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ABSTRACT: 
 
Flood extraction is a critical issue in remote sensing analysis. Accurate flood extraction faces challenges such as complex scenes, 
image differences across modalities, and a shortage of labeled samples. Traditional supervised deep learning algorithms demonstrate 
promising prospects in flood extraction. They mostly rely on abundant labeled data. However, in practical applications, there is a 
scarcity of available labeled samples for flood change regions, leading to an expensive acquisition of such data for flood extraction. 
In contrast, there is a wealth of unlabeled data in remote sensing images. Self-supervised contrastive learning (SSCL) provides a 
solution, allowing learning from unlabeled data without explicit labels. Inspired by SSCL, we utilized the open-source CAU-Flood 
dataset and developed a framework for cross-modal change detection in flood extraction (CMCDFE). We employed the Barlow Twin 
(BT) SSCL algorithm to learn effective visual feature representations of flood change regions from unlabeled cross-modal bi-
temporal remote sensing data. Subsequently, these well-initialized weight parameters were transferred to the task of flood extraction, 
achieving optimal accuracy. We introduced the improved CS-DeepLabV3+ network for extracting flood change regions from cross-
modal bi-temporal remote sensing data, incorporating the CBAM dual attention mechanism. By demonstrating on the CAU-Flood 
dataset, we proved that fine-tuning with only a pre-trained encoder can surpass widely used ImageNet pre-training methods without 
additional data. This approach effectively addresses downstream cross-modal change detection flood extraction tasks. 
 
 

1. INTRODUCTION 

In recent years, frequent global flood disasters have caused 
substantial damage to both property and community safety. The 
essence of flood extraction lies in recognizing floodwaters, 
specifically in determining the extent of inundation (Zhang et 
al., 2021). With the advancement of satellite remote sensing 
technology, remote sensing images have become crucial tools, 
providing essential means and data support for acquiring flood-
related information. Their rapid acquisition, strong timeliness, 
and capacity for large-scale repetitive observations significantly 
contribute to flood monitoring. Both multispectral remote 
sensing images and synthetic aperture radar (SAR) remote 
sensing images are applied in flood monitoring. The fusion of 
multispectral remote sensing images and SAR remote sensing 
images harnesses the complementary advantages of each, 
thereby enhancing the effectiveness of remote sensing-based 
flood monitoring (He et al., 2023; Zhang et al., 2021; Zhao et 
al., 2023; Zhang et al., 2023). 
 
Since the introduction of fully convolutional networks (Long et 
al., 2014) in 2015, a multitude of end-to-end deep learning 
methodologies has been integrated into the task of cross-modal 
change detection (CD) for flood extraction, playing a pivotal 
role. These deep learning approaches primarily rely on 
supervised learning, demanding a substantial volume of labeled 
data (Konapala et al., 2021; Zhao et al., 2023; Zhang et al., 
2023). However, flood disasters are characterized by their 
sudden and transient nature, with a scarcity of high-resolution 
satellite imagery during such events. Additionally, annotating 
remote sensing images incurs a high cost, making the 
acquisition of well-labeled flood samples a time-consuming and 

labor-intensive endeavor. To mitigate reliance on annotated data, 
various cross-modal flood extraction methods utilize pre-
processing models on large-scale ImageNet datasets, followed 
by fine-tuning with a limited amount of pixel-level annotations. 
However, substantial distribution disparities between ImageNet 
data and cross-modal flood monitoring datasets pose a 
considerable risk of domain shift issues. Recently, self-
supervised learning has garnered significant research interest in 
academia as a method to derive effective visual representations 
from a vast pool of unlabeled images (Caron et al. 2020 ; Chen 
et al., 2020; Chen and He 2021; Grill et al. 2020; He et al. 2019; 
Tian et al. 2019; Zbontar et al. 2021). Essentially, self-
supervised learning consists of two steps: firstly, it involves a 
pretext task, where well-designed self-supervised signals and 
pseudo-labels (i.e., automatically generated labels) are utilized 
to aid in initializing model parameters. This enables the model 
to directly extract rich visual feature knowledge from unlabeled 
image data. Subsequently, this acquired knowledge is 
transferred to specific downstream tasks to reduce reliance on a 
large number of labeled samples, thereby enhancing the model's 
performance in those tasks. 
 
Self-supervised contrastive pre-training represents a novel 
feature learning paradigm, primarily focused on defining 
positive and negative sample pairs. Its main objective is to 
maximize the similarity within positive pairs while minimizing 
it for negative pairs in the feature space, embodying the 
principle of "attraction within the same class, exclusion between 
different classes." Recent research highlights the high 
generalization ability of features pre-trained by most self-
supervised contrastive learning (SSCL) methods, a notable 
advantage in initializing backbone networks for downstream 
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tasks. Among the early SSCL methods, MoCo (He et al. 2019) 
and SimCLR (Chen et al., 2020) introduced innovative concepts 
like the momentum encoder and queue sampling, effectively 
handling negative samples. However, MoCo's computational 
speed is somewhat hindered due to queue sampling, while 
SimCLR, with its larger batch size, may incur higher GPU 
memory demands and increased computational costs to prevent 
the learning of trivial solutions. BYOL (Grill et al. 2020) 
addresses trivial solutions through positive sample contrastive 
learning, employing a symmetric network and stop-gradient 
methods. Nonetheless, it faces challenges related to sensitivity 
to task requirements and hyper-parameter tuning. SimSiam 
(Chen and He 2021), which avoids negative samples, leverages 
an asymmetric network structure and cross-gradient updates to 
counteract trivial solutions. However, it requires additional 
computational resources and exhibits sensitivity to hyper-
parameters. SwAV (Caron et al. 2020), rooted in online 
clustering and multi-view prediction encoding, successfully 
circumvents negative sample requirements, proving 
advantageous in high-label-cost scenarios. Nevertheless, it does 
entail higher computational resources due to the intricate nature 
of the online clustering algorithm. In contrast, Barlow Twin (BT) 
(Zbontar et al. 2021) introduces an innovative approach to 
SSCL, unencumbered by batch size restrictions and negative 
samples. It emphasizes the embedding itself, steering clear of 
asymmetric structure design. By computing the cross-
correlation matrix of augmented samples and utilizing a loss 
function to mitigate redundancy, BT achieves a cross-
correlation matrix reminiscent of an identity matrix. This 
indicates that the feature vectors of different augmentations of 
the same sample exhibit similarity, thereby minimizing 
redundancy across different dimensions and enhancing feature 
representation efficiency. 

Given the inherent strengths of BT, we have chosen to employ it 
as the objective function for SSCL within our proposed 
framework for cross-modal CD flood extraction (CMCDFE). 
This correspondence presents the results of experimental 
validation conducted using the publicly available CAU-Flood 
dataset (He et al., 2023). CAU-Flood stands out as a remote 
sensing dataset explicitly crafted for cross-modal flood 
extraction, featuring multiple sets of pre-disaster Sentinel-2 
optical images, post-disaster Sentinel-1 SAR images, and 
corresponding ground truth label images delineating altered 
regions. The articulated CMCDFE framework unfolds in two 
sequential phases: self-supervised contrastive pre-training and 
fine-tuning. In the initial stage, we construct a three-channel 
false-color image by amalgamating post-disaster Sentinel-1 VV 
polarization mode data, near-infrared band images extracted 
from pre-disaster Sentinel-2 optical images, and computed 
NDWI (Normalized Difference Water Index) index images. 
Subsequently, the BT algorithm is enlisted to distill effective 

visual representations of altered areas from these unlabeled 
false-color images. In the subsequent stage, we leverage the 
SSCL methodology to pre-train the encoder of the refined CS-
DeepLabV3+ model. The encoder demonstrates noteworthy 
parameter initialization, and empirical evidence derived from 
the CAU-Flood flood monitoring dataset attests that fine-tuning 
exclusively with the pre-trained encoder outperforms the widely 
embraced ImageNet pre-training approach, eliminating the need 
for additional data. This methodological refinement efficiently 
addresses downstream tasks associated with cross-modal flood 
extraction. 

 
The remainder of this paper is structured as follows. Section 2 
outlines the proposed methodology, providing a detailed 
description. In Section 3, we present the results of our 
experiments and engage in a comprehensive discussion. The 
concluding remarks are offered in Section 4 to wrap up this 
paper. 

2. METHODOLOGY 

2.1 CMCDFE framework 

We utilized pre-disaster Sentinel-2 multispectral images to 
extract near-infrared band images and selected NDWI as the 
representation of water bodies in the multispectral data. NDWI 
is computed by calculating data from the near-infrared and 
green bands, and its calculation formula is as follows: 

                    

Green NIRNDWI
Green NIR

−
=

+
                              (1) 

This paper synthesizes post-disaster Sentinel-1 VV polarization 
mode data, near-infrared band images, and NDWI index images 
through channel fusion, constructing a three-channel false-color 
image. Assuming trainX  is the synthesized three-channel false-
color image, we use the BT SSCL algorithm to pre-train the 
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self-supervised contrastive pre-training to learn effective visual 
feature representations of cross-modal flood changes from the 
synthesized three-channel false-color images. Subsequently, the 
learned encoder weights are used as the initial weights for the 
downstream flood change region extraction task network, the 
CS-DeepLabV3+ algorithm. Figure 1 illustrates the schematic 
diagram of the proposed CMCDFE framework, where the 
knowledge transfer of self-supervised contrastive learning 
feature representation is well-validated in the downstream task. 
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Figure 1. Pipeline of the proposed CMCDFE framework. 

 
2.2 SSCL pre-training method  

The method employed in this paper can be divided into two 
parts. Firstly, the BT algorithm is utilized for SSCL pre-training. 
Subsequently, the pre-trained weights are transferred to 
downstream cross-modal flood extraction. The BT algorithm 
maintains basic consistency with the SimCLR model in several 
aspects, including image augmentation, the encoder, and the 
projection module. It employs ResNet50 (excluding the final 
classification layer) as the feature extractor, followed by a 
projector network. This projector network consists of two linear 
layers, each with a hidden layer size of 512 output units. Due to 
high computational requirements, the output of the projection 
network is modified to generate embeddings of size 256, 
whereas the original BT network produces embeddings of size 
8192 (Zbontar et al. 2021). The first layer of the projector is 
followed by a batch normalization layer and rectified linear 
units. Figure 2 provides an overview of the BT algorithm. As 
the BT algorithm does not require distinguishing between 
positive and negative samples, the input false-color image X  
undergoes transformations t T  to obtain different augmented 
data 0X  and 1X . After passing through the encoder θf , they 

respectively yield features '
0f  and '

1f . Following the projector 

layer θg , the extracted features are denoted as '
0z  and '

1z . For 
a given batch, the network's loss function is: 

( )2 2
BT

invariance term redundancy reduction term

1 ii ij
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≠
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       (2) 

The initial component of the loss function is denoted as the 
"invariance term," while the subsequent one is termed the 
"redundancy reduction term." Here, C  signifies the cross-
correlation matrix and can be computed as follows: 
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Where iiC denotes the diagonal elements of the cross-

correlation matrix C , ijC  represents the non-diagonal 

elements, and λ  is a hyperparameter. Here, the parameter 
b represents different batch samples, indicating that the 
calculation of each element in C  is conducted across the batch 
dimensions. It can be observed that the optimization objective 
aims for the diagonal elements of the cross-correlation matrix 
C  to be 1, and the non-diagonal elements to be 0. After 
multiple training iterations, the cross-correlation matrices 
calculated for positive examples of the same image under 
different transformations tend to approach the identity matrix 
(Zbontar et al. 2021). 

 

 
Figure 2. Flow chart of the proposed SSCL pre-training algorithm. 
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2.3 CS-DeepLabV3+ algorithm 

DeepLabV3+ (Chen et al., 2018) is a semantic segmentation 
model based on convolutional neural networks, designed to 
address challenges in detail capture and multi-scale feature 
extraction for image segmentation tasks. It incorporates 
techniques such as dilated convolutions and atrous spatial 
pyramid pooling (ASPP). This paper introduces the CBAM 
(Convolutional Block Attention Module) attention mechanism 
(Woo et al., 2018) into the enhanced DeepLabV3+ model, 
referred to as the CS-DeepLabV3+ model, as depicted in Figure 
3. The model aims to better focus on crucial information related 
to cross-modal flood extraction tasks, thereby improving the 
network's precision in locating flood change areas. The CS-
DeepLabV3+ network structure comprises two main 
components: the encoder and the decoder. In the encoder stage, 
false-color images undergo down-sampling through ResNet 50 
for the main feature extraction network, completing the capture 
of image features. The high-dimensional feature maps generated 
by the main feature network are then input into the ASPP 

module. The processed outputs are overlaid, concatenated, and 
channel reduction is achieved through 1×1 convolutions to 
reduce computational complexity. Finally, the CBAM attention 
mechanism is applied for weighted operations, enabling high-
level feature extraction and multi-scale information integration. 
In the decoder stage, the input image undergoes a 4x down-
sampling to capture low-order features with rich details. 
Channel adjustments are made using 1×1 convolutions, and the 
CBAM attention mechanism is applied to process low-level 
features, filtering out background information and highlighting 
flood change areas. Subsequently, the high-level features 
obtained in the encoding phase undergo a 4x up-sampling to 
match the size of low-level feature maps. The low and high-
level features are then concatenated, followed by channel 
adjustment through 3×3 convolutions to achieve feature fusion. 
Finally, a 4x up-sampling is performed to restore spatial 
information, generating flood change area extraction result 
maps consistent with the input image size. 

 

 
Figure 3. Structure of the proposed CS-DeepLabV3+ algorithm. 

 
3. EXPERIMENTAL ANALYSES AND DISCUSSION 

3.1 Dataset description and evaluation metrics 

To evaluate the efficacy of the proposed algorithm, we 
employed the CAU-Flood cross-modal flood extraction dataset, 
comprising pre-disaster Sentinel-2 optical images and post-
disaster Sentinel-1 SAR images for 18 distinct study regions. 
Encompassing a comprehensive area of 95,142 square 
kilometers, the CAU-Flood dataset spans diverse geographical 
locations, including China, Bangladesh, Australia, the United 
States, Canada, and Germany. Notably, the Sentinel-1 images 
exhibit spatial resolutions ranging from 3.5 meters to 40 meters. 
Radar images from Sentinel-1 were acquired at the Ground 
Range Detected (GRD) level, with exclusive processing of data 
from the VV-polarization mode to optimize flood detection 
accuracy. Sentinel-2 images consist of four bands (red, green, 
blue, and near-infrared) with a spatial resolution of 10 meters. 
Ensuring semantic consistency in cross-modal interpretation, 
the CAU-Flood dataset underwent resampling to enforce 
uniform image sizes for SAR and optical pairs, and grayscale 
values were stretched to a standardized range of 0 to 255 (He et 
al., 2023). Processed Sentinel-2 and Sentinel-1 images served as 
pre-disaster and post-disaster inputs, respectively, with manual 
annotations identifying flood areas. This yielded a dataset 
comprising 18,302 image patches sized at 256×256, with 
15,231 patches allocated for training and 3,071 for testing. 

During the pre-training phase, we utilized pairs of pre-disaster 
and post-disaster images from the training set to construct false-
color images, employing the BT algorithm for SSCL without the 
use of labeled images. Subsequently, the pre-trained ResNet50 
encoder segment, endowed with well-tuned parameters, was 
transferred to the downstream CS-DeepLabV3+ model for the 
cross-modal flood extraction task. Four metrics, namely 
precision, recall, F1 score, and IoU, were employed to evaluate 
our algorithm's performance, and comparisons were made with 
state-of-the-art (SOTA) methods. 
3.2 Implementation details 

This paper utilizes the PyTorch framework to implement the BT 
algorithm. The specifications of our experimental machine are 
as follows: a 12th Gen Intel Core i9-12900K @ 3.19 GHz 
processor, 64.00 GB RAM, and an NVIDIA GeForce RTX 3090 
graphics card. To optimize the model, we adhere to the BT 
protocol (Zbontar et al. 2021). During the SSCL pre-training 
phase, we set the batch size to 20 and employed the LARS 
optimizer for training over 400 epochs. The initial learning rate 
was set at 0.005, adjusted by multiplying with the batch size 
and dividing by 256. We introduced a learning rate warm-up 
period of 10 epochs, followed by a cosine decay schedule 
(Zbontar et al. 2021), reducing the learning rate by a factor of 
1000. The trade-off parameter of the loss function is set to 

35 10λ −= × , and the weight decay parameter value is 1.5×10-6. 
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We evaluated the performance of the CS-DeepLabV3+ 
algorithm on downstream cross-modal flood extraction using 
the SSCL and fine-tuning strategies. For consistency, we 
employed ResNet50 as the feature extractor for the CS-
DeepLabV3+ algorithm. In the downstream task experiments of 
this paper, we chose to use the Adam optimizer with beta1 set to 
0.9, beta2 set to 0.999, and epsilon set to 1.0×10-8. The initial 
learning rate was set to 0.005, with a batch size of 10, and a 
total of 150 epochs were conducted. We adopted a hybrid loss 
function (Fang et al., 2022), combining weighted cross-entropy 
and Dice loss with equal weights. 
3.3 Results and discussion 

3.3.1 Evaluation on CAU-Flood dataset 

We conducted a comparison between the cross-modal flood 
extraction method CS-DeepLabV3+ proposed in this paper and 
several SOTA methods, including UNet++ (Peng et al., 2019), 
ResUNet (Zhang et al., 2018), PSPNet (Zhao et al., 2017), 
HRNet (Sun et al., 2019), and DeeplabV3+. Among them, both 
UNet++ and ResUNet represent advancements over the 
traditional UNet network, which has become a fundamental 
network in various remote sensing applications. UNet++ 
inherits the structure of UNet while incorporating dense skip 
connections, thereby maximizing the preservation of fine-
grained details and global information. In contrast, ResUNet 
leverages the benefits of both residual networks and UNet, with 
residual connections alleviating the gradient vanishing problem 
in deep networks, contributing to faster convergence and 
improved training efficiency. PSPNet aggregates contextual 
information from different regions of the image using pyramid 
pooling modules, integrating complex contextual information 
into the pixel-level semantic segmentation framework. HRNet 
transforms the connection between high-resolution and low-
resolution feature maps from a serial to a parallel structure, 
thereby maintaining the representation of high-resolution 
feature maps throughout the entire network. To assess the 
effectiveness of the SSCL pre-training method proposed in this 
paper, we initialized the parameters of five comparative 
methods during training using ImageNet pre-trained weights. In 

contrast, our approach involves transferring the pre-trained 
weights of the BT algorithm to the cross-modal flood extraction 
task. 
 
The results of cross-modal flood extraction on the CAU-Flood 
dataset using various SOTA methods are presented in Figure 4. 
From top to bottom, these scenarios include pre-disaster 
Sentinel-2 multispectral imagery, post-disaster Sentinel-1 VV 
polarization mode data, false-color images, ground truth images 
(where white represents changed areas and black represents 
unchanged areas), and the results of UNet++, ResUNet, PSPNet, 
HRNet, DeeplabV3+, and CS-DeepLabV3+. The results in 
Figure 4 demonstrate that all six comparative methods are 
proficient in handling the cross-modal flood extraction task, 
with each SOTA method yielding satisfactory segmentation 
results. Nonetheless, there are instances of suboptimal 
segmentation outcomes. While each model exhibits some 
missed detections, the extracted results overall remain 
acceptable. In Figure 4, grey represents true-negative (TN) 
pixels, green represents true-positive (TP) pixels, blue indicates 
false-positive (FP) pixels, and red corresponds to false-negative 
(FN) pixels. The qualitative comparison results in Figure 4 
demonstrate that flood detection based on deep learning 
exhibits good adaptability to different types of land cover and 
can be employed in situations with frequent flooding. It can 
effectively identify flooded areas in environments such as 
estuaries, inland river plains, villages, and lakes. The flood 
detection accuracy evaluation results of these comparative 
methods on the test set are presented in Table 1. Thanks to the 
CAU-Flood dataset, various deep learning models demonstrate 
excellent performance in the cross-modal flood extraction task. 
The proposed CS-DeepLabV3+ method achieves the best 
results (Precision = 0.9315, Recall = 0.9388, F1 = 0.9351, IoU 
= 0.8781), as evident from Table 1. CS-DeepLabV3+ generates 
finer contours that are more consistent with the ground truth. 
Both quantitative and qualitative comparative analyses further 
support the superiority of the proposed method in this study. 
 

 

Methods CAU-Flood 
Precision Recall F1 IoU 

UNet++ 93.37 91.61 92.48 86.02 
ResUNet 91.74 94.07 92.89 86.72 
PSPNet 91.25 93.85 92.53 86.10 
HRNet 92.41 93.65 93.02 86.96 

DeeplabV3+ 92.95 93.23 93.09 87.07 
Proposed (CS-DeepLabV3+ with BT) 93.15 93.88 93.51 87.81 

Table 1. Performance comparison for the CAU-Flood dataset. (All values are in percentages.) 
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Figure 4. Visual comparisons of the different SOTA models applied to CAU-Flood. Grey: TN pixels; green: TP pixels; blue: FP 
pixels; red: FN pixels. 
 
3.3.2 Ablation experiment 

We fine-tuned the proposed CS-DeepLabV3+ algorithm on the 
CAU-Flood dataset using three strategies: random initialization 
(Rand-init), supervised ImageNet pre-training (ImageNet-sup), 
and pre-training with BT self-supervised learning. To assess the 
effectiveness of the adopted self-supervised contrastive pre-
training method, we conducted a detailed comparative analysis 
with three additional self-supervised pre-training methods, 
namely SimCLR (Chen et al., 2020), MoCo (He et al., 2019), 
and CMC (Tian et al. 2019). These methods all employ a 
contrastive loss, which differs from the BT loss function used in 
our approach. According to the results in Table 2, our proposed 
BT self-supervised contrastive pre-training method outperforms 
the widely used ImageNet pre-training method, as well as 

SimCLR, MoCo, and CMC methods. Compared to the Rand-
init strategy, on the CAU-Flood test set, applying our BT pre-
training process increased the F1 score by nearly 1.5%. 
Similarly, our proposed pre-training method slightly 
outperformed the supervised ImageNet pre-training method and 
other SSCL methods in terms of performance. Overall, ablation 
experiments indicate that our proposed method for unlabeled 
cross-modal remote sensing images can achieve or even surpass 
the performance of widely used ImageNet pre-training methods 
and SSCL methods such as SimCLR, MoCo, and CMC, which 
utilize over a million labeled images. These results also 
indirectly confirm that our method mitigates the domain shift 
problem caused by transfer learning from ImageNet weights in 
the task of cross-modal flood extraction. 
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Methods Pre-training ImageNet 
dataset 

CAU-Flood 
Precision Recall F1 IoU 

CS-DeepLabV3+ 
(Backbone 
ResNet50) 

Rand-init ❌ ❌ 90.98 93.20 92.08 85.32 
ImageNet-sup ✔ ✔ 93.68 92.92 93.30 87.44 

SimCLR ✔ ✔ 93.27 93.53 93.40 87.62 
MoCo ✔ ✔ 93.17 93.75 93.46 87.72 
CMC ✔ ✔ 93.26 93.05 93.15 87.18 
BT ✔ ❌ 93.15 93.88 93.51 87.81 

Table 2. Ablation experiment results on CAU-Flood dataset. (All values are in percentages. ❌ indicates excluded steps during the 
training process, while ✔ denotes their inclusion.) 
 
3.3.3 Efficiency under limited labels 

As is well known, large-scale flood extraction tasks currently 
face a challenge due to the absence of a sufficiently large and 
publicly available annotated dataset. This limitation hinders the 
widespread application of deep learning methods in cross-
modal flood extraction tasks. On one hand, annotating cross-
modal bi-temporal remote sensing images for flood change 
regions from large-scale datasets is an expensive, tedious, time-
consuming, and primarily manual process. On the other hand, 
there is an urgent need for methods capable of learning and 
expressing visual information in cross-modal images without 
the reliance on labeled samples. To thoroughly validate the 
performance of the proposed BT self-supervised contrastive 
pre-training method with a small number of labeled samples, we 
specifically fine-tune a cross-modal flood extraction network 
with a limited number of labeled samples and evaluate the 
accuracy of the final flood extraction results. This paper 
compares the impact of Rand-init, ImageNet-sup, SimCLR, 
MoCo, and CMC on the performance of cross-modal flood 
extraction tasks, as presented in Table 3. From Table 3, it can 
be observed that in the CAU-Flood dataset used in the 
experiment, the BT self-supervised contrastive pre-training 
method consistently outperforms other compared pre-training 
methods in terms of Recall, F1, and IoU values. It is noteworthy 
that by using only 5% of the training labeled samples from the 
CAU-Flood dataset, corresponding Precision, Recall, F1, and 
IoU values of 87.59%, 91.87%, 89.68%, and 81.29%, 
respectively, can be achieved. These results indirectly 
demonstrate the effectiveness of our self-supervised contrastive 
pre-training method in addressing the problem of insufficient 
labeled data. Furthermore, the experimental results further 
confirm that employing the BT self-supervised contrastive pre-
training method enables the learning of additional 
discriminative feature information from unlabeled image 
samples in the research area, which is highly beneficial for 
downstream cross-modal flood extraction tasks. Transferring the 
learned optimal parameters to the improved CS-DeepLabV3+ 
network significantly enhances the performance of downstream 
tasks. 

Methods 
5% of the Labeled Samples 

CAU-Flood 
Precision Recall F1 IoU 

Rand-init 86.78 91.38 89.02 80.21 
ImageNet-sup 87.53 90.95 89.21 80.52 

SimCLR 87.60 90.93 89.23 80.56 
MoCo 87.47 91.37 89.38 80.80 
CMC 86.90 91.30 89.05 80.26 
BT 87.59 91.87 89.68 81.29 

Table 3. Performance of the different pre-training methods 
evaluated using the improved CS-DeepLabV3+ model with 
limited labels. (All values are in percentages.) 
 

4.  CONCLUSION 

Supervised deep learning models demand a substantial amount 
of annotated data when tasked with flood extraction from cross-
modal remote sensing images. However, the collection and 
annotation of samples containing the desired flood change 
regions are both time-consuming and labor-intensive. To tackle 
this challenge, the adoption of transfer learning with a self-
supervised contrastive pre-training strategy has proven effective. 
In this study, we applied the BT self-supervised learning 
algorithm to learn effective visual feature representations of 
flood change regions from unlabeled cross-modal bi-temporal 
remote sensing data. Subsequently, these well-initialized weight 
parameters were transferred to the task of flood extraction. We 
introduced an improved CS-DeepLabV3+ network for 
extracting flood change regions from cross-modal bi-temporal 
remote sensing data, incorporating the CBAM dual attention 
mechanism. Experimental analysis on the open-source CAU-
Flood dataset validated the effectiveness of our proposed 
method. The results demonstrated that fine-tuning with only a 
pre-trained encoder can surpass widely used ImageNet pre-
training methods without the need for additional data, 
effectively addressing downstream cross-modal flood extraction 
tasks. Even with a limited number of labeled data samples, our 
self-supervised pre-training strategy proves effective. This 
proves particularly beneficial for flood extraction applications 
facing challenges in acquiring labeled data for flood change 
regions due to cost constraints. In the future, we plan to replace 
the ResNet50 encoder component of our approach with a vision 
transformer to further enhance the accuracy of flood extraction. 
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