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ABSTRACT: 

Photovoltaic power stations utilizing solar energy, have grown in scale, resulting in an increase in operational maintenance 

requirements. Efficient inspection of components within these stations is crucial. However, the large area of photovoltaic power 

generation, coupled with a substantial number of photovoltaic panels and complex geographical environments, renders manual 

inspection methods highly inefficient and inadequate for modern photovoltaic power stations. To address this issue, this paper 

proposes a method and system for hot spot detection on photovoltaic panels using unmanned aerial vehicles (UAVs) equipped with 

multispectral cameras. The UAVs capture visible and infrared images of the photovoltaic power plant, which are then processed for 

photogrammetry to determine imaging position and attitude. The infrared images are stitched together using this information, 

forming a geographically referenced overall image. Hot spot detection is performed on the infrared images, enabling the 

identification of faulty photovoltaic panels and facilitating efficient inspection and maintenance. Experimental trials were conducted 

at a photovoltaic power station in Qingyuan, Guangdong Province China. The results demonstrate the effectiveness of the proposed 

method in accurately detecting panels with hot spot faults. 

 

1. INSTRUCTION 

As the global economy advances, the demand for energy across 

nations continues to rise. Conventional fossil fuels like coal, oil, 

and natural gas are not only depleting but also produce carbon 

dioxide when burned, contributing to the greenhouse effect, 

global warming, and endangering life on Earth. Consequently, it 

has become a shared objective for countries to embrace 

sustainable, clean energy solutions. Among these, solar energy 

stands out as a clean, renewable, and limitless resource, 

promising to reshape the energy landscape and combat 

environmental challenges. Its potential has garnered significant 

attention globally (Ashok S., 2023 and Marta V., et al., 2021). 

Solar energy utilization, exemplified by photovoltaic power 

stations, has gained substantial traction and is actively 

expanding. However, the prolonged operation of photovoltaic 

array components in demanding conditions underscores the 

critical need for meticulous inspection within these power 

stations (Peng Z. et al., 2017). Notably, within photovoltaic 

power stations, one prevalent issue is the occurrence of hot 

spots, a typical fault in photovoltaic power generation systems. 

Research indicates that hot spots emerge when the current of a 

photovoltaic cell within a component diminishes due to 

obstructed sunlight. Consequently, the voltage at both ends of 

the affected cell drops, causing surrounding cells to supply it 

with charge. This turns the impacted cell into an "electrical 

load," continuously absorbing power from nearby cells and 

converting it into heat energy. As this heat accumulates, it can 

lead to destruction within the array due to excessive 

temperatures. Failure to promptly monitor and address a hot 

spot situation can result in damage to individual photovoltaic 

cells, potentially leading to their combustion and compromising 

the overall array, as depicted in Figure 1, which displays hot 

spots in an infrared image of a polycrystalline silicon 

photovoltaic array. 

 

Figure 1. The hot spots in an infrared image  

In the present context, prevalent detection methods encompass 

visual inspection, photoelectric excitation detection, volt-

ampere detection, and infrared-based detection techniques. 

Visual inspection relies on human observation, either unaided 

or with the aid of devices, to visually examine solar panels and 

subjectively identify defects. However, this method proves 

impractical and perilous for extensive photovoltaic arrays and 

panels sited in hazardous locations, as it relies heavily on 

personnel experience and poses safety risks, ultimately leading 

to low detection efficiency (Ingeborg H. et al., 2022 and Q. 

Chen et al., 2023). Photoelectric excitation detection comprises 

photoluminescence and electroluminescence methods. These 

methods involve stimulating solar panels in a darkroom to 

generate a potential difference across the panel through 

photonic excitation. This process leads to electron collisions, 

resulting in radiation, with the detection image captured using 

specialized photosensitive components. Nonetheless, this 

approach necessitates additional circuits, rendering the 

operation complex and costly (Muhammad T. et al., 2020 and 

Chibane Y. et al., 2022). The volt-ampere detection method 

entails continually adjusting the resistance value of the 

photovoltaic system to derive the volt-ampere characteristics 

curve of the solar panel. Analysis of its variations aids in defect 

determination. However, this method demands measuring each 

individual photovoltaic panel, a task impracticable due to the 

expansive area of photovoltaic power generation and the 

substantial number of panels (M.W. Akram et al., 2022 and A. 

Mawjood et al., 2018). 

The application of infrared imaging for detecting faults in 

photovoltaic (PV) modules has gained prominence recently. 

This method utilizes infrared devices to capture thermal images 

of PV systems. By analyzing the temperature distribution in 
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these images, the approach aims to identify hotspots within the 

PV module system. Notably, it showcases heightened detection 

efficiency compared to methods reliant on electrical 

characteristic monitoring and obviates the need for constructing 

peripheral physical circuits. As a non-contact hotspot detection 

method, it has become increasingly popular due to its minimal 

impact on PV modules. Nonetheless, the swift and precise 

acquisition of infrared images and accurate localization pose 

emerging challenges (Peng Z. et al., 2017 and Q. Chen et al., 

2023). 

The unmanned aerial vehicle (UAV) industry has rapidly 

evolved, integrating into the PV inspection domain due to its 

swift data acquisition and cost-effectiveness, effectively 

addressing the inspection challenges encountered in the PV 

sector. Several scholars, including H. Elidrissi, have delved into 

studies regarding the use of UAVs for PV plant inspections. 

These studies emphasize the pivotal role played by defect 

detection, identification, and on-site localization within the 

maintenance framework of solar PV installations, crucial for 

preserving their reliability and efficiency (H. Elidrissi, et al., 

2022) .Peng Zhang and others have developed a drone-mounted 

infrared thermography system designed specifically for rapid 

fouling detection on large-scale PV panels. This system 

preprocesses infrared images using a K-nearest neighbor mean 

filter and applies a combined local and global detection method 

for precise location of suspicious sites, demonstrating a strong 

capability for detecting and pinpointing PV fouling (Peng Z. et 

al., 2017). 

Furthermore, Nie and colleagues have presented a traditional 

image processing method combined with deep-learning-based 

techniques for hotspot detection in infrared images. Similarly, 

Liu J and Ji N have proposed a method for PV infrared image 

segmentation and hot spot location detection to identify and 

analyze PV panel shielding, irrespective of varying background 

conditions, thus enhancing detection accuracy and providing 

valuable data for power station maintenance (Nie J. et al., 2020 

and Liu J and Ji N, 2023). 

Meanwhile, Gurras A and team have introduced a new 

computational process for automated defect detection and 

classification on PV modules utilizing thermal imaging or IR 

thermography with assistance from UAVs. Their approach has 

proven to be a reliable and efficient tool for automated defect 

detection and classification (Gurras A, et al., 2021). 

Moreover, M. Waqar Akram and associates have conducted 

research on automatic detection of photovoltaic module defects 

in infrared images using isolated deep learning and develop-

model transfer deep learning techniques. Their work involves 

collecting an infrared image dataset comprising both normal 

operating and defective modules, which is then used to train the 

networks (M.W. Akram et al.,2020). 

These advancements collectively underscore the evolving 

landscape of fault detection in PV systems, integrating cutting-

edge technologies such as UAVs and infrared imaging, and 

employing sophisticated methods including deep learning to 

ensure the continued efficiency and reliability of photovoltaic 

power generation (D.L.King et al., 2000 and S. Dotenco et al., 

2016 and Grimaccia  F. et al., 2017). 

In conclusion, despite the extensive research conducted on 

drone-based photovoltaic (PV) plant inspection systems, these 

endeavors intersect different domains, including drone 

technology, image processing, and data analysis, necessitating 

thorough research and innovative solutions. Presently, this 

system grapples with persistent challenges such as the precision 

of drone image positioning and timely identification of hotspots 

in infrared images. This paper consolidates and enhances 

existing research by leveraging diverse methodologies to 

engineer a more pragmatic and user-friendly drone-based 

inspection system tailored for real-world application needs. 

Additionally, it delves into the exploration of algorithms for 

hotspot detection, intending to offer guidance and inspiration 

for future research in this domain. The contributions of this 

paper are outlined as follows:  

1)A method for obtaining the overall infrared image of 

photovoltaic panels was proposed using drones equipped with 

visible light cameras and infrared cameras. Based on the 

fundamental principles of photogrammetry, this method 

involves the directional processing of visible light images, the 

application of the obtained exterior orientation elements to the 

infrared images, and the subsequent stitching of the infrared 

images to acquire the overall geographic information of the 

photovoltaic panels. 

2)A hot spot extraction method based on Otsu's thresholding 

and morphological processing was proposed for extracting hot 

spots from the obtained overall infrared images, thereby 

achieving fault detection in photovoltaic panels. 

3)An experiment was conducted at a photovoltaic power station 

in Qingyuan City, Guangdong Province, China, to validate the 

effectiveness of this method. 

 

2. METHODOLOGY  

The proposed methodology aims to address the issue of low 

efficiency in photovoltaic module inspections. It suggests using 

unmanned aerial vehicles (UAVs) equipped with multispectral 

cameras for thermal spot detection of photovoltaic panels. The 

process begins with UAV aerial photography of the 

photovoltaic power plant, capturing both visible and infrared 

images. The visible light images undergo photogrammetric 

processing to determine imaging positions and attitudes. These 

parameters are then used to stitch together the infrared images, 

creating a geographically referenced composite image. Finally, 

thermal spot detection is performed on the infrared images to 

identify problematic photovoltaic panels, streamlining 

inspection and maintenance. You can refer to Figure 2 for a 

visual representation of the system's workflow. 

 
Figure 2 The system's workflow of the paper 

 

2.1 Infrared Images Stitching 

Although current unmanned aerial vehicles (UAVs) are 

equipped with POS systems that can directly obtain the position 

and attitude of captured images, this information alone is 

insufficient for precise positioning and Mosaicking of the 

images. Therefore, professional photogrammetric processing is 
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required to accurately determine the parameters of the images 

and generate a georeferenced composite image. Since infrared 

images have smaller footprints and lack distinct features 

compared to visible light images, direct photogrammetric 

processing is not feasible. Hence, this paper first applies 

photogrammetric processing to the visible light images to obtain 

precise POS at the time of capture, which is then applied to the 

infrared images to generate a composite image of the infrared 

data. 

The precise parameter estimation of UAV imagery in 

photogrammetry is referred to as aerial triangulation, which is a 

well-established technique in the field. The core process 

involves automatic matching of corresponding points in the 

images and bundle adjustment of the image block. In the field 

of computer vision, this technique is also known as Structure 

from Motion (SFM), which aims to solve the camera's position 

and orientation and reconstruct the 3D scene based on the 

image relationships. The key steps in aerial triangulation 

include obtaining corresponding points between multiple 

images through feature matching and minimizing the 

reprojection error of the feature points to solve for the image 

projection matrix, camera intrinsic parameters, and the 3D 

coordinates of the feature points. The specific process involves 

selecting a pair of images for relative orientation, gradually 

adding images with overlapping areas to the model, performing 

adjustment and updating the 3D points, until all images are 

included to complete the block adjustment. This process is 

illustrated in Figure 3. 

 
Figure 3 SFM’s process 

The processing steps for Structure from Motion (SFM) are as 

follows: 

1)Establish image adjacency relations (using GPS/POS 

assistance or image retrieval methods). 

2)Select a pair of images with relatively numerous adjacency 

relations from the adjacency relation table as the first image pair. 

3)Carry out feature matching for the first image pair to obtain 

tie points. Use the decomposition of the essential matrix to 

calculate the exterior orientation elements of the image pair and 

the object space coordinates of the tie points, forming the 

current model. 

4)Choose an image adjacent to the current model, and match tie 

points in the current model with the image. Use the 3D 

coordinates of the tie points in the current model to calculate 

the exterior orientation elements for the new image. 

5)Use intersection to solve for the object space coordinates of 

newly added tie points. 

6)If the number of tie points exceeds a predetermined threshold 

(e.g., conduct adjustment for every additional 2000 points), then 

perform a global bundle adjustment for the existing model. 

7)Repeat steps 4),5),6) until all images have been processed. 

The central aspect of this process involves identifying identical 

features in each pair of photos. SIFT, proposed by D.G. Lowed 

in 1999 and later refined and summarized in 2004, is among the 

most widely used algorithms for this purpose. It searches for 

extrema across spatial scales and captures their position, scale, 

and rotational invariance. SIFT features denote local extrema in 

an image's scale space, distinct from nearby points within the 

same area and scale, representing peaks or troughs of the local 

differential Gaussian function within the image. SIFT feature 

points appear as areas with grayscale values either higher or 

lower than those of the surrounding and neighboring points 

within the same area and scale. Thus, the SIFT algorithm can be 

viewed as a method for extracting interest points based on 

grayscale variations (D.G. Lowe,1999 and D.G. Lowe,2004.). 

The second important step involves identifying the transforma-

tion. There exist numerous types of geometric transformations, 

with one of the most widely used being Sparse Bundle 

Adjustment(SBA). Its core lies in optimizing camera parameters 

and three-dimensional point coordinates using the Levenberg-

Marquardt algorithm, wherein the primary process begins with 

establishing imaging relationships (M. Brown, D.G. Lowe, 

2005 and M. Lourakis, A. Argyros, 2004.) 

 
Figure 4  The principles of imaging geometry 

As shown in the figure 4, the object point P is projected to the 

image point p on the image plane. Assuming the coordinates of 

the object point in the object space coordinate system are X = 

(X, Y, Z), and the coordinates of the image point p in the image 

space coordinate system are x = (x, y, z), then 

 
In the formula, t  is a translation(dX,dY,dZ) from real 

coordinates and R represents the rotation matrix, that is: 

 
The 1, 2,3 is three angle rotation with X,Y,Z axis. 

Every feature point corresponds to an object point Xj. The error 

equation for the bundle adjustment of sparse bundle adjustment 

is the sum of the squares of the image point errors for all object 

points in the corresponding images, that is: 

 
Where I denotes all the images, χ(i) represents the list of t object 

points corresponding to image i. Assuming the reprojected 

image point of point Xj in image i isuij, and the corresponding 

feature point ismij, the image point error is: 

 
The iterative equation solved using the Levenberg-Marquardt 

algorithm is: 

 
WhereΦ = [Θ, X] is the vector of camera parameters Θ and 

feature point coordinates X,r is the residual vector, σ is three 

times the standard error, J = ∂r/∂Φ is an M × N matrix (M is the 

number of images, N is the number of unknowns to be solved), 

and J also known as the Jacobian matrix, and C is the 

covariance matrix. In this study, the Ceres Solver framework is 

directly used to solve for obtaining the image projection matrix, 

camera intrinsic parameters, and feature point object space 

coordinates. 

After obtaining precise parameters from the images, they are 

directly applied to the infrared images. Firstly, a digital terrain 

model (DTM) is generated using the 3D points. Then, the 

infrared images are projected onto the ground using the imaging 
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equation, creating multiple orthophoto, which are joined based 

on their geographical locations. The stitching process employs 

the "Voronoi diagram" algorithm to select the best-fitting 

images. The algorithm is described as follows: 

1)Compute the centroids of each orthophoto, and use them as 

nodes of the Voronoi diagram. 

2)Use the set of all nodes to construct a Delaunay triangulation. 

3)Obtain the valid areas of each orthophoto based on the 

Delaunay triangulation. 

4)Fill in data based on the valid area of each image. 

 

2.2 Hot spot detection 

After obtaining georeferenced whole infrared images, spot 

detection is initiated. Due to the characteristic of spots being of 

higher temperature, the average value of the infrared image is 

used as a threshold, filtering out positions with temperatures 

lower than the average. Subsequently, OTSU’s method for 

binarization and morphological processing is employed to 

extract the spot locations. For the processing principle of OTSU, 

please read Otsu’s paper (Otsu, N. 1979 and Bangare, S. et al., 

2015). After OTSU processing, the result shown in Figure 5 can 

be obtained. 

 
Figure 5 The binarization filtering and results: (a)Source 

Infrared image (b) Filtering by the average temperatures (c) The 

results of OTSU  

As shown in Figure 5, the surface defect image of the 

photovoltaic panel retains only the surface defects and the most 

prominent grid lines. Some finer grid lines have been removed. 

While some details of the defects are preserved, they are not 

finely detailed enough. Consequently, this paper applies 

morphological processing to the image. Morphological 

processing typically includes opening and closing operations. 

Opening operation involves erosion followed by dilation. Its 

primary function is to separate certain loosely connected 

elements in the image, while simultaneously being able to 

remove tiny details in the image. Closing operation involves 

dilation followed by erosion. Its purpose is to connect adjacent 

but not yet touching objects while also filling in the cavities in 

the image. The image obtained after morphological processing 

of Morphological processing is shown in Figure 6. 

 
Figure 6 Morphological processing：(a) The input data(results 

of OTSU)  (b) Morphological results 

Clearly, this is the glare that we ultimately hope to obtain, and 

based on the glare's position, we can identify problematic solar 

panels. 

 

3. EXPERIMENTAL RESULTS  

3.1 Research materials 

This paper selects a small area of a photovoltaic power station 

located in Qingyuan City as the research object. The planned 

total installed capacity of the photovoltaic power station is 

500MW, and the total land area is 5,167,100 square meters. The 

voltage level is 220kV. After all the photovoltaic arrays in the 

photovoltaic area are built, the annual grid-connected electricity 

generation is 58,350.5 MWh, and the annual equivalent full-

load operation hours are approximately 1167 hours. 

The experiment uses the DJI M300 unmanned aerial vehicle as 

the flight platform, equipped with the Zenmuse H20T dual-

camera to capture visible light and infrared images of the 

photovoltaic power station. The specific images and parameters 

of the equipment are as Figure 7 and Table 1. 

 
Figure 7 Image of equipment: (a)DJI-M300 drone and (b)H20T 

dual-camera 

 

Table 1 Technical specifications of H20T dual-camera  

 Infrared  Visible 

Image Resolution 640×512pixels 4056×3040pixels 

Pixels Size 12 μm 3.67μm 

Focus Length 13.5 mm 4.5mm 

Image Format R-JPEG (16 bit) JPEG(8 bit) 

DFOV 40.6° 82.9° 

GPS Info Yes Yes 

Gimbal Info Yes Yes 

The H20T dual-camera system simultaneously captures visible 

light and infrared images. In this experiment, a total of 3767 

visible light images and their corresponding 3767 infrared 

images were obtained over 9 sorties, with some sample images 

shown in Figure 8 and Figure 9. 

 
Figure 8 Visible light images: (a)The thumbs of  visible light 

images (b)A visible light image 

 
Figure 9 Infrared images: (a)The thumbs of  infrared images 

(b)An infrared light image 

(a) (b) (c) 

(a) (b) 

(a) (b) 

(a) (b) 

(a) (b) 
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Due to the different image dimensions of visible light and 

infrared images from the H20T system, overlaying two images 

acquired at the same time results in the visualization shown in 

Figure 10. 

 
Figure 10 Overlaying of visible light image and infrared image 

 

3.2 Infrared Images Stitching Results 

Following the method outlined in section 2.1, we initially 

conducted aerial triangulation processing on the 3767 visible 

light images, obtaining image spatial position, orientation, and 

corresponding three-dimensional point information as depicted 

in Figure 11. 

 
Figure 11 Aerial triangulation result for visible light images 

 Directly applying the spatial position and orientation of the 

visible light images to the infrared images, the resulting infrared 

images were overlaid onto a digital surface model, as shown in 

Figure 12 

 
Figure 12 Overlaping view by orientation of the visible light 

images for all infrared images：(a)Overlaping all view (b)The 

part of all view 

Utilizing the ground points information obtained from the 

visible light images, a ground elevation model was generated. 

Using a ground resolution of 0.1 meters for the infrared images, 

an overall infrared orthophoto image produced through the 

"Voronoi diagram" algorithm described in section 2.1 is 

presented in Figure 13 

 
Figure 13 The stitching results of infrared images: (a)All image 

(b)The part of all image and cyan lines is seamline 

 

3.3 Hot spot detection results 

After obtaining the overall infrared orthophoto image, based on 

the design data of the photovoltaic power station, we segmented 

out corresponding infrared orthophoto images based on the 

geographic coordinates of each photovoltaic panel, resulting in 

110 groups named 1 to 110, as illustrated in Figure 14. 

 
Figure 14 Infrared orthophoto image and segment to groups 

Subsequently, employing the method described in section 2.2, 

Otsu's binarization and morphological processing were carried 

out for each group of photovoltaic panels. Most groups did not 

show any anomalies, while the processing results for panels 

numbered 20 and 60 are depicted in Figure 15. 

 
Figure 15 Cases for don‘t find hot spots: (a)(e)Source infrared 

image (b)(f) Filtering by the average temperatures (c)(g) The 

results of OTSU  (d)(h) Morphological results(nothing in black) 

 

Notably, panels with conspicuous bright spots were also 

identified, particularly panel number 10, as shown in Figure 16. 

(a) (b) 

(a) (b) 

(a) (b) (c) (d) 

(e) (f) (g) (h) 
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Figure 16 Case for find a hot spot: (a) Source infrared image (b) 

Filtering by the average temperatures (c) The results of OTSU  

(d) Morphological results 

To verify the accuracy of the detection results, we conducted a 

current-voltage (IV) characteristic test on the photovoltaic 

panels where bright spots were observed. The results showed 

that the panel associated with group 10 was not working 

properly and indeed required replacement. The visible light 

image of component 10 is depicted in Figure 17. 

 
Figure 17 Visible light image for a photovoltaic panel faults 

 

Additionally, at the location of photovoltaic component 90, two 

bright spots were detected and labeled as A and B. The 

processing procedure for these spots is illustrated in Figure 18. 

 
Figure 18 Case for find two hot spot: (a) Source infrared image 

(b) Filtering by the average temperatures (c) The results of 

OTSU  (d) Morphological results(Two hot spot) 

Similarly, the IV characteristic test was carried out at positions 

A and B, leading to the determination that the photovoltaic 

panel at position A was malfunctioning and needed replacement, 

while the IV characteristics of the panel at position B did not 

indicate any obvious abnormalities and could continue to be 

used. It should be noted that for small bright spots, their 

accuracy in detection may be somewhat reduced. 

 

4.  CONCLUSION  

This paper proposes a method and system for using drones 

equipped with multispectral cameras to conduct hotspot 

detection on photovoltaic panels, addressing the issue of low 

efficiency in photovoltaic module inspections. Through 

experiments conducted at a solar photovoltaic power station in 

Qingyuan, Guangdong Province, the results show that the 

proposed photovoltaic panel hotspot detection method is highly 

effective, facilitating efficient detection of faulty photovoltaic 

panels with hotspots. In comparison to traditional methods, this 

approach has several advantages. Firstly, it only requires aerial 

photography using drones, eliminating the need for physical 

contact measurement on the photovoltaic panels, making it not 

only convenient and economical but also operationally simple. 

Secondly, it is highly efficient, with both the photographic and 

detection processes being fully automated. Lastly, the method 

results in minimal missed detections, ensuring the normal 

temperature of the photovoltaic panels. However, there are areas 

in this method that require further optimization, such as 

determining the appropriate hotspot size to reduce false 

detection rates while ensuring no missed detections. 
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