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Abstract 

Due to the influence of image differences and matching methods, geometric calibration of remote sensing images often results in the 
extraction of control points with inevitable outliers. Moreover, it is susceptible to limitations imposed by locally constrained outlier 
rejection methods, making it challenging to automatically remove relatively small gross errors. This paper introduces an adaptive 
parameter local consistency automatic outlier removal algorithm, referred to as APLC. Initially, we construct k-nearest neighbors for 
each pair of matching points, deriving distance and topological uncertainty based on the accuracy of point matching. Subsequently, 
we conduct cross-validation on the uncertainty between the two pairs of vectors formed by points within the neighborhood, aiming 
for parameter adaptation. Finally, a cost-defined function is introduced to assess the consistency of local structures. Through a two-
stage outlier removal strategy, matching points that do not maintain local structural consistency are eliminated. To assess the 
effectiveness of the proposed algorithm, we conduct experimental comparisons using region-based initial matching results from the 
FY-3D remote sensing dataset, demonstrating its superiority compared to three state-of-the-art methods. 

1. Introduction

Image matching is employed to find an optimal set of 
corresponding points from two images with overlapping regions, 
and it is widely utilized in remote sensing tasks such as image 
stitching, image fusion, change detection, and 3D reconstruction. 
Matching methods are typically categorized into feature-based 
and region-based approaches (Zitová and Flusser, 2003). 
Feature-based methods describe detected features and compare 
the similarity of feature descriptors, constructing assumed 
correspondences. Area-based methods search for matching 
information within a certain-sized window around the 
overlapping region of two images based on the original pixel 
intensity. In geometric calibration of remote sensing images, 
achieving high precision in control point matching is often 
crucial (Heikkila, 2000). Typically, area-based methods are 
employed to obtain high-precision control points，it is more 
sensitive to matching outliers, and small matching errors can 
easily lead to unsatisfactory calibration results. However, area-
based matching methods typically produce outliers deviating 
not far from the correct location, usually within around ten 
pixels or even smaller, depending on the window size and 
modal differences in the image data, as illustrated in the Figure 
1. Dealing with such outliers is highly challenging as they are
non-rigid and quite random, making it difficult to find a unified
transformation both globally and locally. Thus, removing these
outlier matches poses a significant challenge.

Due to the influence of image quality, modal differences, and 
the robustness of matching algorithms, mismatches of different 
proportions are inevitably generated in the matching process. 
The automatic elimination of mismatched points is a crucial 
step as it directly impacts the accuracy of post-processing for 
remote sensing products. Existing methods can be categorized 
into two types: global geometric constraint methods and local 
geometric constraint methods (Jiang et al., 2020a). In the field 
of global constraint parameter methods, Random Sample 
Consensus (RANSAC) (Fischler and Bolles, 1981) is the most 
typical representative. It involves iteratively selecting a random 

subset of input data, fitting a model, and returning the model 
with the highest support. These hypothesis and verification 
methods have been successfully applied to various visual and 
remote sensing tasks. A comprehensive review of these 
modifications has been undertaken, with notable contributions 
from methodologies such as USAC (Raguram et al., 2013). 
Raguram et al. provided a comprehensive discussion on the 
adjustments made to RANSAC for robust outlier removal in the 
context of remote sensing image matching. The idea of local 
optimization is already incorporated in the latest methods. 
Graph-Cut RANSAC (GCRANSAC) employs the graph-cut 
algorithm in the local optimization step to separate inliers and 
outliers, which aims to find a better application model (Barath 
and Matas, 2018).Among other global constraint elimination 
methods, Aguilar et al. introduced a point matching approach 
known as Graph Transformation Matching (GTM) (Aguilar et 
al., 2009). This method involves searching through a consensus 
graph derived from initial matches, iteratively eliminating 
suspicious matches, and enhancing the similarity between two 
graphs. In these algorithms, for remote sensing image matching, 
graph matching techniques have been employed to iteratively 
remove outliers globally by calculating confidence probabilities 
using graph nodes. However, this often demands a high 
computational cost. 

Global constraint methods are mostly sensitive to the correct 
proportion of original samples, requiring the estimation of a 
universal transformation model across the entire dataset. They 
exhibit less flexibility and generality compared to local 
constraint approaches. On one hand, local geometric constraints 
can describe variations in different local contexts, as they rely 
solely on the local spatial relationships between adjacent feature 
points. On the other hand, local geometric constraints do not 
necessitate estimating the transformation model from the entire 
set of initial matches dominated by outliers, which can enhance 
the efficiency of outlier removal (Jiang and Jiang, 2019). 
Numerous methods have been proposed based on local 
geometric constraints (Ma et al., 2015; Ma et al., 2018a), among 
which  Local  Preserving  Matching   (LPM)    (Ma et al., 2018b)  
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Figure 1. Parallax comparison before and after matching 

 
stands out as the most representative: it is concise, robust, and 
effectively eliminates erroneous matches. By considering the 
length ratio and vector angle between corresponding feature 
points in two images, local topological consensus is defined as 
the cost of filtering out inconsistencies in spatial neighborhood 
structures between matched feature points. This method has 
proven to be effective in enhancing the robustness and accuracy 
of matching processes. To enhance the discriminative power of 
local constraints for similar local structures, Shao et al. 
employed a descriptor to identify repetitive patterns, ambiguous 
features, and similar local structures (Shao et al., 2021). Ma et 
al. took into consideration the stable neighborhood topology of 
potential true matches, further improving matching performance 
in scenarios of severe data degradation (Ma et al., 2022). Jiang 
et al. designed a local graph structure that preserves geometric 
topology. Through local graph structure consensus (LGSC), it is 
effective in removing outliers introduced by feature matching 
(Jiang et al., 2022). However, these methods are often designed 
to handle feature-based initial matches, with a notable 
characteristic being that errors in matches, particularly those 
generated by methods like the Scale-Invariant Feature 
Transform (SIFT) (Lowe, 2004), tend to deviate significantly 
from their correct positions. In a few instances, researchers 
observed that feature matches could deviate slightly from their 
correct positions during feature detection. Dusmanu et al. 
corrected for this deviation during the adjustment process, 
although this required a significant computational overhead 
(Dusmanu et al., 2020). A learning-based method, called 
Mismatch Reduction Learning (LMR) (Ma et al., 2019) , was 
proposed utilizing consensus within local neighborhood 
structures, treating mismatch reduction as a binary classification 
problem. All of these algorithms rely on the similarity of local 
structures to identify consistent KNN graphs for two structures 
with similar patterns. Jiang et al.  transformed feature matching 
into a spatial clustering problem with outliers, introducing 

Robust Feature Matching using Spatial Clustering (RFM-
SCAN) (Jiang et al., 2020b). 
 
In this paper, we observed that local constraint methods, such as 
LPM, face challenges when matching outliers are in the vicinity 
of their correct positions. This situation often arises from initial 
matches obtained through area-based matching methods. The 
threshold parameters for the topological structure in these 
algorithms are difficult to adapt to all local scenarios as shown 
in Figure 2, resulting in the inability to identify these erroneous 
matches. Therefore, starting from the precision of matching 
points, we derived uncertainties associated with distance and 
topological constraints. By cross-verifying two pairs of 
matching points within the neighborhood, we calculated a cost 
penalty for the central point. This approach realizes parameter 
self-adaptation for local constraint consistency, effectively 
identifying abnormal matches. This lays the foundation for 
subsequent geometric calibration, bundle adjustment, and the 
generation of surveying products. 
 

2. Methodology 

From area-based matching methods such as least squares 
matching (LSM) (Gruen, 1985), two initial corresponding point 
sets are extracted from two remote sensing images. Due to the 
physical constraints of a small region around the points, the 
local neighborhood structures between feature points may not 
undergo unrestricted changes (Ma et al., 2018a). This implies 
that the transformed points should preserve the locally 
corresponding structures. For each point pair in the point sets, 
the local 8 nearest neighbors constructed through the K-Nearest 
Neighbor (KNN) are shown in Figure 2. 
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Figure 2. Schematic diagram of the matched local structures. 

 
Just as proposed in LPM, there exists a consensus in the 
neighborhood topological structure, as illustrated in Figure 2, 
Ma et al. defined the consensus of neighborhood topology by 
considering the ratio of length to the angle between iv  and jv : 
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Then defined a quantified distance between iv  and jv , with a 
predefined threshold   as follows, ( , )i jd v v  represents the cost 
associated with neighboring points under the topological 
consensus condition: 
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For the initial matching of n  point sets, although the locally 
corresponding structures are consistent for each pair of points in 
their constructed neighborhoods, there are subtle differences 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1-2024 
ISPRS TC I Mid-term Symposium “Intelligent Sensing and Remote Sensing Application”, 13–17 May 2024, Changsha, China

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-1-2024-99-2024 | © Author(s) 2024. CC BY 4.0 License.

 
100



 

between different point pairs. The neighborhood topological 
structure is more sensitive to this, and the threshold parameter 
 is challenging to adapt to all structural variations. As 
indicated by the red neighboring points in Figure 2, this leads to 
the challenge of fixing   as a threshold, as the angle between 

iv  and jv  varies. Consequently, distinguishing the red points, 
which have a slight displacement, from the correctly matched 
green points becomes difficult. It often fails to effectively 
identify small, coarse outliers based on region-specific 
anomalies. Our objective is to make the threshold parameter 
 adaptive, allowing it to accurately characterize the 
consistency of local structures when constructing different local 
neighborhoods. 
 
2.1 Parameter Adaptation for Local Consistency 

In an ideal scenario, if only translational transformations exist 
between images, the threshold   should ideally be 
approximately equal to 1. However, due to varying local 
deformations, which can be either rigid or non-rigid, and the 
influence of matching accuracy, establishing a fixed and 
uniform threshold becomes challenging. Our core idea is to 
begin with the precision of the matches, deriving uncertainties 
in neighborhood topological consistency and neighborhood 
distance consistency from the uncertainty in coordinate 
accuracy. Subsequently, by cross-checking two pairs of vectors 
within the neighborhood, as illustrated ,i jv v and ,pij qijv v  in 
Figure 3, we attenuate the impact of local deformations. This 
ultimately achieves the adaptive adjustment of the threshold 
parameter. 
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Figure 3. Uncertainty diagram of neighborhood topological 

consistency. 

 
In order to make this parameter applicable to all neighborhood 
structures and better describe the consistency of neighborhood 
structure, our approach is to start from the matching accuracy of 
the initial set of matching points, as shown in Figure 3. In the 
Figure 3, ip  and iq  represent matched point pairs, jp  and jq  
are corresponding neighboring feature points, and , , ,i j pij qijv v v v  
are the vectors formed by the respective corresponding points. 
Here, we define some coordinates :  ( , )i ii p pp x y ,  

( , )i ii q qq x y , ( , )j jj p pp x y , ( , )j jj q qq x y . The precision of the 
matching homologous point row and column coordinates are 
denoted as x  and y , respectively. Prior to this, some 
symbols and meanings are predefined: 
 

 

* *

i i i i

i i i i

j j j j

j j j j

i i j j i i j j

q p p q

q p p q

q p p q

q p p q

p q p q p q p q

x x dx

y y dy

x x dx

y y dy

dx dx dy dy ds

 

 

 

 

 

 (3) 

The neighborhood topological consistency ( , )i js v v can be 

calculated using the coordinates as: 
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Linearizing and taking the first-order partial derivative for each 
coordinate yields: 
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Then, by utilizing matching precision and the law of error 
propagation, we can solve for the uncertainty of ( , )i js v v . 
Similarly, the uncertainty of ( , )pij qijs v v  can also be 
determined. The consistency between the two is theoretically 
established, allowing for the imposition of constraints and 
penalties on the local level: 
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where 2 2* ( , ) ( , )i j pij qijN s v v s v v     is utilized for 
adaptive consistency thresholding in different local contexts, 
N is a positive integer, typically taken as 3 or 5.  

 
Similarly, the neighborhood distance consistency ( , )i jt v v  can 
be calculated using the coordinates as: 
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Linearizing and taking the first-order partial derivative for each 
coordinate yields: 
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Similarly, through the law of error propagation, we can 
calculate the uncertainty ( , )i jt v v  of ( , )i jt v v  based on the 
precision of the coordinates. Similarly, we calculate the 
uncertainty of ( , )pij qijt v v  using the same method for cross-
verification. The theoretical consistency between the ( , )i jt v v  
and ( , )pij qijt v v  is valid, and a penalty is applied within the 
neighborhood to achieve: 
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where 2 2* ( , ) ( , )i j pij qijN t v v t v v     is utilized for 
adaptive consistency thresholding in different local contexts, 
N is a positive integer, typically taken as 3 or 5.  

 
2.2 Problem Formulation 

If the point sets P and Q are perfectly matched, their 
neighborhood structures should overlap. Therefore, the 
definition is to find a graph of two consistent local structures, 
which can be expressed as: 
 
 arg min ( ; )

I
I C I S   (10) 

 
where I  is the internal set with the maximum congruence and 
the minimum similarity of local structures. S  represents the 
assumed initial correspondence expressed, and *I  is the 
optimal solution. The cost function is defined as follows: 
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Here,  ,i is m n  describes the consistency of local structural 
topological constraints, and  ,i it m n  describes the consistency 
of local structural distance constraints. Based on local 
consistency, the definitions for  ,i it m n  and  ,i is m n  are as 
follows: 
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The cost values can be calculated using Equations (6) and (9). 
 
2.3 Outlier Removal Strategy 

Based on the threshold parameter adaptation and cost function, 
a two-stage outlier removal strategy is designed and outlined in 

the algorithm. In each stage, two KNN graphs are established 
using assumed correspondences. Subsequently, after calculating 
the cost for each assumed correspondence, those 
correspondences with a cost exceeding the threshold are 
considered outliers and removed. These steps are repeated until 
the cost for all correspondences is below the given threshold. In 
the first stage, a larger threshold 1  is used, eliminating outliers 
with different communities and a few common neighbors. 
Assumed correspondences with similar local structures are 
obtained. Then, in the second stage, a smaller threshold is 
applied. In the input matching accuracies, x  and y , typically, 
for feature-based initial matching results like SIFT, x  and y  
can be set between 0.4 and 0.6. If the initial matching results are 
based on region with higher accuracy, x  and y  can be set 

2  round 0.15 to 0.35. Under the parameter-adaptive 
constraints of local structural consistency, assumed 
correspondences with slight deviations in the structure, based on 
regional matching, are removed. This results in two graphs of 
consistent local structures. 
 
Algorithm APLC 

Input: putative correspondences   1
( , )

n

i i i
S p q


  ,  

parameter K , 1  , 2 , x , y  

Output: inlier set *I  
1: repeat  
2: Build the KNN graph with S  
3: Calculate cost C with Eqs. (11)  
4: O = find(C > 1 )  

5: if ~isempty( O ) then  
6: Set *I  by removing all outliers O from S  
7: end if  
8: until all cost C less than 1 .  

9: repeat  
10: Build the KNN graph with  *I  
11: Calculate cost C with Eqs. (11)  
12: O = find(C > 2 )  

13: if ~isempty( O ) then  
14: Update *I  by removing all outliers O  
15: end if  
16: until all cost C less than 2 . 

 
3. Experiment and Analysis 

In the experiments, the performance of the proposed algorithm 
was evaluated using six typical scenes of FY-3D's MERSI-II 
images and simulated images. Due to different error proportions 
and local geometric distortions in the initial matches obtained 
through LSM, and with the errors confined within the matching 
window range, excluding matching outliers posed a significant 
challenge. All algorithms were implemented on a computer 
equipped with an Intel i7-127000F processor (2.800 GHz, 16 
GB memory). In this section, the proposed algorithm was 
compared with four other error removal algorithms: RANSAC, 
GCRANSAC and LPM. Qualitative matching results were 
presented first, followed by quantitative comparisons of the 
results from the six scenarios. Performance evaluation criteria 
included precision, recall, and root-mean-square error (RMSE) 
(Liu et al., 2012). The threshold  was set to 0.9, while 2  was 
set to 0.5, 1 was set to 0.3,while 2 was set to 0.3.To construct 
the K-nearest neighbors (KNN) graph, k was set to 8. 
Calculating local consistency and uncertainty requires a 
minimum of four nearest neighboring feature points. 
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3.1 Datasets 

The MERSI-II data of FY-3D is freely available from the 
National Satellite Meteorological Center. The Level 1 data with 
a 250 m resolution consists of six 250 m bands of Earth view 
data that have been co-registered, along with a Geolocation 
Table (GLT) with a 20-pixel interval. Each file is partitioned at 
5-minute intervals and stored in the Hierarchical Data Format 
(HDF5), resulting in an image size of 8192 pixels in columns 
and 8000 pixels in rows. Additionally, a separate GLT file 
named "GEOQK" is provided, which includes latitude and 
longitude information for each pixel. During the geolocation 
processing, ephemeris, attitudes, and time information are 
required, and these are stored in the onboard calibrator (OBC) 
file. 
 

 
(a) Disparity results of the initial 
matching points for scene 0445 

 
(b) Disparity results of the initial 
matching points for scene 0520 

 
(c) Disparity results of the initial 
matching points for scene 1120 

 
(d) Disparity results of the initial 
matching points for scene 1125 

 
(e) Disparity results of the initial 
matching points for scene 1905 

 
(f) Disparity results of the initial 
matching points for scene 0805 

Figure 4. Initial matching data results. 
 
The eighth band of the Sentinel-2 Multispectral Instrument 
(MSI), with a central wavelength of 832.8 nm, was used as the 
cloud-free reference image obtained from the Google Earth 
Engine. The geolocation accuracy of the MSI non-refined 
Level-1C products is approximately 10 m at a 94.45% 
confidence level (Bouzinac et al., 2018). The spatial resolution 
of the reference images was degraded to 240 m by averaging 

pixel values, which is slightly better than the spatial resolution 
of MERSI-II nadir images. However, due to the changing 
Ground Sampling Distance (GSD) of MERSI-II with the view 
angle, the original images suffered from panchromatic 
distortions. To mitigate geometric distortions, a new reference 
image with Geolocation Table was simulated using the 
reference images. The RefSB4 band of MERSI-II was then 
matched with the simulated images.  
 
The initial corresponding points were found using the 
normalized cross-correlation algorithm, and their coordinates 
were refined using LSM to achieve subpixel accuracy. A 
matching window size of 15 × 15 pixels was used to balance 
matching accuracy and error details. Figure 4 illustrates the 
initial matching results of six scene images considering 
different local deformations. Among them, the images of scenes 
0445, 0520, 1120, and 1125 are results of matching before 
geometric calibration, exhibiting certain systematic errors. 
Conversely, the images of scenes 1905 and 0805 represent 
matching validation results after geometric calibration, 
eliminating systematic errors. The number of matched points 
varies from ten thousand to fifty thousand, with a mismatch 
point ratio ranging from approximately 0.4 to 0.9. Specific 
details are depicted in Figure 4. 
 
3.2 Qualitative Matching Result Analysis 

In this section, the matching results of scenes 0455, 1905, 1120, 
and 1125 are presented in Figures 5 and 6, serving as the 
qualitative evaluation outcomes. In these matching results, as 
they are based on area-based matching, the way matching lines 
are drawn does not effectively distinguish between correct and 
incorrect matches. These figures visually depict the contrast 
between two matching points, with darker colors indicating 
larger disparages, often signifying incorrect matches, while 
lighter colors suggest correct matches. Additionally, the 
accuracy of matching points can be inferred from the direction 
of these disparages. Points exhibiting consistent local 
magnitudes and directions of disparage are more likely to be 
correctly matched. 
 

 
(a)RANSAC 0455 

 
(e)RANSAC 1905 

 
(b)GCRANSAC 0455 

 
(f)GCRANSAC 1905 
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(c)LPM_0455 

 
(g)LPM_1905 

 
(d)APLC_0455 

 
(h)APLC_1905 

Figure 5. Comparison of the effects of four algorithms on error 
matches removal in scenes 0455 and 1905. 

 
In Figures 5 and 6, the four methods performed outlier removal 
on LSM initial matches with a significant error ratio, illustrating 
the comparison of the removal effects for four scenes. The 
initial matches include numerous error points deviating not far 
from their correct positions and error matches with inconsistent 
local disparity directions. In the results of RANSAC and 
GCRANSAC, not all outliers were removed, and there were still 
many error matches with inconsistent directions. LPM yielded 
the worst results among the four algorithms, possibly due to the 
non-universality of the local threshold. The original threshold 
parameter might be too stringent, resulting in the removal of 
almost all points. In this region-based initial matching result, 
LPM struggled to distinguish correct and incorrect matches. 
Among all methods, APLC produced the best results, 
preserving matches with consistent local structures. From the 
figures, it is evident that APLC retained matches with relatively 
consistent local disparity magnitudes and directions, while the 
other five methods failed to remove all outliers. 
 

 
(a)RANSAC 1120 

 
(e)RANSAC 1125 

 
(b)GCRANSAC 1120 

 
(f)GCRANSAC 1125 

 
(c)LPM 1120 

 
(g)LPM 1125 

 
(d)APLC 1120 

 
(h)APLC 1125 

Figure 6. Comparison of the effects of four algorithms on error 
matches removal in scenes 1120 and 1125 

 
3.3 Quantitative Evaluation 

Using FY-3D and its simulated images, preliminary results of 
region-based matching were obtained for six scenes and 
quantitatively compared with four state-of-the-art point 
matching outlier removal methods (LPM, RANSAC, and 
GCRANSAC). In the area-based initial matching results of 
scenes 0455, 0520, 1120, 1125, 1905, and 0805, the outlier 
ratios were 0.545, 0.916, 0.583, 0.356, 0.782, and 0.415, 
respectively. The average outlier ratio was 0.605, with an 
average of 33,140 initial matching point pairs. We focused on 
comparing the recall, precision, and root mean square error 
(RMSE) of the four algorithms, as shown in Table 1. RMSE is a 
statistical measure of the magnitude of disparity, while recall 
and precision are the average values across the six scenes data. 

 

Average RANSAC GCRANSAC LPM APLC 
Recall 0.978 0.989 0.889 0.970 

Precision 0.659 0.619 0.639 0.997 
RMSE 2.645 2.850 3.281 1.338 

Table 1. Quantitative metrics comparison of four methods 
 
In comparison, our proposed APLC algorithm outperforms the 
other three algorithms in all metrics. This indicates that the 
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matching results of APLC are more accurate and discriminative, 
while RANSAC, GCRANSAC, and LPM retain more outliers. 
Faced with varying proportions of outliers, the precision and 
RMSE of the other three methods decrease, while APLC 
maintains stable robustness and accuracy. In terms of recall, 
APLC is comparable to RANSAC and GCRANSAC, while 
outperforming LPM. After outlier removal, APLC achieves a 
precision consistently above 0.99, while other methods hover 
around 0.65. The RMSE of APLC is also less than half of that 
of other methods, highlighting the significant advantage of 
APLC in removing mismatched points in region-based 
approaches. This underscores the role of APLC in outlier 
removal based on area-based matching, showcasing its 
reliability and wide applicability in high-precision geometric 
calibration and other applications. 
 

4. Conlusion 

In this paper, we propose an adaptive parameter local 
consistency automatic outlier removal algorithm (APLC). The 
method primarily focuses on the precision of matching points, 
deriving uncertainties in the consistency of topological structure 
and distance within the neighborhood. Through cross-validation 
using two pairs of vectors, it mitigates the impact of local 
deformations to some extent. Ultimately, by computing cost 
values, APLC achieves error match removal in two stages. The 
application and validation of APLC in the geometric calibration 
of FY-3D satellite images demonstrate its significant 
improvement in outlier removal capabilities for area-based 
matching. The main contributions of this paper can be 
summarized as follows: 
 
(1) The discovery that locally fixed threshold parameters are 
challenging to adapt to all situations, addressing the judgment 
of local consistency in the face of small matching accuracy, 
distance variations, and deformations that affect topological 
consistency. 
 
(2) Deriving uncertainties in the consistency of neighborhood 
topological structure and distance from the precision of matches. 
 
(3) By cross-validating two vectors in the local neighborhood, 
the impact of local deformations is mitigated, achieving 
adaptive parameterization for finer detection and removal of 
outliers. 
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