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ABSTRACT: 
 
Accurate LiDAR odometry results contribute directly to high-quality point cloud maps.  However, traditional LiDAR odometry 
methods drift easily upward, leading to inaccuracies and inconsistencies in the point cloud maps. Considering abundant and reliable 
ground points in the Mobile Mapping System(MMS), ground points can be extracted, and constraints can be built to eliminate pose 
drifts. However, existing LiDAR-based odometry methods either do not use ground point cloud constraints or consider the ground 
plane as an infinite plane (i.e., single ground constraint), making pose estimation prone to errors. Therefore, this paper is dedicated to 
developing a Multiple Ground Constrained LiDAR Odometry(M-GCLO) method, which extracts multiple grounds and optimizes those 
plane parameters for better accuracy and robustness. M-GCLO includes three modules. Firstly, the original point clouds will be 
classified into the ground and non-ground points. Ground points are voxelized, and multiple ground planes are extracted, parameterized, 
and optimized to constrain the pose errors. All the non-ground point clouds are used for point-to-distribution matching by maintaining 
an NDT voxel map. Secondly, a novel method for weighting the residuals is proposed by considering the uncertainties of each point 
in a scan. Finally, the jacobians and residuals are given along with the weightings for estimating LiDAR states. Experimental results 
in KITTI and M2DGR datasets show that M-GCLO outperforms state-of-the-art LiDAR odometry methods in large-scale outdoor and 
indoor scenarios. 
 
 

1. Introduction 

High-precision point cloud maps have wide applications in 
different fields, such as mobile robotics (Nagy et al., 2018),    
autonomous driving(Gao et al., 2021), and building information 
models(Blaser et al., 2018). Besides, high-precision point clouds 
are the fundamentals for High-Definition (HD) map production. 
LiDAR (Light Detection And Ranging) technology is the most 
useful sensor for acquiring point cloud data and can be divided 
into MLS (Mobile Laser Scanner) and TLS (Terrestrial Laser 
Scanner) based on different mapping platforms. MLS, which is 
mounted on mobile mapping devices, is more widely adopted in 
large-scale outdoor mapping tasks compared with TLS due to its 
efficiency. However, in GNSS-denied environments (tunnels, 
forests), the performance of the existing MLS may suffer from 
large errors due to the block of GNSS signals. LiDAR odometry 
is a state estimation method that uses only LiDAR sensors to 
estimate the poses and produce the point clouds. The rapid 
development of LiDAR odometry has made the acquisition of 
point cloud maps using MLS systems more robust and effective. 
 
Ground constraints have been applied in LiDAR odometry 
algorithms. Ground points are extracted from raw point clouds, 
and a ground plane map is maintained for scan-to-map matching 
(Shan et al., 2018; Su et al., 2021; Liu et al., 2019). Koide et al. 
(2019) apply ground plane constraints in a large indoor 
environment and assume a global ground plane exists. The plane 
is parameterized and optimized to control the pose drifts while 
doing LiDAR SLAM. Chen et al. (2021) proposed a ground 
segmentation method for optimizing plane features collected 
using a backpack LiDAR system. Besides considering ground 
plane constraints in point cloud features, Zheng et al. (2018) and 
Zheng et al. (2019) directly constrained the pose by the SE2 
group. However, all the methods mentioned above only 
considered one ground plane, making it hard to compress the 
long-term upward pose drift and even unavailable when the 
terrain is complex and multiple ground planes exist. 

LiDAR odometry relies on LiDAR registration. Adequate 
weights of the registration residuals are necessary in filtering-
based state estimation but also in optimization-based methods. In 
normal distribution transformation(NDT) (Magnusson et al., 
2007), the weightings are from the covariances of the voxel. F-
LOAM (Wang et al., 2021), an optimization-based method, 
weighted edge features with higher smoothness and planar 
features with lower smoothness. LiLi-OM (Li et al., 2021) is still 
an optimization-based method and proposes a metric weighting 
function that considers both geometric and appearance 
consistencies. In the Kalman filter of Point-LIO (He et al., 2023) 
and FAST-LIO2(Xu et al., 2022), the LiDAR measurement noise 
is set as a constant value. However, each point in the point clouds 
has uncertainties caused by the LiDAR sensor measurement 
noises, and those methods do not consider the error caused by 
each point’s covariance, making the system less robust and 
adaptable.  
 
To deal with the challenges above, this paper proposes a multiple 
ground-constrained LiDAR odometry method named M-GCLO, 
which uses multiple ground constraints by voxelizing ground 
points and optimizing each plane in a single voxel to improve the 
pose accuracy, robustness, and adaptability as much as possible. 
The main contributions of this article are as follows: 
 
(1) Instead of constraining the pose with only one ground plane, 
we build multiple ground plane constraints by dividing the 
ground points into different voxels and optimizing multiple 
ground plane parameters. This can improve both the accuracy and 
robustness of localization. 
 
(2) To better weigh the residuals of point cloud registration, we 
propagate the uncertainties from single LiDAR points to the final 
point-to-plane and point-to-distribution residuals. Based on the 
uncertainties, we can weigh the residuals properly, which makes 
the algorithm less prone to errors and more accurate. 
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(3) To evaluate the performance of the algorithm in different 
environments, we test M-GCLO on both large-scale outdoor and 
small-scale indoor environments, demonstrating the accuracy, 
robustness, and adaptability of the algorithm compared with the 
state-of-the-art algorithms. 
 

2. Methodology 

2.1 Plane Parameterization 

Parameterization of planes is needed to utilize the ground plane 
constraints for estimating the pose of LiDAR before optimizing 
ground plane features. A plane can be parameterized with the 
plane normal n and a random point q on the plane. Suppose there 
are N points belonging to the plane pi, i=1, …, N. The centroid p� 
and covariance A of the points are: 
 

p�=
1
N
� pi  

N

i=1

(1) 

 

A=
1

N-1
�  

N

i=1

�pi-p���pi-p��
T (2) 

 
Say the 3 eigenvalues of A  are λ1> λ2> λ3 . Normal n  is the 
eigenvector associated with λ3. Since the centroid is on the fitted 
plane, q  can be set as p�  for simplicity. The planarity Pλ 
(Weinmann et al., 2015) represents a 2D feature and can be used 
for selecting planes: 
 

Pλ =
λ2 −  λ3

λ1
(3) 

 
When Pλ  is larger than a threshold(i.e. the point cloud 
distribution in one direction is much smaller than the other two), 
the N points can be seen as one plane, and the plane will be 
selected and parameters are updated for providing multiple 
ground constraints for state estimation. 
 
2.2 Voxelization 

To utilize as many ground plane constraints as possible, the 
ground point clouds can be divided into different voxels after the 
ground points are segmented from each frame, and points in each 
voxel will be fitted as a plane. Common algorithms optimize the 
ground point clouds as one infinite plane. However, there would 
be slopes, especially in large-scale outdoor environments where 
the single-plane definition does not apply. Voxelizing the ground 
points by a radius and optimizing multiple ground planes use as 
many ground constraints as possible, which would be beneficial 
for constraining the vertical pose drifts. 
 
As shown in Figure 1, the point clouds are segmented into ground 
(in black color) and off-ground points. The ground points are then 
voxelized and the points in each voxel will be considered as a 
plane candidate. The planes that meet the criterion (3) will be 
saved and optimized continuously. Figure 2 demonstrates the 
voxelization results of KITTI 05 sequence with a voxel size of 
10m.  
 
For non-ground point clouds, the points are voxelized for Normal 
Distributions Transform(NDT) matching. Similar to the ground 
voxels, each non-ground voxel maintains the mean value and 
covariance of the points in the voxel. The voxels will be 
maintained and updated along with the mapping process. 
 

 
Figure 1. Ground segmentation of point clouds. 

 

 
Figure 2. Voxelization of ground points. 

 
 
2.3 Residual Weighing 

Both in optimization-based and filter-based state estimation 
methods, adequate weights of residuals can improve the pose 
accuracy and make the algorithm more robust to errors. Since the 
points acquired by LiDAR are not technically accurate and each 
point has its own uncertainty, the uncertainties can be modeled 
and propagated from a single point to registration residuals and 
finally to the state (i.e. the position and attitude of the body).  
 
Firstly, we model the residuals for the point cloud registration 
process. Then, we can propagate the uncertainties of the residuals 
from a single point’s uncertainty. Based on the uncertainties, we 
are able to weigh the residuals accordingly.  
 
Assuming a point pL in LiDAR frame has the variance ΣpL and 
the state x={RL

W,tLW}  has the rotation covariance ΣRL
W  in Lie 

algebra of SO(3) and translation covariance ΣtL
W, where RL

W and 
tLW are the rotation matrix and translation vector from LiDAR 
frame to world frame,  respectively. The world frame is set as the 
first frame of LiDAR point cloud so that the pose of the first 
frame would be the identical matrix. With the raw point 
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coordinates and state, the raw point cloud can be transformed to 
the world frame: 
 

pW=RL
WpL+tLW (4) 
 

The transform process builds a global point cloud map. From (4),  
the variance ΣpW  of pW can be propagated from ΣpL with known 
state x and raw point coordinate pL: 
 

ΣpW  =�-RL
WpL�×ΣRL

W�-RL
WpL�×

T
+RL

WΣpLRL
WT

+ΣtL
W (5) 

 
where × is the operation for getting the skew-symmetric matrix 
of the vector. For the ground voxels, the residual would be the 
point-to-plane distance 𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝: 
 

dplane=nT(pW-q) (6) 
 
Since we have the uncertainty ΣpW   of pW in (5), we can calculate 
the variance Σdplane  of dplane directly: 
 

Σdplane=nTΣpWn+(pW-q)TΣn(pW-q)+nTΣqn (7) 
 
where the normal n  is from eigendecomposition in (2) and 
centroid q is from(1). The Σn and Σq can be calculated based on 
the ΣpW(Liu, et al., 2021): 
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(8) 

 

Where Fm,3
pi

W
 is: 

 

Fm,3
pi

W
=�

�pi
W-p��T

(N-1)(λ3-λm) �umu3
T+u3um

T � ,m≠3

01×3 ,m=3
(9) 

 
Since q  is the centroid of the voxel(i.e. the average of the 
coordinates) and each point is independent of other point, Σq 
would be: 
 

Σq=
1
N
�Σpi

W

N

i=1

(10) 

 
For the non-ground points, all the points will be used for NDT   
matching. The residual is the distance vector from point  pW to 
centroid p�: 
 

dndt=pW-p�=RL
WpL+tLW-p� (11) 

 
The covariance matrix 𝚺𝚺𝒅𝒅𝑛𝑛𝑛𝑛𝑛𝑛 of 𝒅𝒅𝑝𝑝𝑛𝑛𝑛𝑛 is: 
 

Σdndt=ΣpW+Σp�=ΣpW+
1
N
�Σpi

W

N

i=1

(12) 

 
The information matrices  (i.e. weightings) Ωdplane  and Ωdndt  are 
computed directly from the inverse of the variance(covariance): 

Ωdplane=Σdplane
-1 , Ωdndt=Σdndt

-1 (13) 
 

2.4 State Estimation 

LiDAR odometry is for estimating the rotation and translation of 
the body x={RL

W,tLW}, where L is the current LiDAR frame and 
W is the first LiDAR frame set as the world frame. Assuming the 
Lie algebra of RL

W is φ, the derivatives would be: 
 

∂dplane
'

∂φ
=-�pL�×RL

WT
n,
∂dplane

'

∂tLW
=n (14) 

 
∂dndt

'

∂φ
=-RL

W�pL�×,
∂dndt

'

∂tLW
=I3×3 (15) 

  
The jacobians regarding to the residuals are: 
 

J1×6
plane= ��

∂dplane
'

∂φ
�

T

,�
∂dplane

'

∂tLW
�

T

� (16) 

  

J3×6
ndt = �

∂dndt
'

∂φ
,
∂dndt

'

∂tLW
� (17) 

 
With residuals(dplane and dndt), weightings(Ωdplane  and Ωdndt) and 
related jacobians(J1×6

plane  andJ3×6
ndt ), we can estimate the state by 

either filtering or least-square methods. 
 

3. Experiments 

In order to show the adaptability of the algorithm in different 
scales of scenes, we conduct experiments on both outdoor large-
scale environments and indoor small-scale environments. For the 
outdoor experiments, we evaluate our method on KITTI (Geiger 
et al., 2012), which is one of the most popular dataset for 
autonomous driving. As for the indoor tests, we select 
M2DGR(Yin et al., 2021) for evaluation. M2DGR has various 
indoor scenarios and provides ground truths. The algorithm is 
then compared with state-of-the-art LiDAR odometry methods 
for testing the accuracy and robustness of M-GCLO. To evaluate 
the localization accuracies, we calculate ATE (Zhang et al., 2018) 
between the estimated trajectories and ground truths. For a fair 
comparison, loop closure modules are off in all the other methods 
and no LiDAR-Inertial odometry methods are selected for better 
focus on the point clouds. 
 
3.1 Performance on Outdoor Datasets 

The point clouds in KITTI dataset are collected using a Velodyne 
HDL-64E and ground truths are provided by GPS/INS. 11 
sequences are provided with ground truths including city, 
residential and road scenarios, etc. We test M-GCLO with ground 
voxel size of 10m and non-ground voxel size of 2m. The 
trajectories of ground truths (in red) and M-GCLO (in blue) are 
shown in Figure 3. From the vertical viewpoint, the horizontal 
positions do not drift a lot even in long-distance datasets(00, 02 
and 08 sequences). As we know, the main position errors for 
LiDAR odometry are from the vertical drifts due to lack of points 
on the ground and lower vertical resolution compared with 
horizontal resolution.  
 
To evaluate the accuracy of M-GCLO with its counterparts, we 
compare the ATEs of rotation (in degree) and translation (in 
meter) with LiTAMIN2(Yokozuka et al., 2021), MULLS(Pan et 
al., 2021), F-LOAM(Wang et al., 2021), LeGO-LOAM(Shan et 
al., 2018) and VoxelMap(Yuan et al., 2022). 
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Figure 3. Trajectories of ground truth and M-GCLO on KITTI. 
 

Seq. 
(Length[km]) 

00 
(3.7) 

1 
(2.4) 

2 
(5.0) 

3 
(0.6) 

4 
(0.4) 

5 
(2.2) 

6 
(1.2) 

7 
(0.7) 

8 
(3.2) 

9 
(1.7) 

10 
(0.9) 

Avg. 
(°) 

LiTAMIN2 1.6 3.5 2.7 2.6 2.3 1.1 1.1 1.0 1.3 1.7 1.2 1.8 
MULLS 1.7 1.0 2.4 0.7 0.2 1.0 0.4 0.5 1.9 1.4 0.5 1.5 
F-LOAM 2.5 4.3 1.9 3.3 0.3 1.6 2.2 1.1 1.5 2.2 1.6 2.0 

LeGO-LOAM 2.8 3.8 4.1 4.1 3.3 1.9 1.4 1.5 2.5 2.2 1.9 2.8 
VoxelMap 0.9 1.9 1.7 1.2 0.6 0.8 0.4 0.7 1.1 1.0 1.0 1.2 
M-GCLO 1.1 2.0 1.3 1.5 0.3 1.1 1.0 1.1 1.1 1.1 1.1 1.2 

Table 1. Rotation comparison on KITTI dataset. 
 

Seq. 
(Length[km]) 

00 
(3.7) 

1 
(2.4) 

2 
(5.0) 

3 
(0.6) 

4 
(0.4) 

5 
(2.2) 

6 
(1.2) 

7 
(0.7) 

8 
(3.2) 

9 
(1.7) 

10 
(0.9) 

Avg. 
(m) 

LiTAMIN2 5.8 15.9 10.7 0.8 0.7 2.4 0.9 0.6 2.5 2.1 1.0 5.1 
MULLS 6.1 2.4 10.6 0.7 0.9 2.4 0.6 0.6 4.3 2.5 1.1 4.8 
F-LOAM 7.1 17.8 4.2 0.8 0.6 3.0 4.2 0.9 3.6 6.6 1.4 4.6 

LeGO-LOAM 6.3 119.4 14.7 0.9 0.8 2.8 0.8 0.7 3.5 2.1 1.8 11.1 
VoxelMap 2.8 7.8 6.1 0.7 0.3 1.2 0.4 0.7 2.3 1.9 1.1 2.9 
M-GCLO 3.0 8.5 3.2 0.6 0.3 1.3 1.0 0.7 2.4 1.7 1.1 2.2 

Table 2. Translation comparison on KITTI dataset. 
 
The results for LiTAMIN2 are from the original paper and the 
results for MULLS, LeGO-LOAM, and VoxelMap are from 
Yuan(2022). The parameters for F-LOAM are in default ones. 
 
The rotation comparison results are shown in Table 1. M-GCLO 
has the lowest rotation error on average and achieves the best 
orientation result(1.3°) on sequence 2, which is the longest 
sequence and has lots of turns. LiTAMIN2 is a method that 
combined NDT and ICP and it’s obvious that with the ground 
constraints of M-GCLO, the overall rotation accuracy can be 
improved from 1.8° to 1.2°. Besides, LeGO-LOAM also extracts 
ground points but optimizes only one ground plane. M-GCLO 
outperforms it with high robustness remaining high accuracy 
orientation in all 11 sequences. MULLS extracts multiple 
classified features(ground, façade, pillar, and beam, etc.) and F-
LOAM uses edge features and plane features from raw point 
clouds. M-GCLO performs better than these two multiple feature 
based methods overall. 

 
Table 2 demonstrates the translation comparison results on 
KITTI dataset. M-GCLO not only has the highest rotation 
accuracy on sequence 2, but performs best in positioning 
evaluation with only 3.2 meter’s position error. Comparing the 
average translation errors, M-GCLO outperforms the feature-
based LiDAR odometry methods(MULLS and F-LOAM),  
LiTAMIN2(hybrid ICP and NDT), and also VoxelMap which 
uses all the plane voxels in the point clouds. 
 
3.2 Performance on Indoor Datasets 

To evaluate the performance of the method in indoor 
environments, we test the algorithm on the M2DGR dataset 
which acquires the LiDAR with Velodyne VLP-32C, and the 
ground truth is provided by a laser scanner and a motion-capture 
system for indoor scenes. We then compare our method with F-
LOAM(Wang et al., 2021), KISS-ICP(Vizzo et al., 2023), 
MULLS(Pan et al., 2021), and LeGO-LOAM(Shan et al., 2018), 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1-2024 
ISPRS TC I Mid-term Symposium “Intelligent Sensing and Remote Sensing Application”, 13–17 May 2024, Changsha, China

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-1-2024-283-2024 | © Author(s) 2024. CC BY 4.0 License.

 
286



 

respectively. Loop closure optimization is also turned off for 
KISS-ICP, MULLS, and LeGO-LOAM for pure LiDAR 
odometry evaluation. Since no rotation ground truth is provided 
for the indoor datasets of M2DGR, we only list the position errors 
here. Meanwhile, we failed on the Lift part dataset because the 
robot was sent to the second floor by a lift and the point cloud 
registration could not work. 
 

Scene 
(Length 

[m]) 

Door 
(200) 

Hall 
(845) 

Room 
(144) 

Rm. 
dark 
(395) 

Avg. 
(m) 

F-LOAM 0.25 0.63 0.14 0.20 0.31 
KISS-ICP 0.30 0.57 0.24 0.29 0.35 
MULLS 0.35 0.64 0.15 0.20 0.34 
LeGO-
LOAM 0.21 0.56 0.16 0.21 0.29 

M-GCLO 0.22 0.52 0.14 0.20 0.27 
Table 3. Translation comparison on M2DGR dataset. 

 
Table 3 demonstrates the position results for the door, hall, room 
and dark room datasets. In door scenes, the robot traveled through 
a door from indoor to outdoor. For hall dataset, point clouds are 
collected through random walking of robot in a hall, which lasted 
for 20 minutes. The data for the room and dark room were 
acquired in a room with brightness and darkness, respectively. 
Unlike image collection, point cloud acquirements will not be 
affected by the lights, so the feature registration will remain the 
same. The voxelization parameters for the indoor experiments are  
0.5m for the ground voxels and 1m for the off-ground points. It 
is obvious that with the constraints of the ground planes, the 
algorithm has higher accuracy when looking at the average 
position errors directly(0.27m) compared with KISS-ICP, which 
is an ICP-based LiDAR odometry method. However, it is also 
worth noticing that M-GCLO is more robust than its counterparts 
when the ground planes are maintained and optimized, unlike 
MULLS(where the position errors would be large in door and hall 
environments). LeGO-LOAM shows good results on M2DGR 
because it optimizes one ground plane in the mapping process, 
and the ground floor in the indoor scenes is basically flat. Lastly, 
the indoor experiments also showed the adaptability of M-
GCLO, which can not only behave well on large-scale outdoor 
datasets but also achieve robustness and good accuracy on small-
scale indoor datasets. 
 

4. Conclusions 

This paper proposes the M-GCLO(Multiple Ground Constrained 
LiDAR Odometry) algorithm. Raw point clouds are segmented 
into ground and off-ground points and then voxelized into 
different maps, respectively. From each ground voxel, we fit and 
parameterize a plane and then optimize the point-to-plane 
distances continuously. For the non-ground points, the point-to-
distribution residuals are computed based on the NDT voxel 
maps. Besides, we formulate the error propagation process from 
each point’s uncertainty to residuals’ uncertainties and weigh the 
residuals based on that. The experiment results on KITTI and 
M2DGR show that M-GCLO can achieve better localization 
accuracies than other state-of-the-art LiDAR odometry methods 
in both outdoor and indoor environments. Meanwhile, M-GCLO 
demonstrates higher robustness with the multiple constraints 
from the ground planes. A future direction would be using ground 
constraints to detect loop closure to further minimize the pose 
errors and improve the point cloud quality. 
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