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ABSTRACT: 

Swarm robots, particularly drone swarms, are commonly used in search and rescue, military, and detection missions. However, due to 

their limited computing resources, it can be difficult to handle computation-intensive tasks locally. To address this, cloud-based 

computation offloading is often used, but it may cause latency issues for time-sensitive tasks like object recognition and path planning. 

Additionally, in environments with no wireless infrastructure, such as disaster areas or battlefields, cloud computing may not be 

feasible. To solve this problem, this paper proposes integrating Fog Computing with Swarm of Drones architecture. The paper also 

formulates the problem as a task allocation problem that minimizes energy consumption while accounting for latency and reliability 

constraints. To improve swarm autonomy, an integrated framework is proposed, and a testbed development is introduced to support 

this architecture. The paper reviews existing literature on UAV swarm and proposes a new architecture to enhance swarm autonomy. 

1. INTRODUCTION

MAVs, which are compact and maneuverable unmanned 

aerial vehicles (UAVs), have played a crucial role in advancing 

the use of unmanned systems for purposes such as surveillance, 

search and rescue operations, and mapping (Chung A, 2018). 

Despite their usefulness, MAVs face constraints in terms of 

their endurance, cargo-carrying capacity, and sensing and 

computational capabilities. To overcome these limitations, 

aerial swarms have been developed that work together to 

accomplish intricate missions. The progress of swarm 

technology in MAVs has created fresh prospects in the realm of 

robotics and unmanned systems, and ongoing progress is 

expected to result in novel applications in fields like 

transportation and logistics (Xi, 2020). 

UAV swarms are collections of airborne robots that 

collaborate either under manual supervision or through onboard 

processors that operate autonomously. Multi-layered swarms are 

capable of greater efficiency as a result of having specialized 

leader drones that manage the actions of multiple drones. Data 

tasks can be assigned to individual drones, with more 

computationally intensive tasks being offloaded to servers or 

processed in the cloud (Tahir, Böling, & Haghbayan, 2019). A 

model that tackles the problem of redundant data generated by 

UAV swarms by utilizing feature extraction stitching and 

geometric relational matrix calculations to generate real-time 

panoramas, while minimizing the transfer and storage of 

redundant pixels, as demonstrated in a military assessment. 

Drones are capable of seamlessly connecting to the internet and 

gathering as much as 500 gigabytes of data every hour. This 

data possesses immense potential for big data analysis and could 

have far-reaching implications across numerous industries, 

offering a potential solution to some of the most pressing issues 

confronting humanity (Andrew, 2017). 

UAVs offer swift, economical, and secure solutions for 

various civil and military operations. This article will 

additionally spotlight the benefits of UAV Fog, a Fog computing 

platform based on UAVs, for Internet of Things (IoT) 

applications. This innovation makes use of the advantages and 

capabilities of both Fog computing and UAVs to provide 

efficient support for certain IoT applications. UAV Fog enables 

speedy deployment of Fog capabilities in hard-to-reach or 

remote locations to effectively serve dynamic IoT applications. 

Equipped with Fog computing capabilities, a UAV can travel to 

a specific site to provide support for the local IoT applications. 

2. OVERVIEW OF AERIAL SWARM

APPLICATIONS 

2.1 Security and Surveillance 

Ready-made drones that come equipped with advanced 

monitoring sensors are highly effective for aerial surveillance 

in security applications, while drone swarms offer even greater 

surveillance capabilities and are expected to become more 

prevalent. UAV fleets with advanced intelligence can adjust to 

environmental changes, making them a formidable tool for 

surveillance operations, with swarms further enhancing their 

capabilities. Various sensors, such as RF, RADAR, optical, and 

acoustic sensors, can be utilized to detect and track objects, and 

their combination results in improved accuracy. Swarms are 

particularly useful in anti-UAV and surveillance systems, as they 

can cover larger areas in shorter periods of time than individual 

UAVs (Saska M, 2016). 

2.2 Collaborative Transportation 

Recent studies have showcased the use of small UAVs in 

tandem to transport larger payloads, achieved through the 

implementation of decentralized control laws and a centralized 

motion capture system for state estimation. The system 

employs a decentralized approach, where each quadrotor 

independently estimates its pose by utilizing visual-inertial 

odometry and interacts with neighboring quadrotors to 

transport rigid rod payloads while evading obstacles and 

maintaining formation, thereby obviating the requirement for 

motion capture systems (Ritz R, 2013). 
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2.3 Environmental Monitoring 

 

An assemblage of UAVs equipped with sensors was 

autonomously deployed to fly over flood-prone areas, capturing 

high-resolution images and videos, and providing precise flood 

maps and real-time analysis to aid disaster management 

authorities. The swarms' ability to cover larger areas in a 

shorter period, and its capability to fly over flood-affected zones 

autonomously, allowed for quicker and more comprehensive 

data collection, resulting in improved flood management and 

relief efforts (Abdelkader M, 2014). 

 

2.4 UAV-based Fog computing platform for the Internet of 

Things applications 

 

Drones are limited in terms of their battery life and 

computing capabilities. If their resources are not sufficient to 

fulfill local and swarm-level requirements, they can offload 

tasks to other devices. However, a centralized approach that 

relies on the cloud for offloading may not always be suitable 

due to latency, quality of service, and energy consumption 

constraints. Instead, edge servers can be used for computation-

intensive tasks, a concept known as "fog computing". Although 

edge servers are closer to drones and communication is faster, 

challenges arise when the swarm moves to locations far away 

from the edge servers. Placing edge servers in a fixed and trusted 

position can be difficult, leading to the development of 

collaborative edge-to-fog computing. This architecture allows 

drones to act as edge nodes, processing local and offloaded data 

in real-time. Efficient solutions are needed for orchestrating 

groups of drones in the field to achieve specific mission 

objectives (Dadmehr Rahbari, 2021). 

 

Federated Learning (FL) and Deep Reinforcement Learning 

(DRL) are distributed strategies that have been used in MEC 

(Mobile Edge Computing) and drone applications, respectively. 

Federated Deep Reinforcement Learning (FDRL) combines the 

benefits of both FL and DRL, reducing network overhead, 

bandwidth consumption, and latency in a swarm of drones 

(Dadmehr Rahbari, 2021). 

 

To evaluate the learning method in object detection 

applications, the accuracy of detected objects can be analyzed by 

rating the drones based on their properties and updating the 

model accordingly. This method allows drones to update their 

positions based on received ratings from neighbors (Dadmehr 

Rahbari, 2021). 

 

 

3. RELATED WORKS 

 

There are various software packages available, such as 

Adobe Photoshop, and cameras like the Samsung Gear360, that 

can stitch together multiple overlapping images to create a wide- 

angle or 360-degree view. These packages use sophisticated 

feature detection, matching, and alignment algorithms to create 

seamless panoramas that can be used for various applications, 

including virtual reality (VR) and immersive media (Y. Wang, 

2015). 

 

For applications like Google Street View, CMOS cameras 

with fixed geometries and lower sampling rates are used to 

capture video, which then requires video stitching for processing. 

This involves aligning and merging multiple frames to create a 

continuous, panoramic view of the environment (Y. Wang, 

2015). The stitching process differs on the cameras motion, 

there are two types of camera positioning: 

3.1 Static Camera 

 

The process of video stitching involves creating a stitching 

template by selecting frames and using it to stitch together 

subsequent frames. However, moving objects can result in 

ghosting. To mitigate this issue, different techniques have been 

developed (Wei LYU, 2019). One method to address the issue 

of moving objects in video stitching involves incorporating the 

moving content into the final images using a conventional 

algorithm. This is followed by an object detection step, and 

reliable alignment information is provided by spatially 

neighboring videos for enhanced accuracy (J. Li, 2015). A 

model for video stitching was proposed for surveillance 

applications that uses a coarse-to- fine process. This approach 

first stitches together background layers when there are no 

moving objects present. Multiple layers are then generated, each 

containing different objects, by clustering matched feature pairs 

with consistent homography. The resulting stitched video 

provides a comprehensive view of the surveillance scene (Lin, 

2016). In order to avoid issues such as missing data, artifacts, 

or ghosting caused by the presence of moving objects, an 

analysis of gradient variations in the overlapping regions can 

be used to adjust the best fit seam (F. Perazzi et al., 2015). The 

spatial-temporal mesh optimization framework enhances the 

geometric alignment of input video frames by prioritizing 

important areas such as spatial and temporal edges while 

minimizing their impact. This approach optimizes a mesh that 

considers both spatial and temporal information to achieve 

accurate alignment and prevent significant distortions in the 

resulting stitched video (Heng Guo, 2016). 

 

3.2 Moving Camera 

 

Image stitching and stabilization techniques can be 

combined to address the issue of shaky footage in UAV and 

smartphone videos. However, when the camera is in motion, it 

can still be challenging to capture stable footage (F. Perazzi et 

al., 2015). Applying image stitching algorithms directly to 

shaky video frames has drawbacks, such as perspective 

distortions and lack of consideration for temporal smoothness. 

This can lead to visible jerks in the output (Gu, 2015). The 

traditional challenges of video stitching have been addressed 

through the introduction of hardware solutions such as the FC-

110 full view camera and the GoPano method. However, these 

solutions can be expensive and challenging to implement as they 

typically require unstructured camera arrays or static cameras 

(Y. Wang, 2015). The approach to video stitching and 

stabilization involves a two-step transformation process. The 

first step is inter-transformation, which aligns the frames 

spatially, and the second step is intra-transformation, which 

provides temporal smoothness. This approach employs a mesh-

based warping method and a bundled-paths method for the 

synthesis of virtual camera paths (Guo, 2016). 

 

The CoSLAM system is a method that integrates 3D 

reconstruction and camera pose estimation to enable video 

stitching. It employs the LPVW (Line-preserving video warp) 

method for mesh-based warping and stabilization. However, this 

system may encounter difficulties in areas with uniform 

textures and in regions with abrupt changes in depth (H. Jiang, 

2012). Video stitching is a process that involves creating a 

single, seamless video by stitching together multiple frames or 

videos. To do this, a template is constructed by stitching 

selected frames together using image stitching algorithms. This 

template is then used to stitch subsequent frames or videos 

together. However, the presence of moving objects can cause 

ghosting and blurring in the final stitched video. To address this 
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issue, foreground detection techniques are employed to identify 

and isolate moving objects. This helps to ensure accurate 

stitching and reduces the appearance of ghosting and blurring in 

the final video (Wei, 2019). Image stitching is a commonly 

employed technique in computer vision and graphics to 

overcome the limitations of field of view (FOV). It is an 

essential method for creating panoramas, wide-angle videos, and 

enhancing the accuracy and reliability of perception and 

navigation systems in autonomous vehicles (Gu, 2015). 
 

Fig. 1, The image demonstrates the concept of expanding the 

field of view (FOV) by using video stitching from separate 

cameras that acts like fog nodes and communicate with the cloud. 

While multi-view image stitching methods are commonly used 

for tasks such as generating panoramas, 360-degree views, and 

virtual reality, the field of multi-view video stitching has not 

received as much attention as traditional image stitching, despite 

its potential applications in areas such as autonomous vehicles 

and surveillance (Guo, 2016). Multi-view video stitching is a 

process that involves merging multiple video clips with 

overlapping fields of view, resulting in a panoramic video that 

offers a wider field of view while preserving a consistent 

relative geometry throughout the stitching process (Lin, 2016). 

When it comes to multi-view video stitching, mobile device 

camera jitter and other video processing problems can pose 

additional challenges. Video stabilization techniques can be 

applied to reduce shaky movements. To tackle hazardous 

environments or to achieve advanced capabilities beyond 

human limits, robotic systems equipped with advanced sensors 

and actuators can be utilized. 

 

Figure 1. Increasing the field of view using cameras’ views by 

video stitching the views and communicate with cloud. 
 

Video stitching involves several challenges that have been 

extensively studied in literature. These include video 

stabilization, video synchronization, efficient large-size multi- 

view video alignment and panoramic video stitching, color 

correction, and blurred frame detection and repair with the 

enormous amount of data collected from videos and the 

computational power needed to support all of that in real time 

model. 

 

 

4. PROPOSED CLOUD-BASED 

INTELLIGENT SWARM DRONES FOR 

OBJECT DETECTION MODEL 

 

 In this section, the proposed Intelligent Swarm Drones for 

Object Detection Applications will be introduced. The target is 

to simulate the cooperative process of N drones. Experiments 

will be carried out with Two DJI Ryze Tello drones applied on 

distinct scenarios, Webots simulator will be used to test the 

system using more than two drones. Fig. 2 shows the proposed 

model includes 4 main phases: Receiving of live streams 

among Drones, video frame processing, stitching phase and 

panoramic construction phase, and object detection phase. 

 

4.1 Receiving of live streams phase 

 

The framework methodology for multi-view video stitching 

using multiple drones includes controlling and receiving live 

streams from drones with overlapping areas, ensuring 

synchronization of videos, and minimizing delays. The 

Tello quadcopter serves as a receiver for commands through its 

Wi-Fi hotspot, and individual drones are connected through 

their own Wi-Fi hotspots for swarm control. (Flores, 2019). 

The Tello drones have the same IP and UDP port for 

commanding and receiving live streams, making it necessary to 

use port rerouting methods to receive multiple feeds from 

multiple drones on the same device. Each drone is connected to 

a Raspberry Pi and a Wi-Fi adapter to connect to the drone and 

access point, allowing for both controlling a swarm and 

retrieving video feed from the drones, see Fig. 3. 

 

The whole system is managed using a c lu s t e r  o f  

t h ree  raspberry PI 4 8G which receive the videos and start 

the stitching process. The redirecting of the video streams was 

done through a raspberry pi zero on top of the Tello as follows: 

Raspberry Pi IP Address: 192.168.1.120 

Port Where Video Feed is Received: 11111 Port Where Video 

Feed is Changed to 11117  

Code for implementing the redirecting: 

sudo iptables -t nat -A PREROUTING -s 192.168.1.120 -p 

udp --dport 11111 -j REDIRECT -- to-port 11117 

 

4.2 Video frame processing phase 

 

The pre-processing stage in real-time video stitching aims 

to ensure consistent spatial and temporal resolutions. 

 

In video stitching scenarios where the cameras are static, 

the spatial resolutions of the n video streams are denoted as (W1 

x H1), (W2 x H2), ..., (Wn x Hn). Bilinear interpolation 

employs a linear interpolation approach, taking the weighted 

average of the four nearest pixels to approximate the value of a 

new pixel. This method is simple and efficient, providing a 

reasonable estimation of the pixel value. On the other hand, 

bicubic interpolation utilizes a 16-pixel neighborhood, forming 

a 4x4 grid. It employs a cubic polynomial to estimate the value 

 
Figure 2. The flow of the framework from getting the video frames till arriving at the final output. 
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of a new pixel. By considering a larger set of neighboring 

pixels, bicubic interpolation provides a smoother and more 

accurate representation of the image, which can be beneficial in 

certain applications where finer details are important. While 

bilinear interpolation is generally faster, bicubic interpolation is 

preferred when higher image quality is desired or when the 

images contain intricate details. The choice between the two 

interpolation methods depends on the specific requirements of 

the application and the available computational resources. It is 

important to note that neither bilinear interpolation nor bicubic 

interpolation is specifically tied to camera movement. The 

selection of the interpolation method is based on the desired 

image quality and the trade-off between accuracy and 

computational complexity. In scenarios where the camera is 

moving, Bilinear Interpolation is used. In both cases, the 

fundamental concept behind interpolation is to utilize the 

nearest pixels to a new pixel to estimate its value. 

 

Let FPS1, FPS2, ..., FPSn be the frame rates of the n video 

streams. For moving camera scenarios, Linear Interpolation is 

used to estimate missing frames between frames of different 

video streams. Linear Interpolation uses a straight line to 

estimate the value of a new frame based on the values of its two 

nearest frames. For static camera scenarios, Spline 

Interpolation is used, as it uses a smooth curve to estimate the 

value of a new frame based on the values of its surrounding 

frames. The basic idea behind Spline Interpolation is to fit a 

smooth curve through the surrounding frames and use this curve 

to estimate the value of the new frame. 
 

Pre-processing in real-time video stitching involves 

mathematical techniques to harmonize resolutions and frame 

rates, ensuring a seamless and visually appealing final product 

free from artifacts. 

 
4.3 Stitching and panoramic construction phase 

 

4.3.1. Registration Phase: Brown and Lowe method refers 

to the scale-invariant feature transform (SIFT) algorithm, 

which identifies keypoints or interest points that are distinctive 

and invariant to scale, rotation, and affine transformations. 

These keypoints are often located in areas of high contrast, 

which can include blob-like regions, but they are not limited to 

them. They can also correspond to corners, edges, or other 

types of distinctive features, making it suitable for use in 

different scenarios. Other popular feature-based methods for 

stitching registration include the speeded-up robust features 

(SURF) algorithm and the oriented FAST and rotated BRIEF 

(ORB) algorithm (El Shehaby, 2019). 

 

4.3.2. Fusion phase: Blending methods like alpha 

"feathering" and Gaussian pyramid can be employed in the 

fusion stage of stitching to combine images smoothly. Alpha 

blending is more effective when the images are properly 

aligned, while Gaussian pyramid blends images at various 

frequency bands, producing a more polished outcome (El 

Shehaby, 2019). Considering these factors, Gaussian pyramid 

blending is generally preferred over alpha blending for 

stitching images captured by moving cameras. Its ability to 

handle misalignments and produce seamless blends makes it 

more suitable for maintaining visual consistency and reducing 

artifacts in the stitched output. While Gaussian pyramid 

blending may require more computational resources compared 

to alpha blending, the improved quality and seamless blending 

results make it a preferred choice in scenarios involving 

moving cameras. 

 

The framework utilizes bundled paths and a grid-based 

detection method with an adaptive local threshold and KLT 

tracker to estimate inter and intra motions. Bundled-path 

stabilization helps to mitigate perspective distortions and 

parallax, while the grid-based detection method detects features 

within the video, (see Fig. 4.a and 4.b), for feature detection and 

matching. 

 
Figure 4.a. Illustrates feature detection, Figure 4.b. Illustrates 

the feature matching. 

 

 

4.4 Object detection phase 

 

YOLOv4 is an advanced object detection algorithm that 

provides both speed and accuracy in identifying objects within 

an input image. It achieves this by dividing the image into a grid 

and predicting the bounding boxes and objectness scores for each 

cell. This process is made possible through a highly optimized 

CNN architecture that includes multiple residual blocks. 

YOLOv4 also employs logistic and softmax regression to predict 

objectness scores and class probabilities, respectively, and 

predicts bounding box coordinates relative to the cell 

coordinates. Moreover, it is highly configurable, making it 

suitable for various applications. 

 

4.5 Fog nodes initiation 

 

In the proposed fog computing system, each DJI Tello 

drone is connected to an onboard Raspberry Pi Zero that serves 

as a gateway to forward the video streams. Since all Tello 

 
Figure 3. Port forwarding to receive multiple video streams at same time. 
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drones use the same port to stream video, the Raspberry Pi 

Zero is configured to port forward the video streams to the 

Raspberry Pi 4 at the main station. 

 

At the main station, the Raspberry Pi 4 serves as the fog 

node that receives the video streams from the Raspberry Pi 

Zeros, processes them using the video stitching algorithm, and 

publishes the stitched output to the desired location. The 

Raspberry Pi 4 acts as a gateway between the drones and the 

cloud, enabling real-time data processing and analysis at the 

edge. 

 

This distributed architecture provides several benefits over 

centralized processing. Firstly, it reduces the latency and 

network traffic by processing the data locally, leading to faster 

response times. Secondly, it reduces the dependency on cloud 

services for processing and storage, which can be costly and 

unreliable in remote areas with limited connectivity. Finally, it 

 enables scalability and flexibility by adding more fog 

nodes or drones to the system, making it suitable for a wide 

range of applications. 

 

Overall, the proposed fog computing system using 

Raspberry Pi Zero and Raspberry Pi 4 provides an efficient 

platform for real-time video stitching using DJI Tello drones. 

This system demonstrates the potential of fog computing in 

edge environments by enabling distributed computing, low 

latency, and scalability. 

 

4.6 Webots simulation environment 

 

In this research, we propose a fog-based system for real- 

time video stitching using 4 DJI Mavic Pro drones on Webots, 

an open-source robot simulator, see Fig. 5. To initiate the 

system, each drone was programmed to capture and stream 

video using Python code and the DJI Software Development 

Kit (SDK). Then the video stitching algorithm which was 

explained earlier is implemented, after it was optimized and 

tested using pre- recorded videos, as shown in the experimental 

results section later on. Then Robot Operating System (ROS) 

was installed and configured on a local server, which acted as 

the main station for the fog-based system. 

 

 
Figure 5. Illustrates the simulation with four drones. 

 

To enable fog computing, each drone was configured to 

stream video to the local server using the ROS communication 

protocol, which provided low-latency and efficient data 

transfer. The server was configured as a fog node, which 

received the video streams from the drones, processed them 

using the video stitching algorithm, and published the stitched 

output to the desired location. A load balancing technique was 

also implemented to distribute the workload among the fog 

nodes and optimize the processing time. 

 

The fog-based system using DJI Mavic Pro drones on 

Webots provides several benefits over traditional centralized 

processing methods. Firstly, it reduces the dependency on 

cloud services and enables real-time data processing and 

analysis at the edge. Secondly, it provides low-latency and 

efficient data transfer, which is critical for applications such as 

video streaming and analysis. Finally, it enables scalability and 

flexibility by adding more fog nodes or drones to the system, 

making it suitable for a wide range of applications. 

 

Overall, the proposed fog-based system using 4 DJI Mavic 

Pro drones on Webots provides an efficient and scalable 

platform for real-time video stitching, demonstrating the 

potential of fog computing in edge environments. Further work 

can explore the optimization of the video stitching algorithm, 

integration of additional sensors, and testing the system in real-

world scenarios. The simulation tool videos will be used in 

future to generate a dataset for video stitching with the ability 

of using fog computing for processing the outputs. 

 

 

5. EXPERIMENTAL TESTING 

 

Tello drones were used to capture videos and the processing 

of these videos was carried out using a cluster of three RPI 4 all 

over clocked to 2.3 GHz. Additionally, there were three main 

performance metrics used throughout the process. 
 

1) Delay of the output video: This was measured by recording 

the time before and after the processing and computing the 

difference between these times. This metric identify any 

delays in the output video and optimize the processing 

pipeline for faster          video output. 

 

2) Stability score: This metric measured the smoothness of a 

stitched video, as in equation 1 below. A high stability 

score, close to 1, indicated a smooth and stable stitched 

video. This metric evaluates the quality of the output video 

and identify areas for improvement (S. Liu, 2013). 

 

𝑆 =  
1

𝑁
 ∑ 𝐸𝑖

𝑁

𝑖=1

    (1) 

 

where      S =  stability score   

N = the total number of retained feature tracks with a 

length greater than 20 frames. 

Ei = the energy percentage over the selected 

frequency components for the i-th feature track. 

 

3) Stitching score: This metric measured the quality of the 

stitching in a stitched video, as in equation 2 below. A low 

stitching score indicated good alignment and high-quality 

stitching, while a high stitching score suggested potential 

issues with the stitching. This metric evaluates the overall 

quality of the output video and identify any potential issues 

that may need to be addressed (C. Buehler, 2001). 

 

𝑆 = 𝑓(𝑄, 𝐴)    (2) 

 

where       S =  Stitching score   

Q = set of quality parameters that measure the 

alignment and quality of the stitching, including 

sharpness, color consistency, geometric accuracy, 

and visual artifacts. 

A = set of quality metrics or parameters that measure 

the alignment and quality of the stitching which were 

mentioned in Q. 

f() = combination of these quality metrics and their 

respective weights to compute the stitching score. 
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5.1 Real-life scenarios 

 

The first scenario pertains to the capture of multiple 

images of a static scene using cameras that remain fixed in 

position and do not move during the image capture process. 

The objects in the scene are also static and do not undergo any 

movement or change in position between the different images 

that are captured (see Fig. 6). 

 

 
Figure 6. Illustrates the panorama view. 

 

The second scenario involves capturing images of a scene 

using stationary cameras that do not move during the image 

capture process, but where the objects in the scene are in 

motion, (see Fig. 7). The primary challenge in this scenario is 

to detect and track the moving objects in the scene accurately 

while accounting for changes in lighting, shadows, or 

occlusions. This requires the application of advanced computer 

vision techniques, such as object detection, tracking, and 

recognition, along with the ability to handle multiple object 

trajectories and occlusions. 

 

 
Figure 7. Illustrates the panorama view. 

 

The third scenario pertains to the capture of images of a 

stationary scene using cameras that are in motion, (see Fig. 8). 

The primary challenge in this scenario is to achieve video 

stabilization, which involves removing camera shake and 

enhancing the quality of the final video. This can be 

accomplished through advanced computer vision algorithms 

that analyze the camera's motion and compensate for any 

movements or vibrations, resulting in a smoother and more 

engaging viewing experience. 

 

 
Figure 8.  Illustrates the panorama view. 

 

5.2 Edge to fog computing in drones’ swarms 

 

Drone swarm edge computing and fog computing are both 

important technologies that enable efficient processing of data 

and computation in distributed environments. Edge computing 

refers to the practice of processing data locally at the edge of a 

network, rather than sending it back to a centralized data center 

for processing. In the context of drone swarms, (see Fig. 9), 

edge computing can help reduce latency and bandwidth 

requirements by processing data directly on the drones 

themselves. This allows for faster decision-making and more 

efficient use of network resources. 

 

 
Figure 9. Illustrates a swarm of drones 

collecting data. 

 

Fog computing, on the other hand, refers to the practice of 

extending cloud computing capabilities to the edge of a 

network. Fog computing provides a layer of intermediate 

computing resources between the drones and the centralized 

cloud, enabling more efficient processing of data and better 

management of network resources. In the context of drone 

swarms, fog computing can help optimize resource usage and 

reduce latency by providing computing resources closer to the 

drones themselves, (see Fig. 10). 

 

 
Figure 10. Illustrates a swarm of drones 

communicate to the  cloud. 

 

Both edge and fog computing are important in the context 

of drone swarm technology, as they enable more efficient use 

of resources and faster decision-making. By leveraging these 

technologies, drone swarms can become more effective and 

scalable, enabling a wide range of applications across many 

different industries. The objective of developing a cloud system 

is to provide autonomous mission planning, monitoring, and 

control as well as to enable a global data space where data can 

be easily transferred and managed within the system. The data 

collected throughout the mission can then be used for the 

analysis of the autonomous mission. 

 
5.3 Results 

 

The delay in the output video is estimated to be 580 

milliseconds which identifies the output video rate by 

approximately 2 frames per second. Table 1 presents the results 

of the three trials, which show a consistent high stability score, 

indicating that the stitched videos were relatively smooth and 

stable throughout all experiments. However, the stitching score 
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varied significantly across the three trials, suggesting lower 

quality stitching with less alignment compared to the first trial. 

Notably, the stability score remained high despite the 

independent and varied environments of each experiment, 

while the stitching score appeared to be more affected by 

specific environmental factors and conditions. Therefore, a 

high stability score is desirable, indicating a smoother and more 

stable stitched video, while a lower stitching score is also 

desirable, indicating better alignment and higher quality 

stitching. 

 

 Scenario 

 I 

Scenario 

II 

Scenario 

III 

Stability 

Score 
1.00 0.93 0.90 

Stitching 

Score 
0.67 1.01 1.02 

Table 1. The comparison of the "Stability Score" and 

"Stitching Score" for different experimental scenarios. 

 

 

6. EXPERIMENTAL RESULTS AND 

DISCUSSION 

 

6.1 Video Stitching Dataset 

 

The model utilized videos from a dataset that had been 

used in previous papers to compare stitching quality results with 

other research, as noted in paper ( H e n g  G u o ,  2 0 1 6 ) . The 

dataset included six videos, of which two were captured while in 

motion, causing shaky frames and temporal jitters that could 

affect the final stitching quality. The dataset is used to compare 

the results with a stable model and identify the possibility of 

deploying the model on fog node (RPI 4) instead of a 

computer. 

 

6.2 Object Detection Dataset 

 

The COCO dataset is an extensively utilized benchmark 

for object detection tasks, comprising over 330,000 images and 

2.5 million object instances spanning across 80 categories 

where the following categories was the main focal point 

Person, Bicycle, Car, Motorcycle, Airplane, Bus, Train, Truck 

and Boat. The dataset offers highly precise annotations that 

enable effective training and testing of computer vision models. 

The training process of YOLOv4 runs 6000 epochs and took 

serval hours. 

 

6.3 Performance Measures 

 

6.3.1. Video Stitching metrics: Table 2 presents the 

stability and stitching scores of the tested examples. The results 

indicate a noteworthy enhancement in stability for all examples 

based on the scores obtained with average improvement in the 

stitching score values. 

 

Video Length Stitching score Stability score 

Video 1 0:00:13 0.99 0.9 0.83 0.88 

Video 2 0:00:12 0.54 0.51 0.78 0.82 

Video 3 0:00:10 1.07 1.01 0.82 0.86 

Video 4 0:00:13 1.01 0.89 0.88 0.89 

Video 5 0:00:15 0.43 0.37 0.84 0.88 

Video 6 0:00:12 1.04 0.94 0.91 0.94 

Table 2. Experimental results for provided video  dataset. 

6.3.2. Object detection metrics: The object detection 

model's performance was evaluated using three metrics: mean 

average precision (mAP), accuracy, and prediction time. The 

model achieved a mAP of 89.5% and an accuracy of 93.28%. 

In terms of prediction time, it takes an average of 4.9 

milliseconds for the model to process an image and generate 

predictions on a core i7-1165g7 with 16gb ram with an 

RTX2070 gpu. Fig. 11 shows a graphical representation of this 

measurement. When the model was deployed on an RPI 4 

cluster the model achieved a prediction time average of 129.6 

milliseconds. 

 

 
Figure 11. mAP and loss graph for object detection 

model. 
 

 

7. CONCLUSION 

 

The proposed model works on jointly stitching and 

stabilizing the live stream from two or more quadcopters. The 

estimation of inter motion between the live feeds from the 

cameras and intra motion between the frames of the same 

video. The entire process is turned into an optimization 

problem to get the best fit stitching and stabilized video, so the 

intra motion method assures the temporal smoothness 

sustainability between the different frames of the same video, 

and the inter motion method assures the forcing of the spatial 

alignment between the multiple videos provided by the drones. 

Handle scenes with parallax, each video frame is divided into 

smaller cells so that it is easier to use the bundled-path 

methodology. Additionally, the model can be extended to a 

greater number of quadcopters by utilizing Webots simulator 

for algorithm testing purposes. 

 

The suggested model displayed exceptional object 

detection performance, achieving high average precision 

measures across multiple recall levels. Moreover, it exhibited 

consistent and robust performance in diverse experimental 

settings, with relatively high stability and stitching scores 

which indicates how the model is effective. 

 

The model addresses the limitations of video streaming a 

single drone. While the drone swarm system has been rapidly 

developing, the current approach significantly hinders the 

interaction, resource sharing, and ability of the drone swarm to 

perform complex tasks such as real time video stitching and 

storing much more data. To overcome these limitations, a new 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-1041-2023 | © Author(s) 2023. CC BY 4.0 License.

 
1047



cloud-based drone swarm platform architecture is introduced in 

this paper. The platform enables real time processing  of drone 

swarms’ data and eliminates restrictions on the state of the man-

machine interaction by allowing connection to the cloud 

platform at any time. Additionally, the architecture provides 

cloud storage and cloud computing support for drones, 

improving their ability to perform complex tasks. 

 

The discussion covers the implementation of a fog-based 

system for real-time video stitching using DJI Mavic Pro 

drones on Webots. The system utilized a combination of 

programming languages and software tools for capturing and 

streaming video, video stitching, and communication between 

the drones and the fog node. The drones were configured to 

stream video to the local server acting as a fog node, which 

processed the video using the video stitching algorithm and 

published the stitched output. The system provides several 

advantages such as real-time processing, low-latency and 

efficient data transfer, and scalability. Future research can 

focus on optimizing the video stitching algorithm, integration of 

additional sensors, and testing the system in real-world 

scenarios. 
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