
Comparing Deep Learning and MCWST Approaches for Individual Tree Crown Segmentation

Wen Fan 1, Jiaojiao Tian 1, 2, Jonas Troles 3, Martin Döllerer 1, Mengistie Kindu 1, Thomas Knoke 1, ∗

1 Institute of Forest Management, TUM School of Life Sciences Weihenstephan,

Technical University of Munich, 85354 Freising, Germany, (wendy.fan, jiaojiao.tian, doellerer, mengistie, knoke) @tum.de
2 German Aerospace Center (DLR), Remote Sensing Technology Institute (IMF), 82234 Wessling, Germany, Jiaojiao.Tian@dlr.de

3 University of Bamberg, Cognitive Systems Group, 96049 Bamberg, Germany, jonas.troles@uni-bamberg.de

Keywords: UAV imagery, Mask R-CNN, Levelset-Watershed, Individual tree crown segmentation, Instance segmentation.

Abstract

Accurate segmentation of individual tree crowns (ITC) segmentation is essential for investigating tree-level based growth trends and

assessing tree vitality. ITC segmentation using remote sensing data faces challenges due to crown heterogeneity, overlapping crowns

and data quality. Currently, both classical and deep learning methods have been employed for crown detection and segmentation.

However, the effectiveness of deep learning based approaches is limited by the need for high-quality annotated datasets. Benefiting

from the BaKIM project, a high-quality annotated dataset can be provided and tested with a Mask Region-based Convolutional

Neural Network (Mask R-CNN). In addition, we have used the deep learning based approach to detect the tree locations thus

refining the previous Marker controlled Watershed Transformation (MCWST) segmentation approach. The experimental results

show that the Mask R-CNN model exhibits better model performance and less time cost compared to the MCWST algorithm for

ITC segmentation. In summary, the proposed framework can achieve robust and fast ITC segmentation, which has the potential to

support various forest applications such as tree vitality estimation.

1. Introduction

The detection of individual tree crowns (ITC) contributes to as-

sessing the vitality of trees, thereby plays an important role in

forest management (Kempf et al., 2021). High-vitality trees

will respond and recover from drought or other physiological

stressors, which decreases climate-induced tree mortality (Gonza-

lez et al., 2010). Over the past decade, the utilization of very

high-resolution imagery has emerged as a viable method for the

identification of individual trees. This boosts various applica-

tions, such as assessing tree vitality, monitoring forest disturb-

ances, and conducting forest inventories (Pearse et al., 2020).

Although traditional methods of surveying forests are highly ac-

curate, their results may not fully capture the current condition

of large areas of forest. Remote sensing is less labor-intensive

and makes it possible to collect large amounts of data while

reducing the time and resources required for fieldwork. How-

ever, there are still challenges in the automated segmentation of

ITCs using remote sensing data. Image resolution, overlapping

crowns and training datasets are the three main challenges. In-

sufficient image resolution hinders segmentation at the level of

individual trees. Even with commercial satellite imagery with

a decimeter-level resolution, it is difficult to detect smaller tree

crowns. In forests, the density of trees makes it difficult to de-

lineate individual crowns within overlapping crowns, making

even manual annotation difficult. Therefore, obtaining training

datasets not only incurs data collection costs but also requires

significant time and manual effort for annotation. This scarcity

is reflected in the limited availability of publicly available forest

datasets.

Different types of remote sensing data are used for ITC seg-

mentation. Airborne Laser Scanning (ALS) uses an active sensor

capable of collecting high-resolution 3D information on trees

to identify ITC (Holmgren et al., 2022). Dong et al. (2020a)
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utilized the local maximum filtering method and the MCWST

method to extract accurate individual tree crown parameters in

orchards with complex backgrounds. However, this method

faces challenges in extracting small trees and distinguishing

between tree crowns and weeds in the image. Guo et al. (2021)

proposed a method that combined multi-radius filtering and fu-

sion with random forest to locate tree crowns. However, it also

resulted in false extractions due to similar texture and color fea-

tures between weeds and tree crowns. In recent years, UAV

has been introduced to forest monitoring, as it can produce

high-resolution data products quickly and conveniently, cover-

ing areas of several square kilometers (Ma et al., 2022). UAVs

not only have the flexibility to acquire high spatial resolution

data but are also inexpensive. Compared to 30cm panoptic res-

olution of the commercial satellite Airbus Pleiades Neo, UAV

imagery offers a higher 1cm spatial resolution, such as 0.6cm

resolution FORTRESS (Schiefer et al., 2020), allowing the de-

tection of smaller tree crowns. In comparison to manned air-

craft systems, UAVs can be deployed more faster and at lower

costs (Huang et al., 2018).

Common traditional methods based on high-resolution images

include template matching and region-growing methods (Yu et

al., 2022). Generally, template matching assumes the shape and

size of the crown. Region-growing searches for local maxima

points as the centers of tree crowns, and the model performance

is highly dependent on the selection of seed points. Currently,

the watershed algorithm is the widely used method for indi-

vidual tree segmentation (Dong et al., 2020b). The watershed

algorithm flexibly adapts to the shapes and structures of trees

in different images but it is sensitive to the edge information of

the target. Therefore, it performs well in segmenting trees and

background information. However, due to the limitations of

local image information, it has the disadvantage of being prone

to over-segmentation (Wallace et al., 2021). Furthermore, due

to the dense distribution of trees in forests, the segmentation of

overlapping tree crowns is a critical challenge. Recently, re-
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searchers have proposed a combination of normalized cut and

watershed algorithms to improve the accuracy of tree segment-

ation (Qin et al., 2022). Kempf et al. (2021) used a level-set wa-

tershed segmentation transformation to obtain crown contours

from the DSM, which corrects or avoids contours resulting from

watershed segmentation being in the gaps between crowns.

In recent years, there has been significant progress in object de-

tection tasks on remote sensing data with the advent of deep

learning algorithms (Kotaridis and Lazaridou, 2021). Convolu-

tional Neural Networks (CNNs) have the ability to capture spa-

tial features and textures related to target categories or quantit-

ies. Hence, CNNs have been widely applied in forestry and re-

mote sensing, such as crown detection, individual tree segment-

ation, and tree species classification (Kattenborn et al., 2021).

Weinstein et al. (2019) utilizes a ResNet-50-based CNN classi-

fier to detect trees in airborne RGB forest imageries. The out-

put of the detection covers bounding boxes which indicates the

extent of individual trees. However, it does not provide the spe-

cific contours of the trees. Only pixel-level tree contours allow

further exploration of applications such as the performance of

different bands in reflecting variations in individual tree vitality.

Conversely, Mask R-CNN has the ability to recognize objects

at a pixel level and provide a comprehensive outline of the ob-

ject. Therefore, some researchers have explored ITC segment-

ation based on Mask R-CNN with remote sensing data, such as

UAV images (G. Braga et al., 2020; Hao et al., 2021; Ball et al.,

2023). Hao et al. (2021) annotate 1605 trees in a 4 ha plot, with

16% of the data reserved for testing and the remaining data used

for training and validation. While the model performed well in

the experiment, the presence of a single species (spruce) and

a large training set could lead to the overfitting of the model.

G. Braga et al. (2020) used synthetic data for training and tested

in a relatively smaller region.

Without a sufficiently annotated ITC dataset, it is quite chal-

lenging to evaluate the deep learning based approaches. Some

researchers claim that the traditional algorithms or deep learn-

ing methods that they use have advantages in terms of model

performance and time cost for individual tree segmentation in

UAV imagery. However, it is difficult to assess which method

is superior is difficult due to significant differences in the envir-

onments and sizes of the datasets used in these studies. Hence,

it is essential to evaluate the overall performance of both ap-

proaches in the same forests. Fortunately, more research insti-

tutes or companies are willing to share their datasets. Troles et

al. (2023) created a tree inventory based on RGB and multis-

pectral UAV data, including individual crown contours and tree

vitality assessments.

To address this challenge, this paper proposes a three-step

method that (1) uses Faster R-CNN to obtain initial detection

boxes from a custom Common Objects in Context (COCO)

dataset, (2) performs Individual Tree Crown (ITC) segmenta-

tion based on MCWST, and (3) accomplishes ITC segmenta-

tion using Mask R-CNN. The remaining sections of this paper

are organized as follows: Section 2 introduces the UAV data

tested in the experiment and the corresponding dataset genera-

tion. Section 3 describes the application of these two methods

to ITC segmentation. The fourth part contains experimental res-

ults and discussions. Finally, section 5 concludes the paper. The

main contributions of this study are as follows:

(1) The refinement of the previous Marker Controlled Water-

shed Transformation (MCWST) segmentation approach by in-

troducing the deep learning model for tree location detection.

(2) The comparison of model performance between traditional

methods and deep learning approaches under the same in-

put conditions, providing individual tree information for sub-

sequent analysis of forest disturbance at the individual tree

level.

2. Method

In this study, the MCWST algorithm and Mask R-CNN are

used for ITC. In terms of data processing, the dataset used util-

izes the pre-processed Canopy Height Model (CHM) images

and RGB images captured by UAV as inputs. For both meth-

ods, we first use Faster R-CNN to obtain initial detection boxes

for trees in the images. This approach helps to mitigate the

over-segmentation problems caused by traditional methods us-

ing blob detection for seed point acquisition, and it additionally

also ensures that MCWST and Mask R-CNN share the same

initial input. For the MCWST method, detection is performed

with the center of the detection box as the starting point on the

DSM image. In the case of Mask R-CNN, the instance segment-

ation is conducted based on the initial detection boxes on RGB

images. The key steps of the proposed method are described as

follows.

2.1 Faster R-CNN Based Tree Location Detection

The Faster R-CNN (Ren et al., 2015) process is illustrated in

Figure 1. The main steps are (1) feature extraction and fusion

through ResNet and RPN networks, resulting in the generation

of five feature maps, (2) the feature maps are fed into the RPN,

generating anchors of different sizes to produce a given number

of region proposals, (3) extract Region of Interest (RoI) feature

maps from the CNN feature map based on the coordinates of

the region proposals, (4) utilize the RoI Pooling layer for spa-

tial pooling to ensure that the output size of all feature maps

is the same. (5) input all feature maps into subsequent Fully

Connected (FC) layers for classification and regression.

Faster R-CNN is employed to obtain initial bounding boxes

on the dataset. Faster R-CNN utilizes a deep neural network

to generate region proposals for object detection, followed by

classification and bounding box regression on these proposed

regions. Both ITC detection methods are based on the res-

ults of Fast R-CNN. Specifically, the design of the MCWST

algorithm considers the centers of the Faster R-CNN detection

boxes as initial seed points for segmentation. Mask R-CNN ex-

tends Faster R-CNN by adding additional branches for instance

segmentation. Then we intend to evaluate the performance of

these two algorithms on the same initial detection boxes.

2.2 MCWST Segmentation Algorithm

In this paper, we adopt the method proposed by Kempf et

al. (2021), which primarily involves the modified DSM-level

set watershed segmentation. The Chan-Vese (CV) model is

first employed to segment the CHM into foreground and back-

ground. The blob detection is used to acquire the initial seed

points, and the MCWST segmentation method is used for indi-

vidual tree segmentation. The CV model achieves image seg-

mentation based on energy minimization of level set functions.

In this process, the level set function evolves and approximates

the boundaries of the foreground and background in the im-

age. Thus, the image is segmented into foreground and back-

ground. MCWST is an improvement based on the watershed

segmentation method. The Watershed segmentation simulates
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Figure 1. The Workflow of Faster R-CNN and Mask R-CNN.

the flow of water starting from local minima in the image. By

constructing dams that represent high-value areas in the image,

the algorithm prevents water flows from merging. Therefore,

the different regions of the image are segmented. Due to noise

or other factors, images often contain many local minima, lead-

ing to potential over-segmentation. In order to mitigate over-

segmentation, the MCWST algorithm is enhanced on the wa-

tershed algorithm by incorporating foreground and background

labels generated from the CV model results.

As an improvement, we employ Faster R-CNN to obtain initial

seed points, which is able to decrease over-segmentation issues

in blob detection. High-resolution CHMs often contain mul-

tiple local minima, which may cause severe over-segmentation

problems. Faster R-CNN, which is the basis for Mask R-CNN,

not only provides high-quality seed points but also ensures ap-

proximate consistency in the initial regions for both algorithms.

The improved MCWST algorithm used in the experiment is

shown in Figure 2.

Foreground and 

background markers

Initial seed points

CHM

MCWST

CV model

MCWST

Faster RCNN detection

Figure 2. The workflow of MCWST method.

2.3 Mask R-CNN Model

Mask R-CNN is a deep learning model for object detection and

instance segmentation (He et al., 2017), the changes compared

to Faster R-CNN are highlighted in red in Figure 2. The men-

tioned models have two main differences, including (1) RoI

Pooling is replaced by RoI Align, and (2) an additional branch

in Mask R-CNN is added to output predictions about whether

each pixel belongs to the object mask. RoI Align is introduced

to address quantization issues present in RoI Pooling and en-

hance sampling precision for features. In addition, a branch

dedicated to generating target masks is added, making it pos-

sible to obtain pixel-level boundaries of the targets, not limited

to bounding boxes.

For each candidate region, RoI Align is introduced to ad-

dress quantization issues present in RoI Pooling and enhance

sampling precision for features. The model is trained and valid-

ated using a dataset of annotated tree crowns, and its perform-

ance is evaluated based on test results. The method is imple-

mented using MMdetection 3.0 (Chen et al., 2019) and trained

on an Nvidia GeForce RTX 3080 GPU. Mask R-CNN adopts

ResNet50 as the backbone network. The overall loss function

L for Mask R-CNN is represented by Equation (1).

L = Lcls + Lbox + Lmask (1)

Lcls is the target classification loss, Lbox is the bounding box

regression loss, and L mask is the mask segmentation loss.

Both Lcls and Lmask utilize the Cross-Entropy Loss function,

while Lbox employs the Smooth L1 Loss.

The loss allows the model to simultaneously perform target

classification, bounding box regression, and instance segment-

ation at the pixel level. The training process includes twelve

epochs. According to the experiments, increasing the number

of training iterations did not lead to a better model. The min-

imum IoU threshold for bounding box predictions and ground

truth boxes is set to 0.5.

2.4 Evaluation Metrics

Precision, recall, and F1 scores are used to evaluate model per-

formance, which is assessed by comparing image annotations

and algorithm predictions. The performance of models is as-

sessed on the comparison between image annotations and al-

gorithm predictions. If the center of each instance predicted by

the algorithm falls within the corresponding annotated crown,

and there is only one instance center within the crown, we cal-

culate the Intersection over Union (IoU) between the annotated

crown and the instance. If the IoU is greater than 50%, it is

defined as true positive (TP). Otherwise, if the instance center

is not contained within any crown, the IoU between a single
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instance and its corresponding annotation is less than 0.5, or

if there are multiple instances within a patch, it is defined as

false positives (FP). The absence of any instance center within

a crown is labeled as a false negative (FN). Precision is defined

as the ratio of TP to the total detected trees. Recall is defined as

the ratio of TP to the annotated trees.

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

IoU =
area(Bpredict ∩Bcrown)

area(Bpredict ∪Bcrown)
(4)

Bpredict is indicative of the predicted scope for an individual

instance, while Bcrown delineates the range of the annotated

crown corresponding to this instance.

3. Study Area and Data

3.1 Study Area

The study area is located in and around Bamberg, a city in

northern Bavaria, Germany. It consists of the following four dif-

ferent forest and forestlike areas: (1) the citypark, called Hain,

with a forestlike structure of deciduous trees and an area of 50

hectares, (2) the Stadtwald, a mostly coniferous managed forest

with an area of 190 hectares in the southeast of Bamberg, and

(3) two areas of 60 and 45 hectares of mixed managed forest

called Tretzendorf 1 and Tretzendorf 2 about 20 km east of

Bamberg. The dataset includes 19 tree species such as Picea

abies, Fagus sylvatica and Abies alba. Table 1 gives a detailed

description of these four areas of the dataset. The study area

was divided into sample plots with a length and width of 100 m.

The distribution of the sample plots is shown in Figure 3, where

the red dots represent the centers of the grid cells in which the

plots are located, not the centers of the plots themselves.

The detailed information about the equipment is available in

the work of (Troles et al., 2023), which involves the use of two

different UAVs to collect data in suburban and urban forests.

UAV images, Digital Surface Model (DSM), and Digital Ter-

rain Model (DTM) of the study area were collected in July

2022. The pixel resolution of the RGB orthophotos varies from

1.6 to 1.8 centimeters, DSMs have a resolution of 3.2 to 3.6

centimeters and DTM has a pixel resolution of 1 meter. To fur-

ther process and obtain the CHM, the DTM is first resampled

to the resolution of the DSM, then the DTM is subtracted from

the DSM and lastly affixed value is subtracted, so ground areas

pixels are as close to zero as possible. The delineation of tree

crowns and the creation of the dataset were carried out from

March 2023 to December 2023.

3.2 Generation of the Experimental Dataset

In this study, the delineation of individual tree crowns is carried

out by a forester with extensive knowledge of forestry and re-

mote sensing. This process is based on field observations and

orthophoto imagery. As shown in Table 1, the delineation of a

total number of 27,167 tree crowns are provided by the Univer-

sity of Bamberg (Troles et al., 2023). First, the CHM is gener-

ated based on the DSM and DTM, which serves as input data

for the MCWST. Additionally, we organized the experimental

(a) (b)

(c) (d)

Figure 3. Distribution of sample plots and the study area (a)

Hain, (b) Stadtwald, (c) Tretzendorf 1 (d) Tretzendorf 2.

data according to the COCO dataset format, segmenting the im-

age tiles and associated annotations randomly for each original

plot. For this purpose, 40% of the data is used for model train-

ing, 30% for model validation and the remaining 30% is used

as a test set to assess the final performance of the model. The

dimensions of the segmented images are 2048 pixels in both

width and height. At this stage, the CHM image is cropped to

the same size as the images in the COCO training set. It should

be noted that the edges of the image can lead to the segmenta-

tion of a single crown into multiple crowns. Detailed inform-

ation about the dataset is presented in Table 2 and Figure 4.

To ensure that the training set of the dataset includes all tree

species and that the model trained on the dataset shows trans-

ferability. The training set includes a total of 42 plots, most of

which are from the Stadtwald area. Images from the Hain areas

are mainly used for testing and validation. The training and test

images are from different regions to ensure that overfitting is

avoided in the experiment.

4. Result and Discussion

In the experimental part, we apply the deep learning based ap-

proach and the MCWST to our datasets. The results of the two

approaches are compared both at the pixel level and the object

level.

4.1 Experimental Results

The instance segmentation results for both algorithms used in

the experiment are shown in Figure 5. From Figure 5, it can be

seen that Faster R-CNN provides good initial detection boxes.

Despite modifications to the seed point input in the experiments,
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Region Size Sample plots Number of delineated ITCs Description
Hain 50ha 15 1978 Region with deciduous forest-like areas

Stadtwald 190ha 46 15477 Mostly coniferous forest
Tretzendorf 1 60ha 29 6898 Mixed forest
Tretzendorf 2 45ha 15 2814 Mixed forest

Table 1. The study areas in and around Bamberg, Germany.

Dataset Image numbers Tree numbers
Train data 367 16124
Test data 255 7722

Validation data 226 6391

Table 2. Dataset description.

(a) (b)

(d)(c)

Figure 4. Image annotations for (a) the Hain plot, (b) the

Stadtwald plot, (c) the Tretzendorf 1 plot, and (d) the

Tretzendorf 2 plot.

the MCWST performance of the model remains suboptimal.

Not only are there noticeable segmentation omissions, but for

larger tree crowns, the segmentation results are significantly lar-

ger than the actual regions. MCWST exhibits significant under

segmentation. Regarding Mask R-CNN, the algorithm has a

good visual performance. The contour of Mask R-CNN visu-

ally segments different tree crowns well. It can be observed that

there are still instances of missed segmentation in the results.

The quantitative evaluation results for ITC segmentation using

two different methods are presented in Table 3. TP is the ac-

tual number of crowns extracted, FN represents the number of

missed extractions, and FP indicates the number of erroneously

extracted crowns. Mask R-CNN shows a better performance,

with precision and recall rates of 67.72% and 70.14%, respect-

ively, compared to MCWST.

4.2 Discussion

For MCWST, this paper uses the detection boxes from Faster

R-CNN as initial inputs to ensure the same range of inputs.

In addition, if traditional blob detection is used to obtain seed

points, there would be multiple low-value points in the high-

resolution CHM. This leads to severe over-segmentation prob-

(b)

(c)

(a)

Annotated data Faster R-CNN MCWST Mask R-CNN

Figure 5. Experiment results. (a), (b), and (c) represent results of

different test images.

lems as shown in Figure 6. The number of seed points obtained

from traditional blob detection is significantly higher than the

number of trees, resulting in overly fragmented image segment-

ation. Faster R-CNN provides a more reasonable initial num-

ber and position of seed points, thus reducing this problem.

Moreover, it can be seen from Figure 5 that the edges produced

by the MCWST method are not as smooth as those produced

by Mask R-CNN. It is partly due to that the ground truth is

manually annotated, resulting in smoother edges than the ac-

tual ground truth edges.

(b)(a)

Figure 6. Differences in seed point settings. (a) shows seed

points obtained from traditional spot detection, and (b) shows

seed points centers of detection boxes from Faster R-CNN.

The Mask R-CNN algorithm has instances of both under-

segmentation and over-segmentation, as shown in Figure 7.

Under-segmentation occurs due to dense forest areas, making it

difficult to accurately segment trees of the same species based

on images alone. On the other hand, over-segmentation res-

ults from significant differences in the tree distribution between

the training and test sets, leading to suboptimal segmentation.

Therefore, future work should focus on designing experiments

to improve the robustness of the model.
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Method TP FP FN Precison Recall
MCWST 2881 2564 5547 0.529 0.342

Mask R-CNN 5453 2599 2322 0.677 0.701

Table 3. Experimental results.

(b)

(c) (d)

(a)

Figure 7. Analysis of Mask R-CNN Results. (a) and (c)

represent RGB images and annotations, (b) exhibits instances of

under-segmentation, while (d) displays instances of

over-segmentation.

Both methods are capable of segmenting individual trees in

forests, providing data for tree resource management and forest

disturbance analysis. However, there are still some problems.

Random proportional sampling has the potential to produce an

unbalanced sample. In subsequent datasets, manual selection

is added to reduce this problem. The training and test sets

are selected from different regions to ensure portability of the

model. In addition, the annotated data introduces errors for

both algorithms. From a ground truth annotation perspective,

the segmentation of overlapping crowns proves to be challen-

ging. Even experienced foresters cannot guarantee the correct

segmentation of two overlapping crowns. There is unannotated

data in the training images, where some tree crowns are not as-

signed to any instance, leading to numerous misidentifications.

Despite the superior performance of Mask R-CNN, there is still

considerable potential for improving the model’s performance

on the ITC segmentation task using the given dataset. The data-

set used in the experiment will also be released soon, allowing

more researchers to explore this topic. Besides, orthophotos

suffer from tree occlusion. Only the top canopy is visible in the

image. In the future, the vertical structural information of trees

will be explored to segment individual trees using 3D data

5. Conclusion

Reliable segmentation of individual trees in the forest is es-

sential for forest management and ecological assessment. On

the one hand, the varying contours of tree crowns of differ-

ent species, coupled with the challenge of segmenting over-

lapping crowns, add a significant degree of complexity to the

task. On the other hand, the acquisition of UAV data and sub-

sequent manual delineation requires time and significant hu-

man resources to overcome the lack of annotated datasets. This

study investigates the algorithmic performance of the MCWST

method and the Mask R-CNN approach for ITC segmentation

in UAV imagery. Specifically, Mask R-CNN achieves an ac-

curacy about 15% higher than MCWST coupled with an object

detection approach, reaching 67.72%. The recall rate is twice

that of MCWST, at 70.14%. Mask R-CNN provides a valid

initial contour of individual trees, but it is still affected by the

complexity of the tree species and tree density. There are in-

stances of over-segmentation and under-segmentation in the ex-

periment, which needs to further improve the transferability of

the model. Based on the results of the individual tree segment-

ation, our future work will focus on the investigation of forest

disturbances and the analysis of tree vitality at the individual

tree level. In addition, the aforementioned ITC segmentation

dataset will be released as a publicly available dataset for wider

use by researchers.
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