-ICP (Bouaziz et al., 2013), Ro-
bust ICP (Zhang et al., 2021)) and convergence speed (Point-to-
Plane ICP (Arun et al., 1987), Symmetric ICP (Rusinkiewicz,
2019), AA-ICP (Pavlov et al., 2018)). The NN search typically
employs k-d tree, requiring O(N) memory for reference data
caching and O(logN) time for querying. Typically, CODEM2

is also an ICP-based method for DSM registration while they
transform DSM into point cloud format and perform standard
ICP. In comparison, ours utilizes the grid structure of DSM and
aims to optimize the memory and computation requirements of
NN search to make it applicable to large-scale datasets.

Multi-view registration considers each DSM as a view, and
simultaneously solves the registration of each DSM at the same
time. This can be accomplished through growing-based and
optimization-based approaches. Growing-based methods ini-
tiate registration with the pair possessing the largest overlap
and progressively register new data to existing data. The or-
der of data registration is determined using Kruskal’s algorithm
(Kruskal, 1956). This type of method is efficient while as the
number of data sets increases, the accumulated registration er-
ror will lead to drift problems. Optimization-based methods
involve constructing a scene graph, with each edge denoting

2 https://github.com/NCALM-UH/CODEM

relative pose and global pose estimation achieved by minim-
izing a predefined objective function — a concept known as
motion averaging or pose graph optimization in the robotics
community (Carlone et al., 2015). The closed-form solutions
estimate the rotation using the singular value decomposition
(SVD)-based methods (Arie-Nachimson et al., 2012, Gojcic et
al., 2020, Wang et al., 2023) and then solve the translation us-
ing the least square methods (Gojcic et al., 2020). The iterative
least-squares methods linearize the objective function and use
Gauss-Newton or Levenberg-Marquardt methods to update the
global poses. Our solution involves the SVD-based method to
ensure computation and memory efficiency.

3. METHODOLOGY

Given a set of unaligned DSMs P = {Pi|i = 1, ..., N}, our
goal is to recover the global poses {Ti = (Ri, ti) ∈ SE(3)|i =
1, ..., N}. In the following, we first introduce a computation
and memory-efficient DSM registration method in Section 3.1.
Based on it, we construct a scene graph with reliable weights for
each edge and apply a motion-averaging approach to estimate
the poses of every DSM in Section 3.2.

3.1 DSM-ICP

Aligning a pair of DSMs P and Q involves finding the rigid
transformation (R|t) such that applying the transformation to P
causes the two DSMs to be as close as possible. The standard
method is iterative closet point (ICP). It minimizes the distance
between two DSMs by alternating between two steps:

• Correspondence step: search pairs of corresponding points
(pi, q

k
i ), where qki is the closest point to pi given the cur-

rent transformation (Rk|tk):

qki = argmin
q∈Q

∥Rkpi + tk − q∥ (1)

• Estimation step: estimate the new transformation
(Rk+1, tk+1) by optimizing the ℓ2 distance given the cur-
rent correspondences (pi, qki ):

(Rk+1, tk+1) = argmin
R,t

∑
i

∥Rpi + t− qki ∥
2

(2)

Common methods solve the correspondence step by applying
NN methods, such as k-d tree (Besl and McKay, 1992), approx-
imate k-d tree (Greenspan and Yurick, 2003), or octree (Eggert
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(a) Initial phase (b) Correspondence phase

(c) Bounding phase (d) NN phase

Figure 2. Illustration of the proposed NN search method. To
simplify, DSMs are depicted as profiles in 2D space, with the

x-axis representing the horizontal plane and the y-axis denoting
height. The ”Blue dashed” lines depict DSM data stored on disk,

while the ”Green solid” line represents cached data in RAM.

and Dalyot, 2012). These methods necessitate the initializa-
tion of the spatial structures to cache the whole reference data
Q.Specifically, k-d tree needs O(N) memory and O(NlogN)
time, and each NN searching requires O(logN) time. In the
estimation step, the closed-form solution involves separating
the rotation and translation. Rotation estimation is achieved
through SVD-based methods, while the translation can be read-
ily determined.

Efficient and exact NN searching. In a DSM, each pixel de-
notes a 3D point in world coordinates, where its uv coordinates
[ui, vi] indicate the geo-location in the horizontal plane and its
value hi = dsm[ui, vi] represents the height in meters. The
neighboring pixels within a range of x pixels can be queried in
constant time using the operation [ui−x : ui+x, vi−x : vi+x].
Given a query pixel [up, vp] from the moving DSM P , we will
introduce an efficient method to find the upper bound of its NN
from the reference DSM Q in constant time.

Specifically, at the initial phase shown in Figure 2, we calcu-
late its world coordinate (xp, yp) using Equation 3.1. Then,
the pixel coordinate (uq, vq) from the other DSM Q cover-
ing the same world coordinates can be calculated using Equa-
tion 3.1. The height of that pixel can be looked up and termed
as hq = DSMq(uq, vq).

(xp, yp, hp) = uv2world(up, vp, tfwp)

(uq, vq) = world2uv(xp, yp, hp, tfwq)
(3)

Then, the pixel (uq, vq) serves as the initial correspondence
to the query pixel (up, vp), which is found in constant time.
Moreover, their Euclidean distance also serves as the upper
bound that the NN is guaranteed to be located within the 3D
sphere ball centered at the query 3D point with a radius of the
d, where d = ∥hp − hq∥.

At the bounding phase, the 3D sphere ball is projected into
the horizontal plane, formulating the 2D rectangle [xq − d :
xq + d, yq − d : yq + d] as the final bound. Finally, at the NN
phase, the uv coordinates of the bounding rectangle are calcu-
lated and any pixels within the bounding rectangle are cached.
By traversing all the cached pixels, we can find the NN.

(a) JAX2 (b) JAX2 : MST
graph

(c) JAX2 : our graph

(d) OMA3 (e) OMA3 : MST
graph

(f) OMA3 : our
graph

Figure 3. Comparison of two approaches for scene graph
construction. ”MST” denotes the minimal spanning tree, which
identifies the minimum number of edges connecting all nodes,

while our method establishes edges connecting all possible
nodes. In this scenario, the path between any two nodes in our
graph is shorter than or equal to those in the MST graph (e.g.,
node 4&6 in OMA3), significantly mitigating the accumulated

error.

The primary impediment to the application of k-d tree to large
data volumes lies in the necessity to initialize by caching the
entire dataset, requiring O(NlogN) time and O(N) memory
space. A frequently compromised solution involves building a
k-d tree for downsampled datasets, albeit at the expense of ac-
curacy reduction. In comparison, our NN search method elim-
inates the need for initialization. All data are stored on disk,
and only local data around the query points are cached. For
each NN search, our method demands O(k) time and memory
space, where the upper bound d is calculated in constant time
and k is the number of pixels within the upper bound. In prac-
tice, k ≪ N and as the two DSMs are getting closer, k will de-
crease dramatically. Our approach achieves both memory and
computational efficiency compared to the k-d tree method. This
enables ICP to be applied to large-scale data without comprom-
ising accuracy.

3.2 Motion Averaging-based Framework

Scene graph construction. The scene graph serves as a po-
tent tool for representing pair-wise information among multiple
objects and finds extensive application in various engineering
problems. In this context, our objective is to construct a scene
graph G(V, E), where each vertex vi ∈ V corresponds to a DSM
Pi and each edge (i, j) ∈ E encodes the relative pose between
DSM Pi and Pj .

Existing growing-based methods apply a greedy approach to
search for the minimal number of edges connecting all ver-
tex. As the number of vertex increases, the accumulated er-
ror between vertex that have a large path cannot be reduced,
as shown in Figure 3. A reliable scene graph is intended to
capture extensive relative information for providing redundant
constraints to make sure any two vertex have a small path. Fur-
thermore, the reliability of each edge must be taken into account
to filter out potential outliers. Therefore, for each pair (Pi, Pj),
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(a) JAX1 (4 DSMs) (b) JAX2 (9 DSMs) (c) JAX3 (3 DSMs) (d) OMA1 (3 DSMs) (e) OMA2 (6 DSMs) (f) OMA3 (6 DSMs)

(g) JAX1 lidar (h) JAX2 lidar (i) JAX3 LiDAR (j) OMA1 lidar (k) OMA2&3 lidar

Figure 4. Illustration of six test sets of satellite DSMs and the ground truth lidar data, where three test sets in Jacksonville area (JAX)
and three test sets in Omaha area (OMA). The detailed description is in Section 4.1

we calculate the overlap score by

sij =
#overlap pixels

#valid pixels
(4)

where sij ∈ [0, 1]; Assuming the provided DSMs are approx-
imately geo-referenced, the identification of overlap pixels de-
pends on the presence of corresponding reference pixels at the
same geographical location. Once the sij is larger than a pre-
defined threshold, the edge will be inserted into the scene graph.
Their relative pose Tij will further be estimated using our DSM-
ICP outlined in Section 3.1.

Weight initialization. The edge reliability can be determined
by two factors: the overlap ratio and the quality of pair-wise
registration. We associate a weight on each edge to indicate
the reliability of the estimated relative pose Tij . It is calculated
based on both the overlap score sij and the quality score of
pair-wise registration rij :

wij = sij ∗ rij

rij =
e−errij∑

(i,j)∈E e−errij

(5)

where errij represents the pair-wise registration error repres-
enting the estimation error of registering the correspondences
at the last iteration. It can be calculated based on Equation 2
with Tij .

Motion averaging. Given the edge weights and the relative
poses {wij , Tij = (Rij , tij)|(i, j) ∈ E}, we estimate the global
poses {Ti = (Ri, ti)}. It is also known as the pose graph op-
timization problem in the robotics community (Carlone et al.,
2015). Each relative pose (Rij |tij) can be represented by global
poses (Ri|ti) and (Rj |tj)

tij = RT
i (tj − ti) + tϵij , Rij = RTRjR

ϵ
ij (6)

where the tϵij ∈ R3, Rϵ
ij ∈ SO(3) denote the measurement

noise. Therefore, we estimate the global poses {Ri, ti} by solv-
ing the optimization problem

min
{Ri}∈SO(3)

{ti}∈R3

∑
(i,j)∈E

wij∥Rij −RT
i Rj∥2F +wij∥Ritij + ti− tj∥2

(7)

where ∥·∥F means the Frobenius norm of the matrix. The prob-
lem can be addressed by decoupling the optimization of rotation
and translation. We first estimate the global rotation Ri using
the closed-form solutions (Arie-Nachimson et al., 2012, Gojcic
et al., 2020, Wang et al., 2023). Once the rotation is determ-
ined, the translation ti can be computed using the standard least
square method (Gojcic et al., 2020).

4. Experimental Results

In this section, two experiments were performed to evaluate the
proposed method in terms of: 1) pair-wise registration per-
formance: the memory and computation performance of the
proposed DSM-ICP given varying volumes of datasets, intro-
duced in Section 4.2, and 2) multiple DSM registration per-
formance: the average relative error among all DSMs and the
overall error with respect to the ground truth data, introduced in
Section 4.3. The data and evaluation metrics used in the exper-
iments are introduced in Section 4.1.

4.1 Datasets and Metrics

Datasets. We choose the public multi-view satellite datasets:
DFC 2019 (tack 3) (Le Saux et al., 2019), encompassing the
city of Jacksonville (short for JAX), Florida, USA, and Omaha
(short for OMA), Nebraska, USA. These datasets were captured
by WorldView-33 with ground-sampling distances of 35cm. In
track 3, the satellite images were cropped into sub-images,
totaling 118 sub-areas. Each subarea covers 700m× 700m and
is observed by 30 images. The sub-areas partially overlap, and
we manually chose six sets of data as the test data, as illustrated
in Figure 4. For each sub-area, we conducted dense matching to
generate the DSM using satellite 3D reconstruction software4.
The ground truth data for both regions are airborne lidar scan-
ning data from the USGS 3DEP program5, with a point density
of 24.64 pt/m2, 5.82 pt/m2 in Omaha area.

Metrics. The pair-wise registration performance can be reflec-
ted by the distance between two registered DSMs. In prac-
tical scenarios, the standard Root Mean Squared Error (RMSE)
may not be effective due to the presence of outlier pixels
3 https://resources.maxar.com/data-sheets/worldview-3
4 https://u.osu.edu/qin.324/rsp/
5 https://www.usgs.gov/3d-elevation-program
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Method Scene Graph MEANRMSEτ [m]
JAX1 JAX2 JAX3 OMA1 OMA2 OMA3

- - 2.213 1.715 2.632 2.231 1.877 2.126
Greedy MST 1.832 1.514 1.474 1.490 1.760 1.903
Ours Full 1.834 1.424 1.474 1.486 1.727 1.856

Table 1. Quantitative results of accumulated error reduction performance for two methods. ”MEANRMSEτ ” represents the average
RMSEτ for all possible pairs. The first row represents the alignment of the raw dataset without any registration process. When the

number of DSMs is small (e.g. JAX1, JAX3, and OMA1), the two methods achieve similar performance. When the number of DSMs
is large (e.g. JAX2, OMA2, and OMA3), ours achieve better error reduction performance.

(a) 0.5 million points (b) 25 million points

(c) 106 million points (d) 305 million points

Figure 5. Computation efficiency of NN search for DSM-ICP
and the standard ICP using k-d tree. The y-axis represents the

time cost of the NN search at each iteration. In this experiment,
2065 points in total were performed NN search within the

varying number of reference points from 0.5 million (a) to 305
million points (d). For ICP using k-d tree, the ”Blue dashed” line
represents the initialization of k-d tree, followed by NN search.

within DSMs, which can significantly influence overall met-
rics. Therefore, we implement a straightforward outlier rejec-
tion mechanism in conjunction with RMSE:

rmseτ =

√
1

N

∑
i∈P

J∥pi − qi∥ < τK(pi − qi)2 (8)

where the J·K is the Iverson bracket, τ is a pre-defined inlier
threshold (10m in our case). (pi, qi) is the pair of points corres-
ponding to the same horizontal location.

4.2 Performance of Pair-wise Registration

The primary advantage of the proposed DSM-ICP lies in the
elimination of the need for initializing spatial data structures
such as k-d tree. In each NN search, its cached data is confined
to the local area rather than encompassing the entire region. We
assess its computational and memory efficiency across diverse
volumes of reference data. Specifically, we measure the time
cost for every NN search and the overall RAM consumption for
both DSM-ICP and the standard ICP utilizing k-d tree.

Computation efficiency performance. We measure the time
cost during the correspondence step (refer to Section 3.1) at
each iteration for both the proposed DSM-ICP and the stand-
ard ICP employing k-d tree. Specifically, we fix the number

Figure 6. Memory consumption of the proposed DSM-ICP and
the standard ICP using k-d tree with the varying number of

reference points. The experiment setting is the same as Figure 5

of query points to 2065 while varying the volume of reference
data from 0.5 million to 305 million points. The results are
illustrated in Figure 5. It is evident that ICP using k-d tree ini-
tially consumed more time as it traversed all reference points
on the local disk to construct the k-d tree in RAM. In contrast,
our method bypassed this process. The time cost gradually de-
creased as the two DSMs moved apart initially, resulting in a
larger searching range d (refer to details in Section 3.1). As
the two DSMs approached each other, the searching range d
decreased, leading to a smaller time cost for the NN search.
After several iterations, the time cost for both methods stabil-
ized. Our method required more time due to accessing data via
disk, while k-d tree accessed data via RAM.

Memory efficiency performance. We measure the total RAM
utilization throughout the entire iteration process with varying
volumes of reference data. As depicted in Figure 6, the RAM
consumption of the k-d tree exhibits linearity with the number
of reference points, as the space complexity of constructing a k-
d tree is O(N), implying it loads all reference points into RAM.
In contrast, our RAM consumption remains independent of the
volume of reference data. When the number of reference points
reached 305 million, our method required only 133 MB, while
the k-d tree demanded 17200 MB—129 times larger than ours,
revealing the superior memory efficiency of our approach.

4.3 Performance of Multiple DSM Registration

We assess the reduction in accumulated error and the recon-
struction performance of the proposed graph-based method.
The distinctive advantage of our approach lies in the elimina-
tion of accumulated registration errors through redundant pair-
wise constraints. The conventional approach for registering
multiple DSMs employs a greedy method, which initiates re-
gistration with the pair exhibiting the largest overlap and sub-
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Method Scene Graph RMSEτ [m]
JAX1 JAX2 JAX3 OMA1 OMA2 OMA3

Greedy MST 2.305 2.166 2.756 2.065 1.461 1.667
Ours Full 2.302 2.129 2.756 2.065 1.451 1.539

Table 2. Quantitative assessment of the quality of the fused DSM, measured by RMSEτ against the lidar ground truth. Our method
demonstrates superior reconstruction quality in 4 out of 6 sets. As observed in Figure 9, particularly for scenarios with a large number

of DSMs (e.g., JAX2, OMA2, OMA3), our approach outperforms the greedy method significantly.

(a) JAX2 Greedy (b) JAX2 Ours

(c) OMA3 Greedy (d) OMA3 Ours

Figure 7. Registration errors of selected pairs in JAX2 and
OMA3 area. The MST and our graphs are shown in Figure 3.

We only display the pairs that are likely to accumulate the errors.
Two nodes of these pairs are connected by a long path (more

than 3 edges) in the MST graph.

sequently registers the next largest overlap for the remaining
DSMs. This can be accomplished using Kruskal’s algorithm
to find the minimal spanning tree (MST) of an undirected edge-
weighted graph. Both the greedy method and our approach util-
ize the proposed DSM-ICP as the pair-wise registration method.

Accumulated error reduction performance. We apply the
proposed method and the greedy method to six test sets (depic-
ted in Figure 4) and gauge the average RMSEτ for all pos-
sible pairs as the evaluation metric. As reported in Table 1, our
method can reduce initial systematic errors by 0.2 − 1.2m. It
achieved the highest registration accuracy in 5 out of 6 sets. The
greedy algorithm performs well when the graph size is small;
however, as the graph enlarges, relative registration errors will
accumulate along the path connecting two distant nodes. The
advantage of our method lies in the provision of more pair-wise
constraints, offering additional directions to distribute the accu-
mulated error across the graph.

Specifically, we select two test sets and present their pair-wise
RMSEτ in Figure 7. Nodes 4 and 6 in OMA3 are four steps
away from each other in the MST graph and their RMSEτ is
2.420m. In comparison, ours reduced the registration error to
1.889m. The same holds for the nodes 1&5, 4&5, and 7&8 in
JAX2.

Additionally, we showcase the qualitative results of nodes 4 & 5
of JAX2 and nodes 4 & 6 of OMA3 by illustrating the profiles
of registered DSMs in Figure 8. In the JAX2 area, DSMs re-
gistered by the greedy method exhibit a rough 1m height differ-
ence, whereas ours nearly perfectly aligns the two DSMs, con-
sidering the quality of the DSM. Similarly, our method achieves

(a) JAX2 nodes 4&5 (b) OMA3 nodes 1&3

(c) JAX2 profile (d) JAX2 zoom in

(e) OMA3 profile (f) OMA3 zoom in

Figure 8. Profiles of selected buildings in JAX2 and OMA3 area.
We show the profiles of registered DSMs by greedy method (red

lines) and ours (blue lines).

nearly perfect registration of DSMs in OMA3, while the greedy
method results in a rough 1m height difference.

Reconstruction performance. After eliminating systematic
errors among the DSMs, we fuse all registered DSMs into a
single DSM and assess its quality against lidar ground truth.
Specifically, we align the fused DSM (achieved using RSP)
with the ground truth using DSM-ICP and compute RMSEτ .
The quantitative results are presented in Table 2, wherein our
approach achieved superior reconstruction accuracy in 4 out of
6 areas. Moreover, we showcase qualitative results illustrating
the quality of the fused DSM in two selected areas, JAX2 and
OMA3, as depicted in Figure 9. Regions with significant er-
rors are colorized in ”Red”. In the JAX2 area, large errors pro-
duced by the greedy method are mainly concentrated around the
middle part, where accumulated errors between nodes 4&5 and
1&5 (see Figure 7) were not effectively reduced by the greedy
method. Similar observations apply to the left part of the OMA3
area.

5. Conclusion

In this paper, we presented a motion averaging-based approach
for the registration of multiple large-scale DSMs. Specifically,
we proposed a fast and exact NN search method by utilizing the
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(a) JAX2 Greedy (b) JAX2 Ours

(c) OMA3 Greedy (d) OMA3 Ours

Figure 9. Qualitative results of error map depicting the height
difference between the fused DSM and the lidar ground truth.

The greedy method produces more error data than ours,
particularly around the middle-top part in JAX2 and the left part

in OMA3.

grid structure of DSM. Its computation and memory complex-
ity are independent of the volume of the input data, enabling
our pair-wise registration method, DSM-ICP, to be scalable to
large-scale data. Based on it, we perform pair-wise registra-
tion for all possible pairs of DSMs to construct a reliable scene
graph, where the edge is weighted based on overlap and regis-
tration error. Then, the global poses for each DSM are estim-
ated by redistributing the pair-wise registration errors over the
whole scene graph. We evaluated the proposed method on pub-
lic satellite datasets with the ground truth airborne lidar data.
The experiment results demonstrate that our DSM-ICP achieves
both superior computation and memory efficiency than k-d
tree-based ICP. The proposed motion averaging-based method
achieves better error reduction performance and reconstruction
performance than the greedy method.
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