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ABSTRACT:

Semantic segmentation is one of most the important computer vision tasks for the analysis of aerial imagery in many remote
sensing applications, such as resource surveys, disaster detection, and urban planning. This area of research still faces unsolved
challenges, especially in cluttered environments and complex sceneries. This study presents a repurposed Robust UNet (RUNet)
architecture for semantic segmentation, and embeds the architecture with attention mechanism in order to enhance feature extraction
and construction of segmentation maps. The attention mechanism is achieved using Squeeze-and-Excitation (SE) block. The
resulting network is referred to as SE-RUNet. SE is also tested with the classical UNet, termed SE-UNet, to verify the efficiency
of introducing SE. The proposed approach is trained and tested using “Semantic Segmentation of Aerial Imagery” dataset. The
results are evaluated using Accuracy, Precision, Recall, F-score and mean Intersection over Union (mIoU) metrics. Comparative
evaluation and experimental results show that using SE to embed attention mechanism into UNet and RUNet significantly improves
the overall performance.

1. INTRODUCTION

The field of remote sensing has witnessed a notable surge in sig-
nificance across diverse applications, including but not limited
to environmental monitoring, land use and land cover classi-
fication, urban planning, and disaster management. With each
passing day, the role of remote sensing becomes increasingly
vital in addressing various real-world challenges and fostering
sustainable development. One of the crucial aspects that un-
derpins the successful extraction of valuable information from
remote sensing data lies in the accurate and efficient segment-
ation of these complex images. Semantic segmentation, in par-
ticular, has emerged as a cornerstone in this endeavor, offering
a sophisticated technique that enables the precise identification
and classification of distinct objects and features within an im-
age.

In the realm of remote sensing, the task of semantic segment-
ation can be considered as a classification problem at pixel-
level (Panda and Rosenfeld, 1978). The ability to delineate
and label individual pixels based on their semantic meaning un-
locks a wealth of spatial information, allowing researchers and
practitioners to gain unprecedented insights into the distribu-
tion, composition, and characteristics of the features present in
the scenes captured by remote sensing instruments (Panda and
Rosenfeld, 1978).

Traditional semantic segmentation methods, such as threshold-
based segmentation (Ma et al., 2013, Aburaed et al., 2018),
edge-based segmentation (Kurbatova and Laylina, 2019), and
region-based segmentation (Cavallaro et al., 2016) often rely on
manual feature engineering and are computationally intensive.
Recently, Deep Learning (DL) techniques, such as Convolu-
tional Neural Networks (CNNs), have shown great potential for
improving the efficiency and accuracy of semantic segmenta-

tion in remote sensing (Xianyang et al., 2019, Talal et al., 2018,
Al Saad et al., 2020a). Despite the significant progress made in
DL-based semantic segmentation methods for remote sensing
imagery, several challenges remain. One of the main challenges
is the availability of labeled training data, which is essential for
training DL models. Remote sensing datasets are often large
and require significant resources for labeling. Additionally, the
variability of remote sensing data, including differences in illu-
mination, seasonality, and sensor characteristics, can affect the
performance of semantic segmentation methods.

In this context, this study presents a new technique for semantic
segmentation of remote sensing images that leverages DL tech-
niques. Particularly, the use of attention mechanism in semantic
segmentation models is explored by using Squeeze-and-Excitation
(SE), which is a technique that has not been studied in the con-
text of semantic segmentation thus far. SE has the potential to
boost the performance of DL models that are popularly used
for semantic segmentation, such as UNet. Additionally, the ad-
vanced version of UNet, called Robust UNet (RUNet), which
was devised for Single Image Super Resolution (SISR) (Hu et
al., 2019, Aburaed et al., 2022), is repurposed for semantic
segmentation. Thus, SE is embedded into UNet, called SE-
UNet, and embedded into RUNet, called SE-RUNet, to test its
efficiency. The quantitative evaluation is performed using Ac-
curacy, Precision, Recall, F-score, and mean Intersection over
Union (mIoU).

The remainder of the paper is organized as follows: Section 2
presents the literature review of semantic segmentation based
on DL approaches in the field of remote sensing, Section 3 ex-
plains the methodology and the dataset used in this research
work, Section 4 illustrates and discusses the results, and finally,
Section 5 summarizes and concludes the paper.
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2. LITERATURE REVIEW

In the recent years, significant progress has been made in de-
veloping DL-based semantic segmentation methods for remote
sensing imagery. DL methods have been shown to outperform
traditional machine learning and statistical approaches for se-
mantic segmentation due to their ability to learn complex and
hierarchical representations from large datasets (Matrone et al.,
2020). One popular DL approach for semantic segmentation
is the Fully Convolutional Network (FCN) (Shelhamer et al.,
2017). FCN is a deep neural network architecture that uses
convolutional layers to learn feature representations and up-
sampling layers to generate dense pixel-wise predictions. FCN
has been successfully applied to remote sensing imagery for
land use and land cover classification (Mboga et al., 2020),
urban object detection (Zhang and Chi, 2020), and change de-
tection (Zhang et al., 2021).

Another DL approach for semantic segmentation is the UNet ar-
chitecture. UNet is a CNN that uses an encoder-decoder struc-
ture with skip connections to preserve spatial information and
reduce the loss of spatial resolution during feature extraction.
UNet has been used for various remote sensing applications, in-
cluding crop monitoring (Fan et al., 2022), forest mapping (Guo
et al., 2021), building detection (Liu et al., 2020), road segment-
ation (Al Saad et al., 2020b), and oil spill detection (El Rai et
al., 2020). An advanced version of UNet called RUNet was
devised by (Hu et al., 2019). However, it was built for the pur-
pose of enhancing images using Single Image Super Resolution
rather than segmentation (Aburaed et al., 2022).

In addition to FCN and UNet, there are other DL-based se-
mantic segmentation methods that have been applied to remote
sensing imagery, including DeepLab (Wang et al., 2022), SegNet
(Chen and Lu, 2019), and Mask R-CNN (Wu et al., 2021). Dee-
pLab (Chen et al., 2018) uses dilated convolutions to increase
the receptive field of convolutional layers and capture multi-
scale context information. SegNet (Badrinarayanan et al., 2017)
is a variant of FCN that uses an encoder-decoder structure with
max-pooling and up-sampling layers. Mask R-CNN (He et al.,
2017) is a region-based DL approach that can detect and seg-
ment objects in remote sensing imagery.

Despite the significant progress made in this field of research,
several challenges remain. One of the main challenges is the
availability of labeled training data, which is essential for train-
ing DL models. Remote sensing datasets are often large and
require significant resources for labeling. Additionally, the vari-
ability of remote sensing data, including differences in illumin-
ation, seasonality, and sensor characteristics, can affect the per-
formance of semantic segmentation methods.

In this work, RUNet is repurposed to achieve semantic segment-
ation. Attention mechanism is introduced to the architecture
by SE to enhance feature extraction and construction of seg-
mentation maps. Additionally, SE is also used with the classic
UNet architecture to verify its effectiveness. These methods are
tested using “Semantic Segmentation of Aerial Imagery” data-
set, which captures complex landscapes of Dubai city, and it is
therefore an interesting case study to test the networks’ robust-
ness in a cluttered environment.

3. PROPOSED METHODOLOGY

3.1 Network Architecture

This section explains the intricate details of UNet and RUNet
architectures, along with how SE is injected into their layers.

3.1.1 Encoder: Let X be the input image of size m×n×c,
where m, n, and c are the height, width, and channels, respect-
ively. Also, let Y be the ground truth segmentation map, and Ŷ
be the predicted segmentation map. Y and Ŷ have the same
height and width as X , but c = 3 for X , while for Y and
Ŷ the number of channels is equal to the number of classes.
The network takes X as an input and passes it through an en-
coder network, which downsamples the feature maps and ex-
tracts hierarchical representations of the input. the features are
downsampled using convolution operation, which is defined as
follows:

F(x,y) = f
(
[K ∗X](x,y) + b

)
, (1)

where F(x,y) is the output feature at position (x, y), K is the
filter, b is the bias, and f is the activation function. In this case,
the activation function is sigmoid. The size of the filter doubles
with each layer, as seen in Figure 1. In this study, UNet and
RUNet have the same number of layers in the encoder. How-
ever, RUNet contains additional skip connections between the
encoder layers, which are not present in UNet.

3.1.2 Squeeze-and-Excitation: The extracted features from
the decoder are passed to an SE layer. For any given trans-
formation Ftr maps the input feature map Ỹc ∈ Rm×n of a
particular band c to the descriptor zc. The Squeeze procedure,
denoted Fsq(.), uses global average pooling, which converts Ỹ
to a column vector of size 1 × 1 × c. The squeeze function is
thus defined as:

zc = Fsq(Ỹc)
=

1

m× n

m∑
i=1

n∑
j=1

Ỹc(i, j) (2)

The excitation procedure is used to automatically determine the
significance of each feature, amplifying those that have a big-
ger impact on understanding the details of the image while sup-
pressing insignificant features. The excitation function can be
expressed as:

s = Fex(z,W ) = σ(g(z,W )) = σ(W2R(W1z)) (3)

where σ is the Sigmoid activation function, R is the ReLU ac-
tivation function, W1 ∈ R c

r
×c and W2 ∈ Rc× c

r are the two
fully connected layers, W1 is the dimensionality reduction layer
with a dimensionality reduction ratio of r. The Sigmoid func-
tion suppresses the final output of the excitation process to a
value between zero and one.

3.1.3 Decoder: The output from SE is passed through a de-
coder network, which upsamples the feature maps and gener-
ates a segmentation map that has the same dimensions as the
input. The decoder consists of several Transpose Convolution
(TC) layers. While convolution layers in the encoder reduce
the input to feature maps, TC layers have the opposite effect by
expanding the features as follows:

F(x,y) = f
(
[s ∗G](x,y) + b

)
. (4)

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-1015-2023 | © Author(s) 2023. CC BY 4.0 License.

 
1016



Convolution

Max Pooling

Up sampling

Transpose
Convolution

ReLU

Concatentation

Tensor addition

ENCODER DECODER

N

2*N

4*N

8*N

16*N 8*N

4*N

2*N

N

N Filter size

H

W
C

Global Avg. Pooling

1x1xC 1x1xC

Squeeze

Excitation

x
scaling

FC R
eL
U

FC

Si
gm

oi
d

H

W
C

SE
BLOCK

Figure 1. SE-RUNet architecture. The encoder and decoder have external and internal skip connections, and they are connected by an
SE block. The number of filters N = 16 in this study. SE-UNet architecture differs by missing the tensor addition.

Here, the output from SE layer is convolved with a grid of a
larger height and width, such that the feature map gets larger
depending on the grid size as it propagates through the decoder.
The decoder network also includes skip connections that con-
catenate the corresponding feature maps from the encoder net-
work, allowing the decoder to make use of both low-level and
high-level features for accurate segmentation. It is worth men-
tioning that the encoder and decoder parts are symmetrical, as
seen in Figure 1. The decoder outputs the final segmentation
map, which consists of 6 channels; each channel corresponds
to a class map. Similar to the encoder side, both UNet and RU-
Net have the same number of layers in the decoder. Figure 1
shows the overall architecture of SE-RUNet. SE-UNet archi-
tecture is similar, but it is missing the tensor addition between
the layers.

3.2 Dataset

The dataset used in this research work is an open access data-
set called “Semantic Segmentation of Aerial Imagery” (in the
Loop, 2020), which was created by Humans in the Loop as
a collaborative work with the Mohammed Bin Rashid Space

Centre (MBRSC). This dataset is considered significantly chal-
lenging due to shadows, occlusions, complex building struc-
tures in the captured scenery for Dubai’s city. Dubai is the
second largest Emirate in the UAE and one of the most rap-
idly developing cities in the world. This dataset consists of
RGB satellite images captured by DubaiSat-2 satellite, which
has a spatial resolution of 1-meter, along with their correspond-
ing segmentation masks that represent six classes; building, wa-
ter, vegetation, road, land (unpaved area), and background. It
includes 72 Images of varying sizes, which are divided into
patches of 160 × 160 in order to ease the training procedure
of the proposed model. The total number of images after patch-
ing is 3483. These images are divided randomly as training,
validation, and testing images with compositions of 70%, 15%
and 15%, respectively. Samples of the dataset can be seen in
Figure 2.

4. RESULTS AND DISCUSSION

UNet, RUNet, SE-UNet, and SE-RUNet, the four pivotal ar-
chitectures examined in this research, have undergone rigor-
ous training and testing procedures employing the meticulously
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Figure 2. A sample from “Semantic Segmentation of Aerial
Imagery” dataset dataset that shows (a) the RGB image and its

corresponding (b) segmentation mask.

curated dataset described in Section 3.2. To ensure a fair and
unbiased comparison, all networks were trained and experi-
mented within the same well-defined environment, leveraging
Python’s powerful Tensorflow library. The training paramet-
ers were fixed across all networks to maintain consistency, thus
minimizing any potential confounding factors.

For the optimization process, the widely-used Adam algorithm
served as the optimization function, coupled with categorical
cross-entropy as the chosen loss function. The learning rate
was empirically set at 10−3, and each network was trained for
100 epochs to ensure ample opportunity for convergence and
optimal model performance.

To gauge the efficacy and performance of the trained models, a
set of objective quantitative evaluation metrics was employed.
These metrics, namely Accuracy, Precision, Recall, F-score,
and mIoU, are defined in Equations 5 to 9. Each metric of-
fers unique insights into the model’s classification performance
and the accuracy of its segmentation maps.

Accuracy measures the ratio of correctly classified pixels to the
total number of pixels in the dataset. Precision, on the other
hand, quantifies the ability of the model to correctly classify
pixels as belonging to the target class, while Recall evaluates
its capacity to correctly identify all relevant pixels from the tar-
get class. F-score, which balances the trade-off between Preci-
sion and Recall, provides a holistic assessment of the model’s
segmentation performance.

The mIoU metric is of paramount importance, which is an in-
valuable indicator of the segmentation accuracy, measuring the
average degree of overlap between the predicted segmentation
and the ground truth across all classes. This metric becomes
particularly useful when dealing with datasets that encompass
multiple classes. Equation 9 incorporates the parameter N , rep-
resenting the total number of classes present in the dataset. This
ensures that the mIoU metric accurately captures the segmenta-
tion performance across all classes, making it an indispensable
tool for comprehensive model evaluation.

In the context of these evaluation metrics, the importance of
True Positive (TP), True Negative (TN), False Positive (FP),
and False Negative (FN) becomes apparent. TP represents the
number of pixels that are accurately classified as belonging to
the target class, while TN signifies the pixels correctly identified

as not belonging to the target class. Conversely, FP denotes the
pixels that are erroneously classified as belonging to the target
class, and FN accounts for the pixels mistakenly identified as
not belonging to the target class.

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

Fscore = 2× Precision ∗Recall

Precision+Recall
(8)

IoU =
TP

TP + FP + FN

mIoU =
1

N
×

N∑
i=1

IoUi

(9)

Table 1 summarizes all the quantitative evaluation results for all
networks. The findings unveil that UNet emerges as the domin-
ant performer, surpassing RUNet across all evaluation metrics,
with the exception of mIoU. This intriguing observation high-
lights the fact that while RUNet exhibits superiority in the do-
main of SISR, it does not necessarily carry that advantage into
the realm of semantic segmentation.

Delving deeper into the results, SE-RUNet takes center stage,
outperforming its RUNet counterpart across all evaluation met-
rics, with only a marginal decline in mIoU by 0.0061. This
slight concession is easily outweighed by the substantial im-
provements achieved in other metrics, reaffirming the efficacy
of the SE mechanism in enhancing the segmentation capabilit-
ies of the RUNet architecture.

SE-UNet outshines its UNet counterpart, presenting superior
results in all evaluation metrics. The most pronounced enhance-
ment is witnessed in the mIoU metric, illustrating the profound
impact of the SE mechanism in elevating the segmentation per-
formance of the classic UNet architecture.

The visual analysis, as depicted in Figure 3, echoes the quant-
itative findings, further bolstering the credibility of the results.
SE-UNet undoubtedly exhibits the best segmentation map across

Table 1. Results summary of all models in terms of Accuracy,
Precision, Recall, F-score, and mIoU. SE-UNet shows the best
performance among all networks. Additionally, all SE-infused

networks perform better than their counterparts without SE.

Model Acuracy Recall Precision F-score mIoU

UNet 0.8806 0.8769 0.8854 0.8812 0.4559

RUNet 0.8668 0.8642 0.8705 0.8673 0.4842

SE-UNet 0.8849 0.8819 0.8891 0.8855 0.4900

SE-RUNet 0.8706 0.8685 0.8736 0.8711 0.4781
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Figure 3. Visual results of segmentation maps produced by UNet, RUNet. SE-UNet, and RUNet. Both SE-UNet and SE-RUNet
achieve better than their counterparts. SE-UNet performs better than SE-RUNet, with the exception of sample 3.

all four samples, demonstrating remarkable visual similarity
to the ground truth despite the varied complexity of objects,
shapes, and clutter in the imagery. Particularly, the second
sample highlights SE-UNet’s impressive resilience in accurately
distinguishing objects, evident from the lack of errors around
the edges of each object, in stark contrast to the other networks.
This visual consistency holds true for samples 1 and 3 as well,
where SE-UNet showcases superior performance compared to
its counterparts. Even in the case of sample 4, featuring relat-
ively less clutter but three distinct objects, SE-UNet shines by
producing fewer errors, especially in delineating precise bound-
aries and shapes. The challenge posed by less apparent edges
is adeptly handled by SE-UNet, reinforcing its robustness in di-
verse and complex scenarios.

The quantitative and visual analyses jointly reaffirm the suc-
cess of the SE mechanism in elevating the performance of both
the RUNet and UNet architectures. SE-UNet emerges as the
undisputed leader among the networks, impressively outper-
forming all counterparts in both objective metrics and visual
fidelity. These compelling results not only contribute to advan-
cing the field of semantic segmentation in remote sensing but
also underscore the transformative potential of attention mech-
anisms in deep learning architectures. As the pursuit of accurate
and efficient remote sensing semantic segmentation continues,
the insights gleaned from this study are poised to drive further
research and innovation, paving the way for enhanced under-
standing and decision-making in the realm of remote sensing
applications.

5. CONCLUSION

In this research, RUNet architecture that was initially utilized
for SISR has been repurposed to achieve semantic segmentation
task. Attention mechanism is introduced to the architecture by

utilizing SE block to enhance feature extraction and construc-
tion of segmentation maps. SE is also tested with the classic
UNet to further verify its effectiveness. “Semantic Segmenta-
tion of Aerial Imagery” dataset was used to test the proposed
approach. Comparisons against the original UNet and and RU-
Net are conducted in terms of the Accuracy, Precision, Recall,
F-score, and mIoU. Experiments reveal that all SE-infused net-
works perform better than their counterparts with no SE. SE-
UNet shows the best performance compared to all networks.
Thus, SE has successfully elevated the performance of both se-
mantic segmentation networks.
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