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Abstract 
 
Light detection and ranging (LiDAR), as an innovative remote sensing tool, not only captures target reflectance but also provides its 
morphological parameters. Traditional single/multi-band LiDAR and multispectral LiDAR (MSL) are presently employed in 
applications such as 3D modeling and plant biochemical parameter inversion albeit with effectiveness limited. Moreover, hyperspectral 
LiDAR (HSL) distinguished by its expanded array of spectral detection channels and enhanced spectral resolution, has proven more 
effective in meeting these requirements and also exhibits superior capabilities in both feature and land cover classification tasks. 
Nevertheless, point clouds acquired through HSL frequently exhibit quality deficiencies, including uneven density and excessive noise. 
Meanwhile, there exists a notable absence of technical specifications and operational standards governing the measurement protocols 
for HSL systems globally. To address this gap, this study constructed a systematic analysis framework of data quality in hyperspectral 
point clouds and endeavors to qualitatively analyse 30 tree point clouds continuously scanned with Finnish Geospatial Research 
Institute (FGI) 8-band hyperspectral laser scanner. Furthermore, this research validated the theoretical feasibility of employing the 8-
band HSL system for inversion processes aimed at quantifying chlorophyll leaf content. Apart from detecting the time-varying patterns 
of reflectance within birch canopy point clouds, the results of this study also effectively pinpointed the band exhibiting heightened 
noise level of the HSL system, demonstrating the efficacy of our proposed quality analysis methodology. The endeavor presented in 
this study can serve as a cornerstone for advancing hyperspectral LiDAR across a diverse array of related remote sensing and earth 
observation applications.  
 
 

1. Introduction 

According to the 2020 Global Forest Resources Assessment by 
the Food and Agriculture Organization of the United Nations, the 
world's forest area was 4,059 million hectares, constituting 31.1% 
of the land area. However, this proportion has been steadily 
declining over the years (FAO 2020). Trees, integral components 
of the global ecosystem carbon cycle (Liu et al., 2015), 
significantly influence the entire cycling process through their 
morphological structure and biochemical composition. 
Effectively obtaining these attributes of tree canopies has become 
a prominent research focus. 
 
Currently, LiDAR stands as the mainstream method for 
comprehensively capturing the structural attributes of trees. It 
enables accurate ranging and localization, providing high-
precision vertical structure information and reliable three-
dimensional data on forests' canopy characteristics—information 
challenging to obtain through traditional hyperspectral remote 
sensing. LiDAR has evolved from multi-band LiDAR to 
multispectral LiDAR and hyperspectral LiDAR. LiDAR 
applications in plant structural attribute acquisition include 
single-tree segmentation (Shen and Cao, 2017), tree species 
classification (Sugumaran and Voss, 2007), biomass estimation 
(Luos et al., 2017; Ju et al., 2022), among other fields. 
 
Hyperspectral LiDAR, as a novel earth observation technology, 
captures spectral intensity information of different bands on laser 
foot points, producing 3D hyperspectral point cloud data (Gong 
et al., 2021). This data type, distinct from passive hyperspectral 
image data and single-wavelength LiDAR point cloud data, 
facilitates biomass estimation and simultaneous acquisition of 
spectral and positional information for each laser scanning point 

(Luos et al., 2017; Ju et al., 2022). Nevertheless, the hyper-
continuous spectrum laser pulses employed by hyperspectral 
LiDAR exhibit low energy, posing challenges in achieving 
hyperspectral fast imaging under low-light conditions. This 
limitation may lead to uneven point cloud density in the acquired 
data, thereby impacting the precision of subsequent analyses and 
modeling efforts (Uchida et al., 2020). Furthermore, intrinsic 
sensor-generated noise contributes to the point cloud, 
necessitating a comprehensive analysis of the acquired point 
cloud data to ensure data quality. 
 
Presently, global research on hyperspectral LiDAR is 
experiencing rapid development, with a focus on two main 
directions: the advancement of prototype systems and the 
expansion of application functionalities (Lin et al., 2019). 
Notably, the Finnish Geospatial Research Institute introduced the 
world's first full-waveform hyperspectral LiDAR system in 2012, 
marking a significant milestone in remote sensing (Hakala et al., 
2012). This system produces 3D point cloud data with spectral 
backscattered reflectance, extending the realm of imaging 
spectroscopy to include spectral 3D sensing. In 2014, Niu 
Zheng's team at the Aerospace Information Research Institute, 
Chinese Academy of Science, developed a 32-band hyperspectral 
LiDAR spanning 538.0 to 910.0 nm, representing the first 
international 32-band hyperspectral LiDAR system in China with 
fully independent intellectual property rights (Sun et al., 2014). 
Another 32-band hyperspectral LiDAR prototype, with a spectral 
resolution of 12 nm, created by Gong Wei's team at Wuhan 
University, has been widely applied in monitoring various 
nitrogen application levels in vegetation and chlorophyll 
inversion in vegetation (Du et al., 2016; Sun et al., 2018). 
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However, the effective utilization of data collected by 
hyperspectral LiDAR systems necessitates thorough data quality 
analysis to ensure accuracy, reliability, and applicability of point 
cloud data. This involves assessing and validating acquired 
hyperspectral point cloud to identify potential issues that might 
impact data quality (Wu et al., 2016). Subsequent improvement 
measures can then be implemented to enhance or rectify the 
accuracy of point cloud data based on the insights obtained from 
the quality analysis. 
 
The objective of this study is to analyse the quality of 
hyperspectral point cloud obtained from the same birch at 
different times using the HSL system developed by Finnish 
Geospatial Research Institute. In addition to investigating the 
intrinsic factors influencing the quality of reflectance data across 
individual bands, this study contributes new insights to the 
analysis of data quality within the domain of hyperspectral 
LiDAR, which is currently lacking established technical 
specifications and operational standards. Additionally, the paper 
seeks to envision and validate the capability of the HSL system 
inverting chlorophyll content through the utilization of the 
PROSPECT-D model (Féret et al., 2017). 
 

2. Materials and methods 

2.1 HSL System 

The Hyperspectral Laser Scanner system developed by Finnish 
Geospatial Research Institute operates within a laser wavelength 
range of 420-2100 nm. It features an average output power of 41 
mW, a measurement rate of 5.3 kHz, a pulse width of ≤ 1 ns, a 
collecting optics of view of 0.2°, a scanning resolution of 0.1° in 
the horizontal direction, and a scanning resolution of 0.02° in the 
vertical direction. The detection center comprises eight 
wavelengths: 545.0 nm, 641.2 nm, 675.0 nm, 711.0 nm, 741.5 
nm, 778.4 nm, 978.0 nm, and 1292.4 nm. In addition, the Full-
Width at Half Maximum per band is 20 nm. 
 
Each point in the resulting point cloud from the HSL system 
measurements carries intensity information at these eight 
different wavelengths. The point cloud encompasses 13 classes 
that have been classified, including the reference panels, 
reflective spheres, and most notably, the canopy foliage and 
woody constituents of the drooping birch. This hyperspectral 
LiDAR system has exerted significant influence in remote 
sensing research and various other fields requiring three-
dimensional detection and identification, such as civil 
engineering, archaeology, materials processing, and other 
specialized domains (Nevalainen et al., 2014). The proposal and 
application of this system have left a profound and far-reaching 
impact. 
 
2.2 Data Description 

The dataset acquired by the hyperspectral LiDAR system 
comprises hyperspectral point clouds from 30 individual scans 
conducted in southern Finland (Kirkkonummi, 60°09′40′′N, 
24°32′48′′W) on September 11-12, 2013. Each scan, lasting 15 
minutes, was conducted approximately once every 1 hour, with a 
shortened interval of 40 minutes near sunset and sunrise. 
 
The point cloud dataset encompasses a total of 13 feature types; 
one of the most dominant feature types is a birch (Figure 1) and 
the intensity values of each point have undergone calibration. The 
calibration process involved distance correction of point 
intensities. This was achieved by measuring the reflectance of a 
reference panel at different distances. An interpolation curve was 

fitted to the reference points, and this curve was then used to 
interpolate point intensities for all other points, thereby 
performing the distance correction. Range calibration 
specifically occurred at a distance of 12.19 m from the scanner. 
Points beyond this distance correction range had their intensities 
set to zero on each wavelength channel. 
 

 
Figure 1. Display of the birch’s point cloud data acquired by the 
HSL scanning at 09/11/2013 13:10. The scanner was located at 

the coordinate origin (0,0,0). 
 
Following distance correction, points exhibiting negative 
intensity values due to dark current or other instrument-related 
noise were rounded up to zero. It should be acknowledged, 
notably, that the intensity values in the 8th channel contain 
significant noise and are unsuitable for analytical purposes. 
 
2.3 Methods 

For the obtained 30 sets of hyperspectral point clouds of the same 
birch, we initially selected different types of features with data 
measured at 13:10 on 09/11/2013 for the Pearson correlation 
coefficient calculations of the reflectance data between the 8 
bands, which was used to obtain the characterization of the 
reflectance of the 8 bands of this HSL system. Subsequently, we 
explored the variations in reflectance of birch leaves at different 
times and bands through time series analysis. Additionally, we 
tentatively explored the possibility of inverting the biochemical 
content of leaves through this HSL system. This exploration was 
based on the PROSPECT-D model and sensitivity analysis. 
 
2.3.1 Pearson Correlation Coefficient: The Pearson 
correlation coefficient, commonly referred to as the linear 
correlation coefficient, serves as a valuable metric for assessing 
the degree of correlation between two continuous variables, 
denoted as s and k. This coefficient represents a quantitative 
measure of the correlation existing between these variables. 
Hence, in this investigation, we employ the Pearson correlation 
coefficient to quantify the correlation among the reflectance 
values across each spectral band. For this analysis, we utilize data 
extracted from the hyperspectral point cloud acquired during the 
measurement at 13:10 on 09/11/2013. 
 
The calculation of the Pearson correlation coefficient involves 
the implementation of the following formula: 
 

𝜌௦, =
𝑐𝑜𝑣(𝑠, 𝑘)

𝜎௦𝜎

(1) 
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where, 𝑐𝑜𝑣(𝑠, 𝑘)  signifies the covariance between the 
continuous variables 𝑠  and 𝑘 , while 𝜎௦  and 𝜎  represent 
their respective standard deviations. This formulation explicitly 
elucidates that the Pearson correlation coefficient is determined 
by the ratio of the covariance to the product of the standard 
deviations of the two variables. 
 
2.3.2 Time Series Analysis: In this study, our primary focus 
is on scrutinizing the variations in reflectance within leaf point 
cloud data obtained at different time points across each spectral 
band. The objective is to discern the impact of measurement time 
on reflectance values across the bands. This approach not only 
facilitates the identification of moments during measurement 
with discernible noise and anomalies, it can also enable an 
exploration of varying noise levels across different datasets. 
Additionally, we employ a normalization process on the 
reflectance values to mitigate disparities arising from changes in 
lighting conditions at different time points. This ensures that the 
comparison results are more robust and comparable, enhancing 
the reliability of our findings. 
 
2.3.3 PROSPECT Model: Building upon the quality analysis 
of hyperspectral point cloud data, we endeavored to assess the 
feasibility of inversely estimating leaf chlorophyll content. This 
assessment involved utilizing the PROSPECT-D model in 
conjunction with reflectance data derived from the hyperspectral 
point cloud. 
 
The relationship between plant biochemical components and 
productivity is crucial (Grove et al., 2012). Chlorophyll, for 
instance, plays a key role in converting solar energy into plant 
biomass through photosynthesis, impacting plant growth, 
development, and yield. Methods for inversely determining the 
content of biochemical components mainly involve physical and 
empirical models. Physical models, such as the PROSPECT 
model (Jacquemoud and Baret, 1990), and the leaf-scale optical 
property model based on the spectrally invariant properties (leaf-
SIP) model (Wu et al., 2021), are complex, requiring numerous 
challenging-to-obtain input parameters. Empirical methods, like 
the GSV-L model (Ma and Fang, 2023) and Partial Least Squares 
Regression (PLSR) model (Geladi and Kowalski, 1986), offer 
simplicity but face challenges related to data universality and 
accuracy, dependent on training set selection. 
 
The PROSPECT model is an extension of the “plate model” 
(Allen et al., 1969), which examines leaf reflectance and 
transmittance based on the leaf structural parameter N and 
various biochemical parameters. It is capable of simulating leaf 
reflectance and transmittance across the visible to mid-infrared 
wavelength bands. The latest iterations of the PROSPECT model 
include PROSPECT-D and PROSPECT-PRO (Féret et al., 2021). 
Both versions incorporate input parameters such as the leaf 
structural parameter N, chlorophyll content (Cab), carotenoid 
content (Car), anthocyanin content (Ant), brown pigment, and 
equivalent water thickness (Cw). 
 
Notably, PROSPECT-D differs by including the dry matter 
content as a single input parameter, Leaf Mass per Area (LMA, 
or Cm). In contrast, PROSPECT-PRO introduces a more detailed 
breakdown of Cm into two primary components: protein content 
and the carbon-based component (CBC). The CBC encompasses 
cellulose, lignin, starch, and all non-structural carbohydrates, 
with minimal contribution to leaf nitrogen content. Specifically, 
Cm is represented as the sum of CBC and protein content. This 
distinction enhances the model's capability to capture the 
intricate biochemical composition of leaves. 

 
2.3.4 Global Sensitivity Analysis: Our primary objective in 
incorporating sensitivity analysis is to examine the 
responsiveness of each input parameter in the PROSPECT-D 
model to the resulting reflectance. This analysis spans the entire 
range of detection bands within the HSL system. The overarching 
goal is to assess the theoretical feasibility of employing the HSL 
system for inversion to obtain plant biochemical attributes, 
specifically aiming at the estimation of chlorophyll content in 
leaves. Previous studies, such as Li and Wang (2011) and Sun et 
al. (2017), have attempted sensitivity analyses on reflectance 
using the PROSPECT-4 model in different wavelength ranges. 
 
Global sensitivity analysis (the Sobol method) revolves around 
the fundamental concept that the model output 𝑌  can be 
expressed as the sum of individual contributions and various 
cross-contributions arising from multiple input variables 𝑋 =
{𝑋ଵ, 𝑋ଶ, … , 𝑋} , defined as 𝑌 = 𝑓(𝑋)  (Sobol, 1993; Sobol, 
2001). This method presupposes that the input values are 
independent and uniformly distributed within the unit hypercube, 
adhering to the relationship: 
 

𝑌 = 𝑓 +  𝑓(𝑋)



ୀଵ

+  𝑓൫𝑋 , 𝑋൯



ழ

+···

+𝑓ଵ,ଶ,…,(𝑋ଵ, 𝑋ଶ, … , 𝑋) (2)

 

 
where, 𝑓 represents a constant value that fulfills the condition: 
 

𝑓 = 𝐸(𝑌) (3) 
 
The values of 𝑓(𝑋) and 𝑓൫𝑋 , 𝑋൯ conform to: 
 

𝑓(𝑋) = 𝐸(𝑌|𝑋) − 𝑓 (4) 
 

𝑓൫𝑋 , 𝑋൯ = 𝐸൫𝑌ห𝑋 , 𝑋൯ − 𝑓 − 𝑓 − 𝑓 (5) 
 
where 𝑖, 𝑗 =  1, 2, . . . , 𝑛  and 𝑖 ≠ 𝑗 . The same rationale is 
applicable to the remaining multiple cross-terms. This structured 
approach enables the systematic exploration and quantification 
of the sensitivity of the model output to individual input variables 
and their interactions, providing valuable insights into the overall 
impact of each variable on the model's response. 
 

3. Results 

To assess the quality of the 30 hyperspectral point clouds 
acquired by the hyperspectral LiDAR system, Pearson 
correlation coefficient matrices were calculated separately for 
three types of point clouds: all feature classes (including 
unclassified point clouds), canopy-only point clouds, and trunk-
only point clouds (Benesty et al., 2008). The correlation 
coefficient matrix serves as a tool to characterize the linear 
relationship between the bands of the Finnish HSL system, 
containing correlation coefficients between the reflectance of the 
eight bands. Reflectance correlation coefficients provide a 
statistical indicator describing the similarities and differences in 
factors affecting reflectance variation between two bands, with 
values typically ranging between -1 and 1. Theoretically, as the 
wavelengths between the bands detected by the LiDAR become 
closer, the reflectivity correlation increases, and the correlation 
decreases as the wavelengths of separated bands are farther apart. 
Generally, a higher correlation coefficient between bands 
indicates more consistent factors affecting reflectivity size in 
each band.  
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Table 1 theoretically suggests that the reflectivity correlation is 
larger when the wavelengths between detected bands are closer, 
gradually decreasing as the wavelengths of the separated bands 
are farther apart. In general, the larger correlation coefficient 
between bands indicates the more consistent factors affecting 
reflectivity size in each band. 
 
For the Pearson correlation coefficient matrix of all point clouds 
(Table 1), it is observed that the correlation coefficients between 
the reflectance at 545.0 nm and 711.0 nm are higher than those at 
545.0 nm and 675.0 nm, attributed to the inclusion of the 
reflectance of the green leaf point cloud. Correlation coefficients 
decrease as the wavelengths of the separated bands become larger, 
except for an anomaly in the correlation coefficients between 
band 1 (545.0 nm) and the other bands. 
 
In the case of leaves (Table 2), the correlation coefficients of 
reflectance at 545.0 nm and 711.0 nm are higher than those at 

545.0 nm and 641.2 nm. Subsequently, the correlation 
coefficients gradually decrease, but those of 545.0 nm with 741.5 
nm and 778.4 nm remain higher than those of 545.0 nm with 
675.0 nm. This is attributed to the strong absorption band of 
chlorophyll in leaves between 640.0 nm and 680.0 nm, resulting 
in a larger correlation coefficient for reflectance at its bands. It is 
evident that the reflectance influencing factors of leaves at 711.0 
nm, 741.5 nm, and 778.4 nm are similar to those at 545.0 nm, 
mostly related to the structure of plant chloroplast cells. 
Additionally, the reflectance correlation coefficients of 675.0 nm 
with 778.4 nm and 978.0 nm are slightly higher than those of 
675.0 nm with 741.5 nm, as the plant cell wall structure at 778.4 
nm and 978.0 nm increases leaf reflectance, while 675.0 nm is 
situated in the chlorophyll strong absorption band, indicating a 
greater effect of cell structure at 675.0 nm on reflectance 
compared to weak chlorophyll absorption. 
 

 545.0 nm 641.2 nm 675.0 nm 711.0 nm 741.5 nm 778.4 nm 978.0 nm 1292.4 nm 

545.0 nm 1 0.9250 0.8965 0.9153 0.8355 0.8215 0.7774 0.3491 

641.2 nm  1 0.9806 0.9114 0.7850 0.7790 0.7658 0.3600 

675.0 nm   1 0.8789 0.7476 0.7445 0.7405 0.3481 

711.0 nm    1 0.9530 0.9484 0.9262 0.4134 

741.5 nm     1 0.9875 0.9621 0.4240 

778.4 nm      1 0.9662 0.4299 

978.0 nm       1 0.4515 

1292.4 nm        1 

Table 1. Pearson correlation coefficient matrix for reflectance between 8 bands of all features in the point cloud measured at 13/09/11 
13:10 

 
 545.0 nm 641.2 nm 675.0 nm 711.0 nm 741.5 nm 778.4 nm 978.0 nm 1292.4 nm 

545.0 nm 1 0.8219 0.7395 0.8558 0.7883 0.7623 0.6940 0.1533 

641.2 nm  1 0.9244 0.8668 0.7260 0.7204 0.6993 0.1814 

675.0 nm   1 0.8162 0.6840 0.6888 0.6878 0.1756 

711.0 nm    1 0.9490 0.9442 0.9162 0.2134 

741.5 nm     1 0.9843 0.9575 0.2186 

778.4 nm      1 0.9641 0.2232 

978.0 nm       1 0.2448 

1292.4 nm        1 

Table 2. Pearson correlation coefficient matrix for reflectance between 8 bands of the foliage in the point cloud measured at 13/09/11 
13:10 

 
 545.0 nm 641.2 nm 675.0 nm 711.0 nm 741.5 nm 778.4 nm 978.0 nm 1292.4 nm 

545.0 nm 1 0.9597 0.9485 0.9417 0.9278 0.9211 0.8904 0.4702 

641.2 nm  1 0.9946 0.9918 0.9839 0.9811 0.9616 0.5191 

675.0 nm   1 0.9924 0.9870 0.9854 0.9683 0.5216 

711.0 nm    1 0.9949 0.9937 0.9805 0.5295 

741.5 nm     1 0.9966 0.9868 0.5361 

778.4 nm      1 0.9887 0.5307 

978.0 nm       1 0.5471 

1292.4 nm        1 

Table 3. Pearson correlation coefficient matrix for reflectance between 8 bands of the wood in the point cloud measured at 13/09/11 
13:10 
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Figure 2. Boxplots of reflectance per band at different moments in the hyperspectral point cloud data of the birch foliage. 
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Regarding the birch stems (Table 3), as chlorophyll and water 
content are much smaller than in leaves, they lack the spectral 
properties of green plants. Consequently, correlation coefficients 
between bands gradually decrease as the wavelengths become 
farther apart. However, the correlation coefficients between the 
first seven bands are very large, suggesting similar factors 
affecting reflectance between each band. 
 
Across all Pearson correlation coefficient matrices in Table 1, 2, 
3, the correlation coefficients between the 8th band (1292.4 nm) 
and the other bands are relatively small due to noise effects. 
There is a significant difference in the size of correlation 
coefficients with the other bands. 
 
Considering the significance of the reflectance of the birch 
canopy among the 13 feature classes, an analysis was conducted 

to examine the impact of different time points on the reflectance 
of hyperspectral point clouds of the canopy, primarily foliage. 
Some box plots were generated to illustrate the reflectance of 
hyperspectral point cloud data from the birch canopy detected at 
30 different times across eight bands (Figure 2). Each box plot 
represents the reflectance of the birch's canopy (mainly foliage) 
for all point clouds in each band at the current moment in time. 
Additionally, it illustrates the trend of reflectance over the range 
of the HSL system through the mean reflectance value in each 
band. We had excluded the outliers from the presented results, 
enabling a clearer comparison of the temporal impact on 
reflectance changes in different bands. The outliers, denoting 
data points significantly distant from the overall distribution, 
were identified to ensure the robustness of the dataset (Zou and 
Djokic, 2020). 
 

 
Figure 3. Broken line graphs of leaf reflectance at different times in each band. 
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In addition to the box plots, some broken line graphs depicting 
the change in the median reflectance of each band over the 30 
time points were generated (Figure 3). This visual representation 
aids in understanding how the reflectance values in each band 
fluctuate over the different moments, providing valuable insights 
into temporal variations in hyperspectral point cloud data of the 
birch canopy. Moreover, this point cloud data visualization 
method serves to troubleshoot whether one or all of the bands of 
the point cloud data acquired at each point in time have quality 
issues. This can be in comparison to the data measured at other 
moments in time, and it also aids in determining the trend of the 
overall reflectance over time. 
 
The hyperspectral point cloud data of the birch canopy foliage 
acquired at different times (Figure 2), suggest that overall trends 
in reflectance changes remain consistent and align with the 
spectral characteristics of green leaves in the visible-near-
infrared wavelength range. For instance, the reflectance of the 
point cloud at all moments reaches a minimal value at 675.0 nm, 
followed by a steep increase in reflectance. Surprisingly, when 
connected the median reflectance of each band and displaying it 
in the form of a line graph, it becomes evident that the reflectance 
of different bands at each moment follows the same trend (Figure 
3). All bands reach their peak at 05:00 on the next day and reach 
the minimum at 10:00 on the next day. 
 
A free software tool for Global Sensitivity Analysis (GSAT) 
package (Cannavó, 2012) in MATLAB (MathWorks, Inc.) was 
primarily utilized to analyse the leaf structural index (N), 
chlorophyll content (Cab), carotenoid content (Car), anthocyanin 
content (Ant), brown pigment, equivalent water thickness (Cw), 
and dry matter content (Cm) in the range of 545.0-1292.4 nm. 
Sensitivity to reflectance output from the PROSPECT-D model 
was assessed. Figure 4 presents the result of the first-order global 
sensitivity analysis of N and each leaf biochemical constituent to 
reflectance, and it covers the spectral range of the HSL system 
detection. 
 
The results in Figure 4 indicate that Cab and N play dominant 
roles in the spectral range (545.0-1292.4 nm) detected by this 
HSL. In the visible range (approx.580-700 nm), chlorophyll 
exhibits the greatest sensitivity to output reflectance. In the near-
infrared range (approx.720-1292.4nm), the sensitivity of the leaf 
structural parameter to output reflectance is the greatest. This 
proves that plant biochemical parameters such as chlorophyll 
content and the leaf structural parameter N can be theoretically 
inverted from the hyperspectral point cloud data acquired by this 
HSL system within its detection range. 
 
Furthermore, we employed the specific absorption coefficients 
for chlorophyll within leaves from the PROSPECT-D model 
code provided by Féret et al.’s (2017) study, assessing the 
potential of the HSL system for inverting chlorophyll content. 
These coefficients were derived from extensive datasets 
encompassing hundreds of leaf species. The absorption 
coefficients of chlorophyll were utilized in the range of 545.0-
1292.4 nm against the reflectance of the tree canopy in each band. 
The outcomes of this analysis are presented in Figure 5. 
 
Figure 5 demonstrates that the specific absorption coefficient of 
chlorophyll is wavelength-dependent, with distinct absorption 
peaks at approximately 420 and 680 nm. Additionally, this result 
shows the reflectance of leaves in the birch canopy measured by 
the HSL system, indicating that the second absorption peak of 

chlorophyll is covered by the channel of this HSL system. This 
highlights the ability to invert chlorophyll content using the 
PROSPECT-D model, providing an advantage in determining the 
chlorophyll content of foliage utilizing the hyperspectral point 
cloud data acquired by this HSL system. 

 
Figure 4. The first-order global sensitivity analysis of the input 

parameters of the PROSPECT-D model to the output 
reflectance in the detection band range of the Finnish HSL 

system. 
 

 
Figure 5. Specific absorption coefficient of Chlorophyll within 
the detection range and the mean reflectance per band of leaves 

measured by the HSL. 
 

4. Discussion 

This study assessed the quality of an 8-band hyperspectral point 
cloud dataset obtained from the HSL system developed by the 
Finnish Geospatial Research Institute. Additionally, we explored 
the potential for chlorophyll inversion using this dataset. 
Employing the Pearson correlation coefficient matrix, we 
scrutinised the relationships between various feature types across 
different spectral bands. Furthermore, we conducted an analysis 
of the factors influencing the magnitude of these correlation 
coefficients. Our findings revealed that the spectral range of 
chlorophyll absorption exerts a notable impact on the magnitude 
of correlation coefficients among the bands. Moreover, we 
observed a substantial rise in noise levels within the eighth band 
when compared to the remaining seven bands.  
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By analysing the time series of reflectance data from this dataset, 
we identified a significant correlation between the reflectance of 
the birch canopy (predominantly composed of leaves) across 
each band and the plant's respiration-photosynthesis dynamics. 
The process of photosynthesis resulted in a reduction in mean 
canopy reflectance at wavelengths of 545.0 nm (Figure 3(a)), 
641.2 nm (Figure 3(b)), and 675.0 nm (Figure 3(c)). Excluding 
the 8th band, which was notably impacted by noise, the first 
seven bands exhibited a consistent trend: the peak mean 
reflectance was observed at 05:00 AM, with a subsequent decline 
to the minimum at 10:00 AM. Given that our data were collected 
during the local summer season, respiration tended to be inhibited 
by low temperatures from 2:00 to 5:00 AM, with peak activity 
occurring around 10:00 AM, when the respiration was most 
appropriate. As temperatures continued to rise, respiration was 
further suppressed, aligning closely with fluctuations in average 
reflectance across various bands and leaf respiration patterns. It 
has been shown that both CO2 exchange and conductance in 
leaves are controlled by circadian rhythms (Qin et al., 2024). 
However, further investigation is warranted to determine whether 
this correlation stems from stomatal regulation or internal carbon 
exchange processes within the leaf. 
 
This study has two main shortcomings. First, the hyperspectral 
point cloud data measured by the HSL system were not precisely 
categorized, particularly in the case of point clouds categorized 
as canopy foliage. There existed a small number of point clouds 
within this category where the real species were branches, having 
significantly different spectral properties from leaves. This 
discrepancy can impact reflectance, and the lack of strict 
differentiation could result in the insufficient accuracy of using 
hyperspectral point cloud data measured by the HSL system for 
the inversion of plant biochemical composition. 
 
Second, the results in Figure 4 and Figure 5 theoretically 
demonstrate the capability to use the PROSPECT-D model for 
the inversion of chlorophyll content. However, there is still a 
mismatch in the spectral domains. The detection domain of the 
HSL system is 545.0-1292.4 nm, whereas the input wavelength 
of the PROSPECT-D model is 400-2500 nm. While previous 
studies have explored PROSPECT model inversion utilizing 
unique sensitivity domains for each biochemical parameter (Li 
and Wang, 2011), the HSL system lacks coverage across much 
of the reflectivity spectrum. Consequently, during inversion, it 
becomes necessary to assign biochemical parameters outside the 
detection range to values that are reasonable but not precisely 
accurate. This discrepancy may impact the inversion of other 
biochemical components, and future efforts should focus on 
improving the estimation accuracy of biochemical parameters in 
a wider detection spectral range. 
 
Traditional LiDAR methods have well-established data quality 
evaluation systems and operational standards (Babbel et al., 2019; 
Wang et al., 2020). However, as of now, hyperspectral LiDAR 
measurements lack corresponding technical specifications and 
operational standards. Most hyperspectral LiDAR systems are 
currently in the laboratory prototype stage and have not been 
widely commercialised. Consequently, assessing the quality of 
hyperspectral LiDAR data often relies on users determining the 
suitability of the data based on specific task requirements. The 
methodology employed in this study, for analysing the quality of 
hyperspectral point cloud data, can serve as a reference for future 
evaluations of point cloud data obtained from hyperspectral 
LiDAR systems. In the future, it is essential to enhance the 
quantitative aspects of quality assessment alongside qualitative 
analysis of hyperspectral LiDAR-acquired point clouds. This 

way will facilitate more accurate evaluation of data quality while 
enhancing it from various dimensions. 
 

5. Conclusion 

In this study, we analysed the quality of hyperspectral point cloud 
data obtained from the same birch at different moments by the 
self-developed HSL system of Finnish Geospatial Research 
Institute, and constructed a systematic methodology for 
analysing the data quality of HSL. By exploring the correlation 
between changes in Pearson's correlation coefficient values of 
reflectance in different bands and canopy composition, and 
analysing the relationship between changes in reflectance in each 
band of the hyperspectral point cloud and time, we have 
concluded that the reflectance of canopy leaves measured at 
different moments exhibits a consistent trend of change. 
Meanwhile, the reflectance of birch canopies shows a uniform 
pattern of change across different moments at the same waveband, 
demonstrating a significant correlation with the plant's 
photosynthesis-respiration, among other findings. Furthermore, 
this study also integrated reflectance data from the hyperspectral 
point cloud of the birch foliage across eight wavelength bands 
(545.0-1292.4 nm) with the PROSPECT-D model to examine the 
feasibility of inverting vegetation parameters by using the HSL 
system. The results demonstrate that the foliage hyperspectral 
point cloud data obtained by the HSL system can be used to the 
inversion of leaf biochemical parameters, and the chlorophyll 
content can be accurately estimated using the PROSPECT model. 
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