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Abstract 

Over the last decades, ample achievements have been made on Structure from Motion (SfM). However, the vast majority of them 
basically work in an offline manner, i.e., images are firstly captured and then fed together into a SfM pipeline for obtaining poses and 
sparse point cloud. In this work, on the contrary, we present an on-the-fly SfM: running online SfM while image capturing, the newly 
taken On-the-Fly image is online estimated with the corresponding pose and points, i.e., what you capture is what you get. Specifically, 
our approach firstly employs a vocabulary tree that is unsupervised trained using learning-based global features for fast image retrieval 
of newly fly-in image. Then, a robust feature matching mechanism with least squares (LSM) is presented to improve image registration 
performance. Finally, via investigating the influence of newly fly-in image’s connected neighboring images, an efficient hierarchical 
weighted local bundle adjustment (BA) is used for optimization. Extensive experimental results demonstrate that on-the-fly SfM can 
meet the goal of robustly registering the images while capturing in an online way. 

1. INTRODUCTION

Structure from Motion (SfM) has been a pivotal topic in the field 
of computer vision, robotics, photogrammetry, which are widely 
applied in augmented reality (Liu et al., 2019), autonomous 
driving (Sarlin et al., 2021; Sarlin et al., 2019; Brachmann et al., 
2021), and 3D reconstruction (Schönberger et al., 2016). 
Heretofore, many impressive SfM approaches have been 
extensively studied, mainly including Incremental SfM 
(Schönberger et al., 2016; Wu, 2013; Agarwal et al., 2009; Frahm 
et al., 2010; Wang et al., 2018), Hierarchical SfM (Gherardi et al., 
2010; Toldo et al., 2015; Farenzena et al., 2009; Havlena et al., 
2009) and Global SfM (Jiang et al., 2013; Cui et al., 2015; Wilson 
et al., 2014; Kasten et al., 2019; Zhuang et al., 2018; Arrigoni et 
al., 2016; Arie-Nachimson et al., 2012), depending on the 
procedure of how images are registered. However, these SfM 
methods predominantly operate in an offline manner, i.e., images 
are firstly captured, feature extracting\matching and epipolar 
geometry validation are then performed using all images, one 
specific SfM method is selected to estimate poses of all images 
and the corresponding sparse point cloud. This conventional 
offline SfM typically limits the possibility for online 
measurement, rapid quality evaluation, etc. 

In response to real-time performance, there exists another related 
hot research topic of VSLAM (Visual Simultaneous Localization 
and Mapping) worth referring to, it can deal with video data in 
real time. Given sequential frames, VSLAM can compute real-
time trajectory of cameras and 3D object points. Generally, with 
various embedded sensors, VSLAM can be mainly categorized 
into mono-VSLAM, stereo-VSLAM and Inertial-VSLAM (Mur-
Artal et al., 2015; Kiss-Illés et al., 2019; Qin et al., 2019; Mur-
Artal and Tardós, 2017; Campos et al., 2021), they all contain 
several common modules: tracking, inputting frames and 
outputting the corresponding pose; local mapping, generating 3D 
points and optimizing local maps; loop closure, detecting loop 
and refining loop correction.  The inherent assumption of 
VSLAM requires that the input frames must be spatiotemporally 
continuous (Mur-Artal et al., 2015), which means two adjacent 
frames must be contiguous in time and space or auxiliary 
information from GPS/IMU (Qin et al., 2019; Mur-Artal and 
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Tardós, 2017) is available, this consequentially hinders the way 
that the data can be collected. 

Figure 1.  The proposed on-the-fly SfM. 

In this paper, as Fig. 1 exemplifies, we present a novel on-the-fly 
SfM: running online SfM while image capturing. Similar to 
conventional SfM, on-the-fly SfM yields image poses and 3D 
sparse points, but we do this while the image capture. More 
specifically, the current image’s pose and corresponding 3D 
points can be estimated before next image is captured and on-the-
fly to be processed, i.e., what you capture is what you get. Also, 
analogous to VSLAM that can ensure real-time performance, on-
the-fly SfM is further designed to be able to deal with images 
captured in an arbitrary way, whereby the spatiotemporal 
continuity is not necessary any more. The proposed SfM is 
mainly composed of three steps: online image collecting module, 
fast image matching and efficient geometric processing. The first 
one is first established with a camera and a Wifi transmitter, 
which immediately send the captured image for processing via 
Wifi signal transmission. The second step is to efficiently and 
robustly generate the matching results between the already 
registered images and the new fly-in image, in which fast image 
retrieval is the most important component for real-time 
performance. The last step is to estimate camera pose and 3D 
points robustly and fast, besides the canonical image registration 
and triangulation, an efficient hierarchical weighted local bundle 
adjustment is adopted. For each new fly-in image, we just iterate 
these three steps. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1-2024 
ISPRS TC I Mid-term Symposium “Intelligent Sensing and Remote Sensing Application”, 13–17 May 2024, Changsha, China

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-1-2024-297-2024 | © Author(s) 2024. CC BY 4.0 License.

 
297



 

To approach the goal of what you capture is what you get, along 
with the presented on-the-fly SfM using a new online working 
mode, we also make three technical contributions: 
 
 Fast image retrieval based on learning-based global feature and 

vocabulary tree. In this work, we extract the global feature 
using the pre-trained model (Hou et al., 2023) and 
unsupervised train vocabulary tree. For each new fly-in image, 
the global feature is computed and traversed along the 
vocabulary tree for fast image retrieval. 
 

 Refinement of correspondences using Least Squares Matching 
(Yue et al., 2023). Based on the geometric and photometric 
consistency around the local windows of matched points, a 
least squares system is applied to refine the 2D position of 
correspondences according to the grey values within the 
relevant local windows on two images. 

 
 Hierarchical weighted local BA for efficient optimization of 

poses and 3D points. For each new fly-in image, only its 
neighboring connected images (already registered) are 
enrolled in BA. In addition, based on our image retrieval result, 
the influence of various connected images on the newly 
captured image is implied by hierarchical weights, which are 
employed as priors for improving BA. 

 
2. RELATED WORK 

In this section, two related topics (SfM and SLAM) are briefly 
reviewed, some state-of-the-art studies of image retrieval and 
efficient bundle adjustment are then introduced. 
 
2.1 SfM & VSLAM 

So far, there are a lot of open public SfM packages, e.g., 
VisualSFM (Wu, 2016), OpenMVG (Moulon et al., 2016), Theia 
(Sweeney, 2016), Colmap (Schönberger et al., 2016), etc. 
However, all these packages basically concentrate on offline 
processing mode. For example, Colmap, one of the most widely-
used packages, furnishes an end-to-end 3D reconstruction 
pipeline for large-scale unordered images and it unfolds via a 
structured pipeline that is mainly comprised of three key stages: 
image matching, pose estimation and sparse reconstruction, 
dense reconstruction. To achieve the goal of real-time SfM, 
inspired by monocular VSLAM, Song et al. (2014) presented a 
monocular SfM that concentrated on eliminating scale drift using 
the information of ground plane. They yielded comparable 
performance to stereo setting on long-time sequences. Zhao et al. 
(2022) proposed a so-called real-time SfM (RTSfM), in which 
feature matching was improved by a hierarchical feature 
matching strategy based on BoW (Bag-of-Word) (Nister et al., 
2006) and multi-view homography, and a graph-based 
optimization was employed for efficiency. However, both the 
reviewed online SfM methods still rely on the spatiotemporal 
continuity between images or require GPS. 
 
Furthermore, there already exist quite a few mature VSLAM 
methods that are capable of real-time performance in specific 
scenarios or tasks. For example, the very popular ORB-SLAM 
series (Mur-Artal et al., 2015; Mur-Artal and Tardós, 2017; 
Campos et al., 2021) was continuously published, which achieve 
high-precision localization while capturing frames. VINS-Fusion 
(Geneva et al., 2020) combined input of images and GPS/IMU, 
it is widely adopted in autonomous driving. However, the 
robustness of these VSLAM methods is limited in certain 
scenarios, such as weak textures and motion blur. Yue et al. (2023) 
integrated least squares into the feature matching of ORB-
SLAM2 and provided more precise observations. Note that while 

ample VSLAM methods are worth reviewing, we only list a few 
popular and related works. 
 
Contrary to conventional SfM, our proposed on-the-fly SfM is 
deployed with real-time online processing while image capturing 
in an arbitrary way. Comparing to VSLAM, the major advantage 
of our method is that the requirement for input images’ 
spatiotemporal continuity is not necessary any more, nor is the 
independence of GPS/IMU. 
 
2.2 Image retrieval 

Image retrieval technique has been widely deployed in SfM and 
VSLAM for accelerating feature matching and loop closure 
detection. One typical idea is to build an efficient indexing 
structure using local features (e.g., SIFT, ORB), in which the 
BoW is one of the most representative methods to fast identify 
similar image pairs and loop closure, such as (Snavely et al., 
2006). Similar to BoW, Havlena and Schindler (Havlena et al., 
2014) trained a two-layer vocabulary tree for speeding up image 
matching. Wang et al. (2019) introduced random KD-forest 
consisted of several independent KD-trees, and matchable image 
pairs can be efficiently determined via traversing on the KD-
forest. 
 
In the last few years, learning-based methods have greatly 
improved image retrieval regarding both time efficiency and 
precision. Arandjelović et al. (2016) proposed a trainable pooling 
layer via a soft assignment for VLAD, which boosted the place 
recognition. Radenović et al. (2019) exploited the SfM result and 
automatically generated similar and non-similar image pairs, 
which is used to fine tune pre-trained CNNs for better global 
image features. Based on (Radenović et al., 2019), Shen et al. 
(2018) adjusted CNN by considering the local overlapping 
regions. Recently, Hou et al. (2023) proposed a CNN fine-tuning 
method with multiple NetVLADs to aggregate feature maps of 
various channels and published an benchmarks LOIP that 
consists of both crowdsourced and photogrammetric images. 
 
2.3 Efficient optimization of bundle adjustment 

Nowadays, bundle adjustment (BA) has become a mature 
technique for optimizing image poses and 3D point positions. 
However, as image number increases, a lot of works for solving 
BA in a fast and reliable way emerged. For example, 
preconditioned conjugate gradients were explored to solve BA in 
(Shen et al., 2018), Wu et al. (2011) and Zheng et al. (2017) 
further improved the efficiency for solving large-scale linear 
equation system by means of GPU. To cope with large-scale 
problem, distributed approaches that split a large BA problem 
into several overlapping small subset BA problems attract 
researchers’ attentions (Zhang et al., 2017; Mayer, 2019). Zhang 
et al (2017) parallelly solved each subset BA and proposed global 
camera consensus constraint to merge all subsets, Mayer (2019) 
employed 3D points as global consensus constraints and the 
corresponding covariance information was applied for better 
convergence behavior. MegBA (Ren et al., 2022) parallelly 
solved subsets via multiple GPUs, which provide a more time 
efficient solution. 
 
All the above BA methods aims to efficiently optimize all 
unknows globally, which are inherently not feasible for 
sequential mode (it is not efficient to run global BA when each 
and every new image comes in, see section IV-C). 
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3. On-the-Fly SfM 

In this section, we introduce our on-the-fly SfM in more detail. 
First, we overview the general pipeline of our on-the-fly SfM. 
Then, three key involved methodologies are explained: 1) Fast 
image retrieval based on learning-based global feature and 
vocabulary tree; 2) Correspondence refinement using least 
squares matching; 3) Efficient local BA optimization via 
weighted hierarchical tree. 
 
3.1 Overview of on-the-fly SfM 

Fig.2 illustrates the general workflow of our on-the-fly SfM, 
which constitutes five parts: image capturing and transmitter, 
online image matching, two-view geometry, LSM 
correspondence refinement, online reconstruction. 
 
Image capturing and transmitter. To achieve the goal of what 
you capture is what you get, in this work, a consumer digital 
camera is used to collect images, which is integrated with a 
wireless Wifi transmitter to transfer images for processing in real 
time (see section IV for more details). After receiving a new fly-
in image, the other four parts start to work. 
 
Online image matching. Fast identifying matchable images for 
new fly-in image is one of the most important procedures, as the 
first step for a new image is to find the relationship with already 
registered images, i.e., running image matching. In this paper, we 
applied the learning-based global feature (Hou et al., 2023) and 
its corresponding vocabulary tree to fast determine new image’s 
matchable candidate images, among which correspondences are 
estimated. 

Figure 2.  Workflow of the proposed on-the-fly SfM. 
 
Two-view geometry. Similar to (Schönberger et al., 2016), a 
multi-model two-view geometric verification method is applied. 
In general, fundamental matrix is estimated and two images are 
geometrically reliable if at least Nf inlier matches exist, then the 
homography is computed with Nh inliers. For calibrated case, 
essential matrix is estimated as well. And the final two-view 
geometric model is selected according to GRIC (Torr, 1997), and 
initial stereo reconstruction is selected as the verified image pair 
with most triangulated 3D points and the median triangulation 
angle being closed to 90 degrees (e.g., 60~120). 
 
LSM correspondence refinement. Despite the employed robust 
estimator in two-view geometry and online reconstruction, a 
further improvement can be expected by refining the generated 
correspondences based on least squares matching. 

 
Online reconstruction. This part mainly addresses on image 
pose and 3D point estimation, among which the image 
registration and triangulation are solved by EPnP (Lepetit et al., 
2009) and RANSAC-based multi-view triangulation 
(Schönberger et al., 2016). To approach online reconstruction, we 
solve the most time-consuming bundle adjustment by presenting 
hierarchical weighted local bundle adjustment which is based on 
the fact that newly fly-in image only affects its connected 
overlapping images to some degree (more details can be found in 
section III-D) 
 
3.2 Fast image retrieval based on learning-based global 
feature and vocabulary tree 

In this part, a fast image retrieval pipeline integrated with 
learning-based global feature and vocabulary tree is employed to 
guarantee online image matching for on-the-fly SfM. Fig. 3 
illustrates the key idea: 1. Pre-train models. CNN model is 
applied as global feature extractor (Hou et al., 2023; Arandjelović 
et al., 2016; Radenović et al., 2019), and a vocabulary tree is built 
using global features of all training images; 2. Image retrieval for 
fly-in image. Each new image’s global feature is firstly extracted 
using selected CNN model, and input into built vocabulary tree 
to fast identify matchable images. 

 
Figure 3.  Fast image retrieval workflow based on learning-based global 

feature and vocabulary tree. 
 
1) Learning-based global feature extractor. CNNs have been 
successfully applied in retrieving visually similar images as 
feature extractor (Sturm et al., 2012). In this work, to determine 
matchable image pairs that often have partial overlapping area, 
the fine-tuned CNN model of (Hou et al., 2023) is selected as our 
global feature extractor, as we find that (Hou et al., 2023) is 
tailored for seeking overlapping image pairs to speed up offline 
SfM and is supposed to be also feasible for our on-the-fly SfM. 
In particular, (Hou et al., 2023) yields a new training dataset 
(LOIP) with ground-truth matchable pairs, and a novel 
architecture composed of CNN and multiple NetVLADs are fine-
tuned by region triplet loss. Note that their off-the-shelf model is 
accessible and employed. 

 
Figure 4.  Toy example for fast image retrieval of new fly-in image. 

Similar images are clustered into the same node. 
 
2) Vocabulary tree training. To the best of our knowledge, for 
global features, similar images are typically retrieved by 
comparing Euclidean distance of two images' feature vectors, 
which is yet not efficient for large scale problem. Motivated by 
BoW, it can be expected that a vocabulary tree for global feature 
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is able to further improve retrieval time efficiency. Given the 
extracted global feature by (Hou et al., 2023), we can train a 
corresponding vocabulary tree via an unsupervised manner, i.e., 
the canonical K-means algorithm is hierarchically repeated to 
split the feature space until a certain depth is reached. To ensure 
the generality and even splitting of the feature space, LOIP 
containing various crowdsourced and photogrammetric images is 
used. As a consequence, a vocabulary tree with the information 
of each cluster center is generated for fast image retrieval. 
 
3) Fast image retrieval for new fly-in image. Based on the pre-
trained models of global feature extractor and vocabulary tree, 
matchable images of new fly-in image can be fast found. Instead 
of estimating Euclidean distance of all possible image pairs, only 
the cluster centers are required to be compared and the 
assumption is that similar images should fall into the same node 
as Fig. 4 shows. Specifically, as a new image flies in, its global 
feature is extracted and fed into the vocabulary tree, the already 
registered images that are matchable image candidates can be fast 
identified via traversing the nodes of vocabulary tree, i.e., similar 
images should always be in the same node. 
 
3.3 Correspondence refinement using least squares 
matching 

Based on the original feature matching mechanism (e.g., SIFT), 
we present a correspondence refinement solution by integrating 
with the least squares matching (LSM), which is supposed to 
mitigate error accumulation. In general, as Fig. 5 shows, LSM is 
firstly applied to improve correspondences regarding 2D position 
and outliers, and to generate new observations for improving PnP 
estimation. 
 

 
Figure 5. Least square matching refinement. 

 
1) Basic principle of LSM. The general idea of LSM is to optimize 
the 2D position of matches based on consistency of pixel grey 
values around corresponding local windows on two images (Yue 
et al., 2023). Typically, radiometric and geometric inconsistency 
are explored in LSM, the first one often results from illumination, 
various photographic conditions and errors of digitization, etc., 
the second one is normally due to depth changes and image 
distortion, etc. The basic assumptions of LSM are: radiometric 
inconsistency between matched points is not complicated and can 
be approximated by linear transformation (see equation (1)) and 
the geometric inconsistency between two corresponding small 
local windows can be simply modelled by affine transformation 
(as Fig (5) left shows, see equation (2)). LSM is formulated by 
Equation (3) that combines Equation 1 and 2. 

𝐼𝐼1(𝑥𝑥1,𝑦𝑦1) =  ℎ0 +  ℎ1𝐼𝐼2(𝑥𝑥2′ ,𝑦𝑦2′)                    (1) 
 

�𝑥𝑥2
′ = 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥2 + 𝑎𝑎2𝑦𝑦2
𝑦𝑦2′ = 𝑏𝑏0 + 𝑏𝑏1𝑥𝑥2 + 𝑏𝑏2𝑦𝑦2

                         (2) 

 
𝐼𝐼1(𝑥𝑥1,𝑦𝑦1) = ℎ0 + ℎ1𝐼𝐼2(𝑎𝑎0 + 𝑎𝑎1𝑥𝑥2 + 𝑎𝑎2𝑦𝑦2, 𝑏𝑏0 + 𝑏𝑏1𝑥𝑥2 + 𝑏𝑏2𝑦𝑦2) (3) 

 
where I(.) indicates the grey value, (𝑥𝑥1,𝑦𝑦1) and (𝑥𝑥2,𝑦𝑦2) are the 
correspondence from original matching results. 𝑎𝑎0~2  and 𝑏𝑏0~2 
are the unknown affine parameters, ℎ0,1 are the unknown linear 
parameters for radiometric constraint. 
 
Equation (3) can be solved using least squares in an iterative way 
(Yue et al., 2023). If the refinement converges successfully, the 
refined 2D position can be obtained from Equation (2), otherwise, 
the correspondence is deleted as outlier. 
2) 2D position refinement and outlier detection.  According to 
the basic principle of LSM, given a pairwise correspondence, i.e., 
(𝑥𝑥1,𝑦𝑦1) and (𝑥𝑥2,𝑦𝑦2), we first try to solve equation (3) using least 
squares: if it converges, the corresponding 2D position will be 
refined; if it fails, the correspondence is detected as an outlier. 
 
3) Densifying matches. For new fly-in image, one of the main 
goals is to compute the corresponding pose via EPnP. To ensure 
a robust and reliable pose estimation, new reliable extra 2D-3D 
matches are produced using LSM. For some 3D points that can 
be viewed by a specific image, but without corresponding 2D 
observations, LSM is run to generate these new 2D-3D matches. 
More specifically, initial pose is first estimated, 3D points are 
reprojected onto image for coarse 2D positions, LSM is then 
followed to optimize for more accurate 2D positions as densified 
matches. Finally, all the 2D-3D matches including both original 
and densified ones are employed for pose estimation. 
 
3.4 Hierarchical weighted local bundle adjustment for 
efficient optimization  

Figure 6. Hierarchical weighted local bundle adjustment. 
 
To achieve real-time performance for our on-the-fly SfM, an 
efficient bundle adjustment is heavily required. Inspired by the 
natural phenomenon that the closer to center the ripple is, the 
larger the related amplitude is (as Fig.6 left corner shows), 
analogously, the uncertainty of new fly-in image makes higher 
influence on closely associated images than images that are 
farther. As Fig. 6 implies, this work presents a new efficient local 
bundle adjustment with hierarchical weights. Based on the image 
retrieval results (section B), a hierarchical association tree is built, 
which indicates the association relationship between new image 
and registered images. Then, hierarchical weight for every locally 
associated image is then estimated and used for robust bundle 
adjustment. 
 

 
Figure 7. Example of hierarchical association tree building and 

weighting. 
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1) Hierarchical association tree building and weighting. With 
the presented fast image retrieval method, for every fly-in image, 
it is efficient to figure out top-N similar images. As images on 
various ripples (or hierarchical layer) are inconsistently affected 
by new image, a Hierarchical association tree is built. The 
images in first ripple are composed of Top-N similar images for 
current fly-in image, and the second ripple images are Top-N 
similar images of first ripple images, repeat until a pre-setting 
depth L. All the enrolled images in the hierarchical tree are 
denoted as 𝐼𝐼ℎ𝑎𝑎𝑎𝑎 . As Fig. 7 shows, a toy 4-layer hierarchical 
association tree is illustrated, in which every bottom layer images 
are the retrieved Top-N images of the upper layer and the first 
layer contribute highest effect on new image (indicated by thick 
red line). According to the ripple phenomenon, this work 
introduces a simple yet efficient hierarchical weighting solution 
for various ripple images, as shown in Equation (4): 

𝑝𝑝𝑖𝑖 = �
1,          𝑖𝑖𝑖𝑖 𝑖𝑖 =∗

(𝑘𝑘)𝑖𝑖−1, 𝑖𝑖𝑖𝑖 𝑖𝑖 ≠ 𝑳𝑳
∞,         𝑖𝑖𝑖𝑖 𝑖𝑖 = 𝑳𝑳

                                 (4) 

where i is the index of layer number, * is the current new fly-in 
image and k is a constant value (k>1) denoting the basic inverse 
influence between new fly-in image and already registered 
images. The larger the i is, the higher the corresponding 𝑝𝑝𝑖𝑖  is, 
which means images on farther ripples are much more stable and 
should have smaller updates. 
 
2) Local bundle Adjustment with hierarchical weights. Based on 
the local block consisting of 𝐼𝐼ℎ𝑎𝑎𝑎𝑎 and weighting 𝑝𝑝𝑖𝑖, we establish 
a new efficient and robust local BA with hierarchical weights. 
Equation (5) denotes the original reduced normal equation with 
only camera parameters (Wu, 2013). 

(𝐽𝐽𝑇𝑇𝐽𝐽 + 𝜆𝜆𝐷𝐷𝑇𝑇𝐷𝐷)𝛿𝛿 = −𝐽𝐽𝑇𝑇𝑓𝑓                      (5) 
To run bundle adjustment in a fast and robust way for new 
fly-in image, this study modifies Equation (5) as shown in 
Equation (6) 

(𝐽𝐽𝑇𝑇𝐽𝐽 + 𝜆𝜆𝐷𝐷𝑇𝑇𝐷𝐷)𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝛿𝛿ℎ𝑎𝑎𝑎𝑎 = −𝐽𝐽𝑇𝑇𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑓𝑓            (6) 
where, only the local block BA (𝛿𝛿ℎ𝑎𝑎𝑎𝑎 ) with images 𝐼𝐼ℎ𝑎𝑎𝑎𝑎  are 
refined and reasonable weights 𝑃𝑃ℎ𝑎𝑎𝑎𝑎composed of corresponding 
𝑝𝑝𝑖𝑖 is employed for robust optimization. 
 

4. EXPERIMENTS 

In this section, we report extensive experimental results on 
various datasets to demonstrate the capability of “what you 
capture is what you get” for our on-the-fly SfM. 
 
4.1 Implementation details 

The learning-based global features are extracted by (Hou et al., 
2023) and the vocabulary tree is trained with all images LOIP 
(Hou et al., 2023). In Fig. 8, our online image transmission is 
integrated with CAMFI 3.0 wireless image transmission 
equipment, whose working area is around 50 meters and 
transmission speed can be up to 10 Mb/s. Typically, 3-5s are 
needed to receive one image since it is captured in our tests. All 
experiments are run on the machine with 16 CPU processors and 
RTX3080 GPU. More information and code can be found at 
http://yifeiyu225.github.io/on-the-flySfMv1.github.io/. 
 
Experimental datasets. As fig. 8 shows, two self-collected 
datasets (SX-221 images, YX-349 images) are used to evaluate 
the on-the-fly performance of our SfM, which were taken in an 
arbitrary way and transferred online to our system. Three visual 
sequences (fr1_desk，fr3_st_far， fr1_xyz) from TUM RGB-D 
datasets (Sturm et al., 2012) are simulatively employed as input. 

 
Figure 8. Online Image transmission (left-Hardware, middle-SX, right-

YX). 
 

Running parameters. In this work, some free parameters are 
empirically set. For the online image matching, the vocabulary 
tree is with 5-layer depth and 5 sub-clusters for each node. Each 
new fly-in images selects Top-30 similar images for subsequent 
matching. The small local window in LSM is set as 15 ×15 pixels. 
For efficient BA, as each image in the ripple has top-N candidate 
images which might return a large BA block, only top-8 similar 
images are considered. The constant weighting parameter k = 2 
in all experiments. 
 
4.2 Performance of fast image retrieval 

To validate the real-time performance of our online image 
matching, based on SX and fr3_st_far, we investigate three 
different image matching strategies: exhaustive matching using 
Colmap with default setting (EM), exhaustive Euclidean 
comparison using learning-based global feature (Hou et al., 2023) 
(EE) and the proposed image retrieval (Ours) based on learning-
based global feature and vocabulary tree. 

 
Figure 9. Time consuming of various methods on fr3_st_far. 

 
Fig. 9 compares the time consumption of each strategy, in which 
the horizontal axis represents the number of current fly-in image 
and vertical axis is the time cost of retrieving current image with 
all the already registered images. It can be found that using global 
feature is significantly faster than the original local feature-based 
matching mechanism of Colmap, especially for large-scale 
dataset. In addition, when comparing with EE and Ours, the 
vocabulary tree can further improve time efficiency. The time 
cost of Ours is linear to the increasing number of images, while 
EE's time cost is quadratic. 
 
Fig. 10 qualitatively shows the matching results that both Ours 
and EE can identify the basic skeleton of EM, which means the 
most similar images determined by EM are successfully found by 
Ours and EE. 

 
(a) Ours 

 
(b) EE 

 
(c) EM 

Figure 10. Overlapping graph of SX. The darker red the pixel is, the 
higher possibility the corresponding image pair overlaps with each 

other. 
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4.3 Performance of efficient local bundle adjustment 

To demonstrate the efficacy of the presented local bundle 
adjustment, different bundle adjustment solutions are compared: 
first, a global bundle adjustment that enrolls all images is 
performed (Glo.); second, a combined solution integrated with 
local and global bundle adjustment (Com.), this is actually 
successfully applied in Colmap (Schönberger et al., 2016); third, 
local bundle adjustment with hierarchical weights with (Ours). 
Based on fr3_st_far, these three bundle adjustment solutions are 
tested for BA optimization when flying in a new image. 
 

 
Figure 11. Cost time on fr3_st_far with various bundle adjustment 

methods. 
 

Fig. 11 shows the time cost for different BA methods, which 
records the optimization time for each new fly-in image. It can 
be found that, as the image number grows, the consuming time 
increases dramatically for the Global method, the cost time of 
Ours increases the slowest and tends to be stable after adding 
some images. This can be explained by the fact that, as more 
images involve, more time is needed to refine more unknown 
parameters. The whole block is considered for Global method, 
whereas, Ours only solves a local bundle adjustment for images 
in the built hierarchical association tree. Tab. 1 lists quantitative 
results, i.e., averaging mean reprojection error of each BA 
(AMRE), mean reprojection error of final BA (MFRE) and mean 
track length (MLT), these results are nearly similar and in the 
same magnitude. Therefore, the presented BA is fast yet robust 
solution, and is feasible to our on-the-fly SfM. 

Dataset AMRE MFRE MTL 
Ours Com. Glo. Ours Com. Glo. Ours Com. Glo. 

fr3_st_far 0.59 0.53 0.48 0.33 0.33 0.35 35.53 34.66 32.02 

Table 1. Quantitative Results of various BA Methods 
 
4.4 On-the-fly performance of our SfM 

Dataset SX YX fr1_desk fr1_xyz fr3_st_far 

NoI 221 349 613 798 938 
FE 617 625 157 155 172 

OIM 1282 1391 872 911 1247 
GV 1285 951 168 187 359 
IR 91     72 41 56 72 
Tri. 158 171 116 29 60 
BA 190 131      74 184 198 

Total 3623 3341 1428 1522 2108 
IT 4200 4400 3500 3500 3500a 

a. It is simulated that 3.5s is needed for each video frame transmission. 
Table 2. Cost Time of each core stage in Ours SfM (ms) 

 

Tab. 2 presents the average processing time for all images of each 
dataset, in particular, several key procedures are reported: image 
transmission (IT), feature extraction (FE), online image matching 
(OIM), two-view geometric verification (GV), Image registration 
(IR), Triangulation (Tri.) and bundle adjustment (BA). We can 
find that OIM and GV take the most time, and all the others are 

quite fast. It is worth noting that, basically, for our on-the-fly SfM, 
current fly-in image can be solved before next image is received. 
 
4.5 Comparison with other state-of-the-art SfM 

In addition, to further explore how far is our SfM to the state-of-
the-art SfM, we make comparative investigation involving two 
popular SfM systems, namely, Colmap (Schönberger et al., 2016) 
and OpenMVG (Moulon et al., 2016). Due to that both Colmap 
and OpenMVG are only with offline mode, time efficiency is not 
discussed here. Our SfM results of SX and YX are visualized in 
Fig. 12. 

 

                 
Figure 12. Visualization of our SfM results on SX and YX. 

 
Dataset MRE MTL Rotation 

Discrepancy(º)  Ours Colmap Ours Colmap 
SX 0.84 0.90 11.43 13.42 0.05 
YX 0.65 0.80 9.59 11.55 0.25 

fr1_desk 0.60 0.72 12.65 15.45 0.40 
fr1_xyz 0.63 0.71 28.68 45.17 0.79 

fr3_st_far 0.33 0.61 35.53 62.60 0.07 

Table 3. Comparison between on-the-fly SfM and Colmap 
 

Dataset MRE MTL Rotation 
Discrepancy (º)  Ours OPENMVG Ours OPENMVG 

SX 0.84 Fail 11.43 Fail Fail 
YX 0.65 0.67 9.59 6 0.24 

fr1_desk 0.60 0.92 12.65 8 1.16 
fr1_xyz 0.63 0.86 28.68 12 0.72 

fr3_st_far  0.33 0.63 35.53 16 0.27 

Table 4. Comparison between on-the-fly SfM and OpenMVG 
 
In Tab. 3 and 4, three criteria are studied including mean 
reprojection error, mean track length and rotation discrepancy 
(taking Colmap and OpenMVG as reference). In general, the 
MRE values from our SfM, Colmap and OpenMVG are less than 
1 pixel, which typically demotes a converge behavior in BA, in 
most cases, we obtain better MRE which might be resulted from 
the refined correspondences from our least squares matching. 
The final MTL varies a lot, this is due to that they used various 
image matching packages and outlier detection strategies in BA. 
The very small rotation discrepancy on rotation results shows that 
our SfM is capable to yield considerable camera poses as these 
popular SfM packages are. 
 

5. CONCLUSION 

In this work, we present a novel on-the-fly SfM: running online 
SfM while image capturing, which achieves the goal of what you 
capture is what you get. Three technical improvements of 
learning-based online image matching, correspondence 
refinement using least squares and efficient local bundle 
adjustment using hierarchical weights are employed to guarantee 
a fast yet robust online SfM. Extensive results of various datasets 
demonstrate the real-time performance and robustness of our on-
the-fly SfM. 
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