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Abstract

Feature matching plays a crucial role in 3D reconstruction to provide correspondences between overlapped images. The accur-
acy and efficiency of feature matching significantly impact the performance of 3D reconstruction. The widely used framework
with the exhaustive nearest neighbor searching (NNS) between descriptors and RANSAC-based geometric estimation is, however,
low-efficient and unreliable for large-scale UAV images. Inspired by indexing-based NNS, this paper implements an efficient fea-
ture matching method for large-scale images based on Cascade Hashing and local geometric constraints. Our proposed method
improves upon traditional feature matching approaches by introducing a combination of image retrieval, data scheduling, and
GPU-accelerated Cascade Hashing. Besides, it utilizes a local geometric constraint to filter matching results within a matching
framework. On the one hand, the GPU-accelerated Cascade Hashing technique generates compact and discriminative hash codes
based on image features, facilitating the rapid completion of the initial matching process, and significantly reducing the search space
and time complexity. On the other hand, after the initial matching is completed, the method employs a local geometric constraint
to filter the initial matching results, enhancing the accuracy of the matching results. This forms a three-tier framework based on
data scheduling, GPU-accelerated Cascade Hashing, and local geometric constraints. We conducted experiments using two sets of
large-scale UAV image data, comparing our method with SIFTGPU to evaluate its performance in initial matching, outlier rejection,
and 3D reconstruction. The results demonstrate that our method achieves a feature matching speed 2.0 times that of SIFTGPU while
maintaining matching accuracy and producing comparable reconstruction results. This suggests that our method holds promise for
efficiently addressing large-scale image matching.

1. INTRODUCTION

Feature matching is a fundamental task in the fields of photo-
grammetry and computer vision for wide-ranging applications,
including image retrieval (Li et al., 2021), object recognition,
and 3D reconstruction (Jiang et al., 2022b). It involves identi-
fying and matching identical features from spatially overlapped
images, a critical aspect of understanding and interpreting visual
data. In the literature, extensive research has been conducted for
efficient and accurate feature matching, which ranges from the
earlier corner detectors to the recent invariant features (Fan et
al., 2019; Jiang et al., 2021b).
Traditional feature matching algorithms include methods based
on the nearest Euclidean distance and index-based matching.
Approaches based on the nearest Euclidean distance include
nearest neighbor matching and K-nearest neighbor matching.
Nearest neighbor matching, a classical method, involves cal-
culating the Euclidean distance between the target feature and
all other features, selecting the nearest one as the match. While
simple, it is computationally expensive and susceptible to noise.
K-nearest neighbor matching extends this by selecting K-nearest
features, improving accuracy but making the choice of K chal-
lenging. Muja and Lowe (2014) found that K-nearest neighbor
matching is most suitable for fast approximate search in high-
dimensional space, and introduced a new algorithm for fast ap-
proximate matching of binary features. Its open-source library
∗ Corresponding author

FLANN is used in a large number of research and industrial
projects and is widely used.
Index-based matching methods include KD-tree matching and
hash-based matching. KD-tree matching uses a spatial par-
titioning tree to reduce computational costs during matching.
While fast, constructing KD-trees is relatively complex, and
its performance with high-dimensional features is suboptimal
(Silpa-Anan and Hartley, 2008). Hash-based matching rapidly
finds matching features by mapping features to a hash table
(Cheng et al., 2014; Cao et al., 2023). While efficient, hash
collisions and sensitivity to noise can be issues. Based on the
basic idea of index-based matching, Jiang et al. (2022a) pro-
posed an integrated workflow to achieve simultaneous match
pair selection and guided feature matching for image orienta-
tion. The core idea of the proposed algorithm is to explore the
index structure of both inverted and direct indexes in the con-
text of a vocabulary tree-based image retrieval.
Additionally, there are some other feature matching methods
like Random Sample Consensus (RANSAC) (Fischler and Bolles,
1981), Support Vector Machine (SVM) (Hearst et al., 1998),
and deep learning (Jiang et al., 2021a). RANSAC mitigates
noise and outliers by randomly selecting a subset of samples
for matching and performing consistency checks on all samples.
SVM maps features to a high-dimensional space to find optimal
matching results. Deep learning automatically learns feature
representations and performs matching but requires substan-
tial training data and computational resources (Maltezos et al.,
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2017; Liu et al., 2018).
Each algorithm has its pros and cons, requiring selection based
on specific application scenarios and needs. As image data
scales up, traditional feature matching methods often struggle
to maintain efficiency and accuracy due to the associated high
computational costs and complexity.
Our proposed method combines the advantages of Euclidean
distance-based and index-based feature matching methods, ex-
celling in both speed and accuracy compared to other meth-
ods. In terms of speed, our method generates scheduling or-
ders based on image retrieval results, significantly optimizing
data transfer between memory and GPU. Simultaneously, our
method uses GPU to accelerate Cascade Hashing, ensuring a
smooth and efficient matching process. In terms of accuracy,
our method exhibits improvements over traditional approaches.
In the outlier elimination stage, local geometric constraints are
applied to filter initial matching results. This forms a two-tier
outlier elimination structure with RANSAC, enhancing both
speed and accuracy, representing considerable progress. Our
method is well-suited for Cascade Hashing under the frame-
work of image retrieval, data scheduling, GPU acceleration, and
local geometric constraints. This opens up new possibilities for
improving the efficiency and accuracy of large-scale image fea-
ture matching. We believe our proposed method not only con-
tributes to the field of photogrammetry but also holds potential
implications for other areas such as image retrieval and monit-
oring systems.
The paper will introduce the methods involved in the second
part. In the third part, we will analyze the issues with exist-
ing methods and provide detailed explanations of our improve-
ments to current methods. In the fourth part, we will present
our experimental results, indicating that our method performs
well in large-scale feature matching.

2. THE WORKFLOW OF CASCADE HASHING
MATCHING

Feature matching is typically the primary factor contributing to
time consumption in 3D reconstruction. Consequently, many
researchers in related fields have been continuously exploring
ways to optimize the time consumption of the feature matching
phase. For example, the SIFTGPU algorithm proposed by Wu
(2013) accelerates the traditional SIFT algorithm and stands as
a mainstream algorithm in current feature matching. Cao et al.
(2023) proposed a feature matching approach based on hash
indexing. Cheng et al. (2014) proposed a Cascade Hashing ap-
proach to accelerate feature matching. The method they intro-
duced exhibits higher accuracy and speed compared to tradi-
tional hash indexing matching. Xu et al. (2017) and others pro-
posed a Cascade Hashing algorithm accelerated by GPU. Zhang
et al. (2023) combined data scheduling and GPU-accelerated
Cascade Hashing. They also filtered initial matches using rough
positional data on image pairs, achieving high-speed feature
matching. Building upon this, we integrated various methods,
forming a three-tier framework based on data scheduling, GPU-
accelerated Cascade Hashing, and local geometric constraints.
We propose an accelerated feature matching algorithm tailored
for UAV images without positional data. In the following sec-
tions, we will introduce the methods involved.
The data scheduling component is the first part of our frame-
work. Due to the substantial number of invalid match pairs
resulting from an exhaustive matching strategy, employing an
effective algorithm to filter potential matching image pairs be-
fore the matching process can significantly reduce the overall

time consumption. In our method, we initiate the process by
conducting image retrieval on the dataset to establish adjacency
relationships between different images. In the algorithmic part
of data scheduling, we draw inspiration from the approach pro-
posed by Zhang et al. (2023). This involves generating an image
scheduling order based on the results of image retrieval. In the
following sections, we will provide a detailed introduction to
each part of the data scheduling process.

2.1 Image Retrival

We have employed an efficient method for retrieving matched
pairs in image retrieval (Jiang et al., 2023). This method in-
tegrates vector of locally aggregated descriptors(VLAD) (Jgou
et al., 2012) and hierarchical navigable small word(HNSW)
(Malkov and Yashunin, 2018) and establishes adjacency re-
lationships between images through image retrieval before
matching image pairs, thereby reducing the computational cost
of global matching. Specifically, the key steps of this method
include:

1) Online Training of Individual Codebook: By consider-
ing the redundancy of UAV images and local features, we
avoid ambiguity in training codebooks from other datasets.
Through online training, an individual codebook is estab-
lished for the subsequent aggregation of local features.

2) Aggregation of Local Features: Utilizing the trained
codebook, local features of each image are aggregated into
a high-dimensional global descriptor. This significantly re-
duces the number of local features, alleviating the burden
of nearest neighbor searching in image retrieval.

3) Graph Indexing of Global Descriptors: The global
descriptors are indexed using a graph structure based on
hierarchical-navigable-small-world principles, enabling
efficient nearest neighbor searches. This contributes to the
acceleration of matched pair retrieval.

4) Match Pair Retrieval and View Graph Construction:
An adaptive threshold selection strategy is employed to
retrieve match pairs, which are then used to construct a
view graph. This graph facilitates divide-and-conquer-
based parallel Structure from Motion (SfM) reconstruc-
tion.

In practical applications of image retrieval, we have suc-
cessfully reduced data transfer costs by generating a rational
scheduling order based on image pairs. This method not only
ensures the selection of appropriate image pairs for matching
but also enhances the speed of feature matching.

2.2 Generation of Scheduling Order

In this study, the scheduling algorithm used is mainly based on
the memory capacity and the adjacency matrix generated by the
image retrieval part to generate the scheduling order of images.
During the scheduling process, we divide the images into two
categories, images in the video memory and images not in the
video memory, and adopt a specific scheduling strategy. Spe-
cifically, when there is no image in the video memory, we pri-
oritize the image with the largest number of neighbors to the
video memory. When there are images in the video memory
and the number of images does not reach the maximum value
that the video memory can accommodate, considering the adja-
cency relationship between the two types of images and within
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each type of image, we adopt the strategy proposed by Zhang
et al. (2023). By setting a weight factor ω, for images that have
not been transferred to the video memory, calculate the weight
Kselect of each image.

Kselect = ω ∗ M –K (1)

As shown in Equation (1), among them, M is the number of
adjacent images in the GPU memory, and K is the number of
adjacent images not yet transferred into the GPU memory. Im-
ages with the maximum Kselect are prioritized for scheduling
into the GPU memory. When the number of images in the GPU
memory reaches its maximum, the image with the minimum
K value is selected from the images not yet transferred into
the GPU memory and removed from the GPU memory. This
process continues until all images are successfully transferred,
generating the scheduling order.
During the experimental process, we found that due to the lim-
ited number of images that the GPU memory can accommod-
ate, in the actual scheduling process, some image pairs may be
unable to complete matching because certain images have been
removed from the GPU memory. To address this situation, we
adopted a rematch strategy. For matched pairs, we mark them
in the adjacency matrix. Then, based on the adjacency matrix,
we can continue to generate the scheduling order of images us-
ing the scheduling algorithm introduced above. Through this
cyclic matching strategy, we eventually complete the matching
of all image pairs with as few schedules as possible.
In summary, the image retrieval-based scheduling algorithm we
proposed is an efficient scheduling method that reduces data
transfer costs by generating a reasonable scheduling order. We
believe that this method will play an important role in future
research.

2.3 Cascade Hashing

The Cascade Hashing algorithm is an efficient method for fea-
ture point matching, combining a series of steps including SIFT-
GPU feature extraction, hash code calculation, hash table es-
tablishment, and the matching process, The process is shown
in Figure 1. Here is a detailed description of each step in the
Cascade Hashing algorithm:

Figure 1. The overall workflow of cascade hashing

1) Feature Extraction: Utilize the SIFT-GPU algorithm
to detect and extract key points (feature points) along
with their corresponding descriptors (Wu, 2013). These
descriptors typically constitute 128-dimensional vectors
with invariance to scale and rotation.

2) Hash Code Calculation: For each extracted SIFT fea-
ture point, calculate its hash code. This process typically
involves using a set of random matrices for projection,
mapping the high-dimensional SIFT descriptors to low-
dimensional binary hash codes. Such hash codes serve as
a compact representation of feature points, facilitating ef-
ficient storage and retrieval.

3) Hash Table Establishment: Use the Locality-Sensitive
Hashing (LSH) algorithm to map the computed hash codes
to multiple hash tables. Each hash table comprises mul-
tiple buckets, grouping feature points with similar hash
codes into the same bucket. This hash table structure en-
ables quick localization of similar feature points during
matching.

4) Hash Table Lookup for Candidate Points during
Matching: For each feature point in the query image, per-
form a hash table lookup to find its candidate points. Due
to the bucket structure inside the hash table, only feature
points within the same bucket are potential candidates for
matching.

5) Lowe Ratio Test-Based Filtering of Candidate Points:
For each query point, execute Lowe ratio tests among the
candidate points retrieved from the hash table. This test
compares the distances between the query point and its two
nearest neighbors. By setting a threshold, points that do
not meet the similarity requirements are filtered out.

6) Obtaining the Final Matching Results: After filtering
with Lowe ratio tests, the retained candidate points consti-
tute the final matching results. These points exhibit sim-
ilar features in the hash code space and have undergone
similarity checks, enhancing the accuracy of the matching
process.

The key advantage of the Cascade Hashing algorithm lies in
its ability to map the high-dimensional descriptors of SIFT
features to a low-dimensional hash code space, enabling effi-
cient matching of feature points through hash tables. During
matching, the Lowe ratio test further enhances the reliability of
correspondences. The efficiency of this process makes the al-
gorithm perform exceptionally well when handling large-scale
image datasets.

3. OUR IMPROVEMENTS

Despite the excellent performance of Cascade Hashing in
matching, certain issues persist. Through practical usage, we
conducted an analysis of these problems and proposed our solu-
tions based on the identified issues.

3.1 Problems

Currently, although Cascade Hashing exhibits fast matching
speed, its initial matching phase involves a significant number
of errors, potentially resulting in extended time consumption
during gross error removal. To address this issue, we have em-
ployed a series of methods.
During the initial matching phase, we have fully utilized GPU
for accelerated Cascade Hashing. However, despite the superior
performance of Cascade Hashing in certain aspects, it still has
some limitations. Hash encoding, being a form of compression
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representation, may lead to information loss, affecting the ac-
curacy of matching and ultimately resulting in suboptimal pre-
cision in the matching results. During program execution, the
GPU-based Cascade Hashing feature matching runs in parallel
with the CPU-based gross error removal. As a result, the over-
all speed of our method is influenced not only by the speed of
Cascade Hashing but also by the completion time of the gross
error removal part. Experiments have shown that, due to preci-
sion considerations, in cases where the initial matching speed is
fast, the final time of feature matching is primarily determined
by the speed of gross error removal. Therefore, we need to ad-
opt corresponding strategies to further optimize the gross error
removal part to enhance the overall matching performance.

3.2 Improvements

In order to solve the above problems, we chose to adopt a two-
layer filtering algorithm, combining the algorithm proposed by
Jiang et al. (2020) with our method, using local geometric con-
straints to filter the initial matching results, and using RANSAC
to eliminate gross errors in the filtered data. The workflow of
the local geometric constraint is illustrated in Figure 2.

Figure 2. The overall workflow of local geometric constraint.

The core idea is to design local geometric constraints within ad-
jacent structures using Delaunay triangulation and a two-stage
approach for outlier removal and matching refinement. The
proposed algorithm is referred to as DTSAO-RANSAC. The
algorithm’s workflow is summarized as follows:

1) Initial Matching Generation: Detect and describe fea-
ture points of images using the SIFT algorithm. Ob-
tain initial matches by Cascade Hashing between SIFT
descriptors.

2) Delaunay Triangulation Construction: Build Delaunay
triangulation (G1) using the initial matches and its corres-
ponding graph G2.

3) Outlier Removal Based on SAO Constraints: Remove
outliers with the affine-invariant spatial angular order
(SAO) constraints on the target vertices in G1. Iteratively
execute a layered elimination strategy until the dissimilar-
ity score is below a specified threshold.

4) Matching Extension: Use triangulation constraints for
matching extension to recover potentially missed true
matches.

5) RANSAC-Based Matching Refinement: Utilize the
RANSAC algorithm to estimate the fundamental matrix
and refine global geometric constraints for the retained
matches.

Overall, the DTSAO-RANSAC algorithm filters, extends, and
refines initial matches by combining local geometric (SAO con-
straints) and global geometric (RANSAC) strategies, enhancing
the reliability and efficiency of the matching process. Experi-
mental results demonstrate that DTSAO-RANSAC achieves ef-
ficient outlier removal, providing reliable matching results.
In summary, our approach begins with image retrieval to obtain
the adjacency matrix between images. Based on this matrix,
we generate the scheduling order for images. Utilizing GPU-
accelerated Cascade Hashing expedites the feature matching
process, significantly reducing data transfer during matching.
Subsequently, we employ local geometric constraints to filter
initial matches, avoiding significant time consumption in the
RANSAC phase due to low precision, and greatly improving
matching accuracy. This ultimately realizes accelerated fea-
ture matching for large-scale UAV images. We summarize our
approach, and the matching process is illustrated in Figure 3.
Among them, Qin is the queue for image scheduling into the
video memory; Qout is the queue for deleting images from
the video memory; Qinitmatch is the initial matching result
queue; Qresult is the result queue after gross error elimination;
Nummax is the maximum number of images that the video
memory can accommodate; Numcur is the current number of
images in the video memory; Spairs is the total number of im-
age pairs.

4. EXPERMENTAL RESULTS AND DISCUSSION

In this section, we evaluate our method using two datasets and
compare it with other state-of-the-art approaches. The exper-
iments were conducted on a Lenovo Y9000P laptop equipped
with an Intel Core i9-13900HX processor, NVIDIA GeForce
RTX 4050 graphics processor, and 16 GB DDR5 memory.
The operating system used was Windows 11, and CUDA 11.8
served as our development environment. The experimental plat-
form employed the open-source software COLMAP (Schonber-
ger and Frahm, 2016), taking full advantage of its features such
as feature matching, sparse reconstruction, and 3D model evalu-
ation. Subsequently, we will introduce our datasets and present
detailed experimental results for the three steps: feature match-
ing, outlier removal, and 3D reconstruction.

4.1 Datasets

The datasets used to evaluate our method were captured from
two distinct Unmanned Aerial Vehicle (UAV) datasets, namely
Campus and SZU. Table 1 provides detailed information about
the datasets. In addition to the information provided by the
table, it should be noted that the Campus dataset images
are captured from university campuses covered with densely
packed low-rise buildings, while the SZU dataset images are
taken from complex university structures and constitute a set of
wide-angle drone image sequences with significant perspective
variations. Figure 4 displays sample images from each dataset.

4.2 Initial Match and Gross Error Removal

The matching phase is a crucial step in the feature matching
process. We showcase the initial matching quantities, time con-
sumption, and outlier removal statistics of our method com-
pared to SIFTGPU. By comparing with existing methods, we
aim to highlight the superiority of our approach.

As shown in Table 2, in the Campus dataset, our method
demonstrates outstanding performance in the initial matching
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Figure 3. The overall workflow of matching process.

Item Campus SZU
UAV type multi-rotor multi-rotor
Flight height(m) 80 -
Camera mode DJI FC6310R DJI Zenmuse P1
Number of cameras 1 1
Focal length(mm) 24 35
Camera angle(°) 0 -
Number of images 3,743 4,030
Image size(pixel) 5472×3648 8192×5460
GSD(cm) 2.6 1.2

Table 1. Details of the two datasets.

(1) Campus

(2) SZU

Figure 4. Sample images of the two datasets.

phase, successfully matching approximately 24,770,216 fea-
ture points in a mere 3.7 minutes. After coarse outlier re-
moval, around 14,226,818 matching points are retained, with
a removal process taking 12.75 minutes, resulting in a final
matching precision of 0.57. In comparison, SIFTGPU exhibits
a slightly higher initial matching quantity of 26,933,624 points,
with a matching time of 8.5 minutes. However, the removal
process leads to a reduction in retained matching points to about
11,691,251, taking 21.17 minutes, and a final matching preci-
sion of 0.43, which is slightly inferior.
In the SZU scene, our method also performs remarkably well.
The initial matching quantity is 41,249,886 points, accom-
plished in 3.8 minutes. After coarse outlier removal, approxim-
ately 28,152,752 matching points are retained, with the removal

(1) Campus

Item - Ours SIFTGPU

Initial match Num 24,770,216 26,933,624
Time(min) 3.7 8.5

After gross
error removal

Num 14,226,818 11,691,251
Time(min) 12.75 21.17

Precision - 0.57 0.43
(2) SZU

Item - Ours SIFTGPU

Initial match Num 41,249,886 43,063,418
Time(min) 3.9 8.86

After gross
error removal

Num 28,152,752 29,471,618
Time(min) 10.57 22.38

Precision - 0.68 0.68

Table 2. Result of match.

process taking 10.57 minutes, resulting in a final matching pre-
cision of 0.68. In comparison, SIFTGPU exhibits a slightly
higher initial matching quantity of 43,063,418 points, with a
matching time of 8.86 minutes. However, the removal pro-
cess leads to a reduction in retained matching points to about
29,471,618, taking 22.38 minutes, and a final matching preci-
sion of 0.68, which is comparable to our method.
Overall, our method shows superior matching performance in
various scenarios, especially in campus scenarios, highlighting
its obvious performance advantages. In the SZU scene, both
methods show comparable matching accuracy, but our method
excels in error elimination, emphasizing its robustness and ad-
aptability, further highlighting its superior performance in 3D
reconstruction. As shown in Figure 5 and 6, we show the res-
ults of feature matching on images using our method. (1) is the
result of the initial matching, and (2) is the result of the initial
matching after DTSAO-RANSAC. It can be seen that after us-
ing DTSAO-RANSAC to eliminate gross errors in the matching
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results, most of the unmatched pairs have been eliminated. The
filtering is successful, which indicates that our method has good
robustness.

(1) Initial matches

(2) Matches after DTSAO-RANSAC

Figure 5. Matches by Ours (Campus).

(1) Initial matches

(2) Matches after DTSAO-RANSAC

Figure 6. Matches by Ours (SZU).

4.3 3D Reconstruction

In the final stage, we conducted parallelized reconstruction on
the completed matches to obtain the reconstructed results. In
this section, we specifically compare our method with altern-
ative approaches in terms of the successfully fused point cloud
quantity and image quantity during parallelized reconstruction.
This comparative analysis serves to evaluate the superiority of
our method in producing high-quality 3D models.

(1) Campus
Item Ours SIFTGPU
Registered images 3,732 3,737
Points 1,071,340 1,136,424

(2) SZU
Item Ours SIFTGPU
Registered images 4,029 4,028
Points 1,472,216 1,463,596

Table 3. Result of 3D reconstruction.

As shown in Table 3, In both scenarios, the number of re-
gistered images and the quantity of generated point clouds
by our method are comparable to SIFTGPU. Specifically, in
terms of feature matching, our method achieves nearly twice

the matching speed of SIFTGPU, and the three-dimensional re-
construction results exhibit equivalent point cloud quality com-
pared to SIFTGPU. This indicates that our method performs ex-
ceptionally well in terms of speed while ensuring high-quality
3D reconstruction.
Overall, compared to alternative methods in both scenarios, our
method demonstrates outstanding performance in feature point
matching and parallelized reconstruction. This highlights the
significant advantage of our method in generating high-quality
3D models. Figure 7 showcases the 3D models reconstructed
based on our method. With faster matching speeds, our method
surpasses traditional approaches in terms of fused image quant-
ity and key point quantity across different datasets, emphasiz-
ing the superiority of our proposed method in reconstruction
outcomes.

(1) Campus

(2) SZU

Figure 7. 3D reconstruction model: (left) Point cloud model;
(right) Position of the camera.

5. CONCLUSIONS AND FUTURE STUDIES

This study introduces an efficient feature matching algorithm
for large-scale images, enhancing the efficiency and accuracy of
image feature matching through three key steps: data schedul-
ing, GPU-accelerated Cascade Hashing, and local geometric
constraints. Firstly, in the data scheduling phase, we success-
fully reduced the number of ineffective match pairs and minim-
ized data transfer costs through image retrieval and scheduling
order generation strategies. The adoption of a cyclic match-
ing strategy effectively addressed issues related to insufficient
memory, ensuring the completion of matches for all image
pairs. Secondly, in the Cascade Hashing phase, we fully utilized
the parallel computing capabilities of the GPU to accelerate
image feature matching using the Cascade Hashing algorithm.
This not only improved matching speed but also enhanced ac-
curacy and robustness through judicious strategy and parameter
settings. Lastly, the introduction of the concept of local geomet-
ric constraints led to the development of the DTSAO-RANSAC
algorithm. By employing Delaunay triangulation and SAO
constraints, we successfully filtered out outliers in the initial
matches, further increasing the reliability of matching results.
Matching extension and RANSAC-based refinement ensured
recovery from missed matches and global geometric constraints
on matching results. In summary, our algorithm outperforms
existing methods in terms of both speed and accuracy, provid-
ing a promising solution for large-scale image feature matching.
Experimental results demonstrate satisfactory performance at
each step, showcasing the synergistic effects of image retrieval,
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data scheduling, GPU acceleration, and local geometric con-
straints. This study not only contributes to the field of computer
vision but also holds potential implications for various domains
such as image retrieval and surveillance systems.
For future research, we aim to further optimize the algorithm,
especially in adapting to different data characteristics and
scenes to enhance its universality. Additionally, we plan to ex-
pand our algorithm for more complex matching scenarios and
larger datasets to meet the demands of practical applications.
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