
HIGH DYNAMIC RANGE IMAGE COMPRESSION ON COMMODITY HARDWARE FOR
REAL-TIME MAPPING APPLICATIONS

Dirk Frommholz∗, Daniel Hein, Marius Bock

DLR Institute of Optical Sensor Systems, Berlin, Germany - (dirk.frommholz, daniel.hein, marius.bock)@dlr.de

KEY WORDS: Image Compression, High Dynamic Range, Real-Time Mapping, Genetic Algorithm, Unmanned Aircraft System.

ABSTRACT:

This paper describes a lossy compression scheme for high dynamic range graylevel and color imagery for data transmission pur-
poses in real-time mapping scenarios. The five stages of the implemented non-standard transform coder are written in portable C++
code and do not require specialized hardware to run. Storage space occupied by the bitmaps is reduced via a color space change,
2D integer discrete cosine transform (DCT) approximation, coefficient quantization, two-size run-length encoding and dictionary
matching hinged on the LZ4 algorithm. Quantization matrices to eliminate insignificant DCT coefficients are derived from a rep-
resentative image set through genetic optimization. The underlying fitness function incorporates the obtained output size, classic
image quality metrics and the unique color count. Together with a zone-based adaptation mechanism, this allows to specify target
bitrates instead of percentage values or abstract quality factors for the reduction rate to be directly matched to the available com-
munication channel capacities. Results on a camera control unit of a fixed-wing unmanned aircraft system built around entry-level
PC hardware revealed single-thread compression and decompression throughputs of several hundred mebibytes per second for full-
swing 16 and 32 bit RGB imagery at medium compression ratios. A degradation in image quality compared to popular compression
libraries could be identified, however, at acceptable levels statistically and visually.

1. INTRODUCTION

With ongoing advances in camera sensor technology and near-
sensor pixel postprocessing, optical imagery with radiometric
resolutions of fourteen, sixteen and even more bits per sample
has started to make its way into various remote sensing appli-
cations. When the advantages of high dynamic range (HDR)
bitmaps, i.e., capturing details under varying light conditions,
are to be harnessed for airborne real-time mapping, the prob-
lem of high data volumes to be transmitted over communica-
tion channels of limited capacity within a narrow time frame
arises. This applies to both the on-board image projection onto
an existing surface model where ready-to-use map tiles have
to be sent and to ground-based projection setups where raw or
preprocessed image frames must be communicated.

In order to reduce the amount of data to match the capabilities of
the available downlink, the images frequently get tone-mapped
prior to compression which inevitably results in substantially
less color nuances. Depending on the degree of image degrada-
tion, the information loss may not be desirable or acceptable at
all. This applies in particular when operational pictures for nat-
ural or man-made disasters such as earthquakes, avalanches or
major fires must be prepared without delay so that local rescue
teams promptly can be given instructions to save human lives
or prevent substantial economic damage. Here, the dynamic
range of the imagery to be mapped has to be preserved as much
as possible in order to recognize relevant scene details of the
unknown surroundings on-site and under changing or poor il-
lumination conditions. Such conditions especially occur during
prolonged acquisition periods or when the power grid infras-
tructure has been impacted.

∗ Corresponding author

2. RELATED WORK AND MOTIVATION

Currently, there does not seem to be many publications that
specifically deal with HDR image compression in a remote sens-
ing context. In (Belyaev et al., 2017), 16 bit graylevel infrared
images are subdivided into two low dynamic range (LDR) ras-
ters. The LDR bitmap pairs to be compressed into standard
JPEG (Pennebaker and Mitchell, 1992) or PNG (ISO, 2004)
streams are obtained from the least and most significant bytes
of the pixels. To control the degree of data reduction, dis-
crete bitrate-distortion curves are computed from a set of test
images. These curves subsequently get translated into the ab-
stract quality factors expected by both image encoders. The
split technique is once more applied by (Mantel and Forch-
hammer, 2017) to infrared bitmaps using the JPEG-XT still
image processor (ISO, 2020b). In addition, the authors eval-
uate JPEG 2000 (ISO, 2019) and the MPEG-H Part 2/High
Efficiency Video Coding (HEVC) (ISO, 2020a) extension on
still image compression that directly work with 16 bit samples.
Both approaches are purely software-based. Although no run-
time figures are given for encoding and decoding, a substantial
overhead can be expected at least when LDR bitmap pairs are
to be dealt with.

Regarding real-time compression, (Manthey, 2014) describes
a CCSDS 122.0-B-2-compliant architecture (CCSDS, 2017) to
reduce the data volume of 16 bit satellite imagery on-board. It
is based on a three-level 2D discrete wavelet transform (DWT)
similar to JPEG 2000 with subsequent coefficient rearrange-
ment and bitplane encoding. The incremental algorithm builds
on field-programmable gate array (FPGA) hardware to achieve
encoding speeds of around 400 MiB/s independently of the im-
age content. It operates in either lossless or near-lossless mode
to preserve the original content albeit this restricts the achiev-
able compression ratios. The work of (Melián et al., 2021) em-
braces real-time transmission of hyperspectral data cubes of 12
bits per sample packed into a 16 bit unsigned type. It utilizes

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-1049-2023 | © Author(s) 2023. CC BY 4.0 License.

 
1049



a reduction algorithm named HyperLCA that was specifically
tailored to this kind of imagery. HyperLCA comes along with
a degradation in image quality (i.e., it is lossy) to achieve com-
pression ratios of about 1:20. However, the encoder as a compo-
nent of an unmanned aircraft system (UAS) relies on graphics
processor hardware to handle the amount of roughly 87.5 MiB/s
of raw data delivered by the camera module.

This paper proposes a custom compression algorithm which has
been designed for the data transmission phase in HDR real-time
mapping scenarios. Unlike in the previous work cited above,
the described lossy encoder-decoder combination (codec) sup-
ports unsigned graylevel and RGB multispectral input bitmaps
with radiometric resolutions between 12 and 41 bits per sam-
ple. This is beyond the capabilities of many of the established
JPEG and MPEG standards. To achieve adequate compression
ratios, bitmap storage is reduced through a sequence comprising
a color space change, frequency domain transformation, zonal
quantization of the resulting coefficients, run-length encoding
and dictionary matching to be reversed for decompression. Im-
age quality and compression ratios are controlled via target bi-
trates. The bitrate goals are given as bits per pixel values to
be directly adapted to the data rate of the downlink commu-
nication channel. The individual stages of the algorithm have
been selected, implemented as a portable C++ library and tuned
for speed so they could run on inexpensive commodity hard-
ware instead of graphics processors or FPGAs. Yet, it will
be demonstrated that both the compressor and decompressor
achieve single-thread performances sufficient to process 50 me-
gapixel 16 bit RGB images of roughly 300 MiB per frame to a
fraction of their original memory footprint and vice versa in
much less than a second on low-end PC-like hardware that is
part of an unmanned aircraft system.

3. COMPRESSION ALGORITHM DESCRIPTION

The proposed compression algorithm obeys the transform coder
structure that is also followed by the ubiquitous JPEG codec.
Image encoding starts with a colorspace transformation to sep-
arate luminance from chrominance when available. Due to the
biology of the human visual system, color information can be
condensed much stronger without noticeable artifacts. The lu-
minance and chrominance channels afterwards get transformed
into the frequency domain to decorrelate slow and fast intensity
changes. Insignificant frequency components are set to zero by
subsequent quantization. The quantization stage is followed by
two lossless compression steps to reversibly condense the re-
dundancies present in the stream of coefficients. While the two-
size run-length encoder (RLE) shrinks consecutive sequences
of the same symbol, a dictionary-based algorithm abbreviates
recurring RLE tuples. For image decompression, the process
chain needs to be run in reverse order performing the inverse
operations.

3.1 Colorspace transformation

For the initial separation of the luminance, or luma, and chromi-
nance, or chroma, information of the image, the input bitmaps
undergo a transformation from the original RGB colorspace to
a YUV representation (ITU, 2007). Each pair of multispectral
pixels RiGiBi, i ∈ {1, 2} is processed according to equation 1
where c denotes the intensity range center (e.g., c = 32768 for
16 bits per sample) and >> is the arithmetic shift right opera-
tor. For graylevel bitmaps, the luma values Y are obtained by

subtracting c from each pixel value.

Yi = ((77Ri + 150Gi + 29Bi + 128) >> 8)− c

R12 = (R1 +R2) >> 1

G12 = (G1 +G2) >> 1

B12 = (B1 +B2) >> 1

U = (−43R12 − 84G12 + 128B12 + 128) >> 8

V = (127R12 − 106G12 − 21B12 + 128) >> 8

(1)

Each output component gets written to a separate image plane.
The resolution of the chroma components U and V is reduced
by two in both image directions using averaging horizontally
and the nearest neighbor filter vertically to at least partially sup-
press aliasing artifacts. Hence, the U and V samples are shared
by a 2 x 2 subgrid of luma values which sometimes is called
4:2:0 subsampling in video coding. In the C++ library im-
plementation, for input data that are band-interleaved by pixel
(BIP), image traversal uses pointer arithmetic to increment the
current position inside the bitmap and avoid full address recal-
culations. Pairwise RGB tuple processing eliminates expen-
sive branching to differentiate between even and odd columns
and likely will improve processor register utilization. Using bit
shifts instead of divisions by the respective powers of two gen-
erally is faster and safe on unsigned sample data types. Also,
the original intensity range will be translated but not left except
for the calculation of intermediates. The Y, U and V outputs are
signed integers of the same size as the input samples.

Image decoding employs the reverse transformation from equa-
tion 2 which operates on pairs of luminance samples to gain
speed. For chroma upsampling, the U and V values remain
constant for each 2 x 2 subgrid of Y values performing nearest
neighbor interpolation. The R, G and B reconstructions must
be clamped to the original image intensity range since over- or
underflows may happen due to compression artifacts from other
codec stages. For graylevel bitmaps, only the center c needs to
be added to each Y value and fenced in to recover the unsigned
intensity.

Ri = clamp(c+ Yi + ((361V ) >> 8))

Gi = clamp(c+ Yi + ((−90U − 184V ) >> 8))

Bi = clamp(c+ Yi + ((456U + V ) >> 8))

(2)

3.2 Frequency domain transformation

The Y, U and V image planes from the previous stage are indi-
vidually decomposed into their frequency components by run-
ning the 2D discrete cosine transform (DCT) on 8 x 8 pixel
blocks. The 2D DCT itself builds on a fast integer approxi-
mation of the floating-point 8-point 1D Loeffler DCT with 11
multiplications and 29 additions which is theoretically optimal
(Loeffler et al., 1989). Figure 1 shows this DCT and its inverse,
the IDCT, as signal flow graphs to be executed from left to right.

In the approximation of the transform, its original rotator blocks
c1, c3 and c6 in their optimized form with three multiplica-
tions are replaced by c0, c[16 arccos(0.75)/π] ≈ c3.6809 and
c[16 arccos(1/(2

√
2))/π] ≈ c6.1596, i.e., we rotate a little bit

less and further. The involved factors a therefore yield 1, 0.75
and 0.5 respectively which eliminates two of them adding two
arithmetic right shifts instead. The dependent constants (b− a)
and −(a+b) subsequently are altered into close fractional pow-
ers of two to reflect the change. For the tiny (b − a) value of

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-1049-2023 | © Author(s) 2023. CC BY 4.0 License.

 
1050



Figure 1. Signal flow graphs for the original 8-point Loeffler 1D
DCT and 1D IDCT with 11 multiplications and 29 additions

the c3.6809 approximation, the round-off error of its factor-free
approximation of -1/16 asymmetrically gets compensated in the
IDCT by -3/32. Similarly, the square root calculation of stage 3
will be modeled by the skew numbers of 45/32 for the forward
transform and 23/16 for its inverse. As final coefficients that
are directly applied to the output samples 3 and 5, these values
do not appear in the DCT nor IDCT code but are incorporated
as nominator-denominator pairs into the quantizer (see section
3.3.1). The quantizer will also take care of the scaling factor of
0.125 or 1/8 that comes with the forward Loeffler transform as
depicted and which needs to be applied to preserve the ampli-
tude of the samples.

In total, the adapted 8-point DCT and IDCT require 4 and 5
multiplications respectively plus 29 additions and 6 shifts for
each direction. The reverse operation thus is slightly slower,
however, this disadvantage will be overcompensated later by
the lossless stages of the codec. Table 1 compares all factors of
the floating-point 1D building block and their integer approxi-
mation as used by the library code.

To obtain the 2D DCT, the 1D DCT is run vertically on blocks
of 8 x 8 samples of the input image planes whose dimensions
must be aligned accordingly. The outcome is written to a small
buffer of 64 intermediates on which the DCT gets executed hor-
izontally. The final result is passed to the quantizer that writes
the altered frequency coefficients into dedicated output image
planes. For the 2D IDCT, the process is gone through in reverse
order. Using a small temporary buffer eliminates unnecessary
stride calculations to skip the remainder of image lines, keeps
processor registers available to the DCT itself and is data cache
friendly. Therefore, runtime will be optimized at the insignifi-

function a (b-a) -(a+b)
c1 0.9808 -0.7857 -1.1759
c3 0.8315 -0.2759 -1.3870√
2·c6 0.5412 0.7654 -1.8478√
2 · x 1.4142
c0 1 -1 -1

c3.6809 0.75 (3/4)
-0.0886 (e)

-0.0625 (-1/16) (f)
-0.0938 (-3/32) (i)

-1.4114 (e)
-1.4063 (-45/32)

√
2·c6.1596 0.5 (1/2)

0.8229 (e)
0.8281 (53/64)

-1.8229 (e)
-1.8281 (-117/64)

√
2 · x 1.4063 (45/32) (f)

1.4375 (23/16) (i)

Table 1. Original and integer frequency transform parameters to
four decimals; for the latter, the exact (e) and power-of-two
values for the forward (f) and inverse (i) operation are given

cant cost of a few hundred bytes of additional storage. The DCT
code requires integer type promotion since the computed scaled
coefficients very likely will exceed the signed input data type
from color conversion except for trivial image content. Type
transition happens once during the vertical pass.

Regarding the accuracy of the integer DCT, deviations to the
original version will occur in both the forward and inverse di-
rection due to the approximation and rounding. However, a
quick test with roundtrips (DCT followed by IDCT) taken on
500 random 8 x 8 matrices made of signed 16 bit elements re-
vealed that the mean absolute error caused by the frequency
transform on average is around 0.3% of the number range. This
value is considered acceptable for compression purposes.

3.3 Quantization

The obtained frequency components undergo quantization to
reduce their amplitude to predefined discrete levels. This codec
stage largely controls the degree of compression and hence is
responsible for the bulk of image information loss to achieve
practical data reduction ratios.

3.3.1 Forward and inverse quantization process Quanti-
zation itself involves integer divisions by positive numbers so
that negligibly small DCT values become zero. For the in-
verse, or dequantization, the quotients are multiplied by the
same numbers to roughly reconstruct the original frequencies.
Depending on the rounding mode, the quantization error can be
reduced trading accuracy for speed. Plain divisions that truncate
towards zero are preconfigured in the library implementation. A
slower but more precise rounding technique towards the closest
integer which inevitably involves evaluating a condition is also
available (figure 2).

// round n/d to closest integer the fast way
// for integer type T and d>0
template<typename T> T intDivRound(T n, T d) {

// compiler will translate division by 2
// into a shift and use a conditional move
// to handle negative n in assembler code

return (n+((n>=0) ? d : -d)/2)/d;
}

Figure 2. C++ snippet rounding DCT values to closest integer

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-1049-2023 | © Author(s) 2023. CC BY 4.0 License.

 
1051



For the 8 x 8 2D DCT blocks, quantization and dequantization
are conducted using matrices of the same size. The matrices
contain the divisors and factors respectively to be applied to the
individual frequency components during compression and de-
compression. However, before being used, some of the raw ma-
trix entries must be adjusted by the rational representations of√
2 inherited from the DCT, and the DCT scaling of 1/8 needs

to be incorporated. For the 2D DCT approximation, the original
quantization matrices Qi therefore have to be multiplied and di-
vided element-wise by the 8 x 8 matrix products as shown by
equation 3. This yields premultiplied ready-to-use versions Q′

i

for the forward step and D′
i for dequantization.

qmul =
[
1 1 1 45 1 45 1 1

]
qdiv =

[
8 8 8 8·32 8 8·32 8 8

]
Qmul = qTmul · qmul

Qdiv = qTdiv · qdiv

dmul =
[
1 1 1 23 1 23 1 1

]
ddiv =

[
1 1 1 16 1 16 1 1

]
Dmul = dTmul · dmul

Ddiv = dTdiv · ddiv

Q′
i = Qi ◦Qdiv/Qmul

D′
i = Qi ◦Dmul/Ddiv

(3)

Integrating the root and scale terms into the matrices Q′
i and

D′
i limits the maximum dynamic range allowed for the image

codec to log2[2
63/(82 · (8 · 32)2)] = 41 bits per sample with 64

bit wide signed integers. This calculation is based on the maxi-
mum 1D DCT coefficient blow-up of eight, its scale of eight and
the square root denominator of 32 to be applied as a factor to the
quantization matrix. The premultiplied Q′

i and D′
i also impose

a lower bound on the radiometric resolution of imagery to be
compressed and decompressed. This issue is caused by signif-
icant round-off errors on small raw matrix entries and a coarse
discretization on large raw matrix elements to be further scaled.
Hence, in practice, the codec is not optimized for bitmaps with
less than ∼12 bits per sample. This limitation however could
be alleviated when the square root term is migrated back into
the DCT at the cost of two more multiplications.

3.3.2 Base quantization matrices for bitrate control To
be able to directly match the communication channel capacity,
the missing quantization matrices Qi are to be generated in such
a way that the compression level can be expressed as a bitrate,
i.e., in bits per image pixel (bpp). This makes them dependent
on the entire compression algorithm, and hence no templates to
be reused exist. The Qi are therefore obtained through genetic
optimization (Mitchell, 1998) on a set of representative train-
ing images. Optimization is performed for each bit depth to be
supported by the codec expressed as bits per sample, or bits per
component (bpc), which can be easily upscaled to the bpp value
by the color channel count. Also, quantization matrices are re-
fined separately for the luma and chroma image planes yielding
matrix pairs (Qi,l,Qi,c). This reflects the greater influence of
the brightness channel on visual image quality.

Like in biology, genetic optimization takes an initial population
generated from random DNA strands and evaluates their adap-
tation to the environment with a fitness function. The fittest

individuals reproduce and give birth to a new generation of
population members by exchanging parts of their DNA while
”weak” individuals get discarded. Diversity among the popu-
lation members is further increased with point mutations, i.e.,
local random changes to their DNA. The evolution cycle repeats
until a maximum generation count has been reached. The fittest
individual of the population is eventually chosen to produce the
final quantization matrix pair.

For the HDR image codec, the DNA independently defining the
shape of the luma and chroma parts of the quantization matrix
pairs is chosen as the arguments a and b of equation 4. Discrete
sampling produces the 2 · 64 elements of (Qi,l,Qi,c). The cre-
ated phenotypes loosely resemble the quantization matrix struc-
ture from JPEG for arbitrary bit depths and expose smooth tran-
sitions between the matrix entries.

z = a
√
x+ a

√
y + b x, y ∈ {0, ..., 7} (4)

The fitness function f to determine how well a quantization
matrix pair suits a particular compression task is modeled as
the square root of four arguments with empirically determined
exponential weights (equation 5). Among the arguments is the
ratio qb of the currently achieved bitrate ba to the target bitrate
bt which falls back to zero if the latter is exceeded by the former.
Also, the universal image quality (UIQ) measure (Wang and
Bovik, 2002) scaled to the [0, 1] interval, peak signal-to-noise
ratio (PSNR) (Salomon, 2006) and unique color count (UCC)
are incorporated into f . The rationale for this choice is to obtain
the best possible image quality (in terms of UIQ and PSNR)
while approaching the given compression ratio (in terms of the
bitrate quotient) as closely as possible from below. Also, the
variety of colors (in terms of the UCC) shall be maximized and
not get sacrificed to an excessively dominant luma channel.

qb =

{
ba
bt
, ba ≤ bt

0, else

f =
√

q2b · UIQ · PSNR2 · UCC0.5

(5)

To evaluate the fitness function, the set of training images takes
compression and decompression roundtrips for each quantiza-
tion matrix pair of the population. The decompression outputs
are compared to the respective originals in graylevel or RGB
space. For each bitmap pair, PSNR is computed on a per-sample
basis, and UIQ is obtained for each color band to be subse-
quently averaged. UCC calculation involves ordering the pixels
of the decompression result by color in-place with the quicksort
algorithm and counting the color transitions. This universal ap-
proach works for any sample type, band count and bit depth in
linearithmic time.

The final fitness for a quantizer configuration (Qi,l,Qi,c) for
RGB images and a particular target bitrate to be met is derived
from the average of the fitness function arguments over all train-
ing data. When the genetic optimization is run for a sufficiently
dense set of bt, a lookup table from the achieved bitrates ba
(which ultimately will approach bt) to the corresponding quan-
tization matrix pairs can be constructed. For graylevel bitmaps,
the optimization results from RGB imagery get recycled, and
mappings from the partial bitrates of the luma channel to the
luma quantization matrices Qi,l are stored. Encoding images
of the bit depth used during optimization to an almost arbitrary
target bitrate is achieved by linear interpolation or extrapola-
tion based on the two pairs of matrices that belong to the two

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-1049-2023 | © Author(s) 2023. CC BY 4.0 License.

 
1052



neighboring bitrates according to the lookup table. Equation 6
displays sample raw luma and chroma matrices (Qi,l,Qi,c) for
16 bpc imagery for the target bitrate bt = 2 bpp which equals a
compression ratio of 1:24 for RGB data. The actually achieved
Y, U and V partial bitrates from the genetic optimizer for this
target are ba = 1.8615 + 0.0753 + 0.0626 = 1.9994 bpp. This
corresponds to image compression ratios of 24.0072 (RGB) and
8.5952 (graylevel).

Qi,l =



196 230 244 255 264 272 279 286
230 264 278 289 298 306 313 320
244 278 292 303 312 320 327 334
255 289 303 314 323 331 338 345
264 298 312 323 332 340 347 354
272 306 320 331 340 348 355 362
279 313 327 338 347 355 363 369
286 320 334 345 354 362 369 376



Qi,c =



420 424 425 427 428 428 429 430
424 428 429 430 431 432 433 433
425 429 431 432 433 433 434 435
427 430 432 433 434 435 435 436
428 431 433 434 435 436 436 437
428 432 433 435 436 436 437 438
429 433 434 435 436 437 438 439
430 433 435 436 437 438 439 439



(6)

3.3.3 Zone-adaptive quantization While the quantization
matrices from genetic optimization will provide a reasonable
starting point when a certain target bitrate needs to be met, the
actually achieved compression ratios for individual images still
may vary. Therefore, to closely approach the target, the matri-
ces used to reduce the amplitude of the DCT components may
get dynamically adjusted during the reduction process.

For this zone-adaptive quantization mechanism, equally sized
strips of image scanlines are compressed individually. The bit-
rate actually achieved for the first strip is tracked, scaled to the
full image dimensions and compared against the target bitrate.
If the goal is exceeded, the bitrates to be used for the next image
strips get gradually reduced based on the previous setting within
a predefined corridor. On a shortfall, they will be increased re-
cursively. The default adjustment factors are 0.8 and 1.24 for
the bitrate decrease and increase up to the minimum and maxi-
mum of 0.5 and 4 respectively. In extreme cases, the compres-
sion ratio therefore may locally breathe between one quarter to
two times the reduction rate aimed at. Due to the asymmet-
ric adjustment factors (the reciprocal of 0.8 equals 1.25), the
achieved average bitrate for the entire bitmap will have the ten-
dency to stay slightly below the target bitrate. This behavior is
desirable for data transmission with upper bandwidth limits.

3.4 Run-length encoding

Depending on the matrices used, the set of DCT coefficients
likely will contain sequences of identical values after quanti-
zation. In fact, for realistic compression settings, the majority
of frequency components form extended runs of zeros (see fig-
ure 3) which can be represented compactly through run-length
encoding (RLE) without any information loss.

The run-length encoder of the C++ compression library by de-
fault operates on the concatenated stream of quantized DCT
samples of all image planes. In contrast to JPEG where RLE
is implemented on individual 2D DCT blocks with a zigzag-
style reordering scheme, this approach potentially allows larger

(a) (b)

Figure 3. Sample RLE input (a) luma channel of car scene, (b)
quantized DCT coefficients, homogeneous gray indicates zeros

sequences of zeros to be reduced. Piecewise image decod-
ing nevertheless remains possible using zone-adaptive quanti-
zation. The produced RLE output consists of (skip;value) tu-
ples which consume just a few bytes each. The first part stores
how many consecutive zeros precede a specific non-zero value.
The value part can either be ”short” or ”long” to conserve mem-
ory on small quantized DCT coefficients. For images with 16
bits per sample, this translates into signed byte and signed short
integer data types constituting a type demotion. Under- or over-
flowing frequency components will be truncated in the rare case
the ”long” data type is insufficient. Discrimination between the
two value sizes happens via the most significant bit of the skip
part of the tuple. For 16 bit frames, the skip type is an unsigned
byte, and hence up to 127 zeros can be fold at once. In the
worst case, without any repeating DCT coefficients in the input
stream like on near-lossless quantizer configurations, the RLE
output will expand and not contract. This scenario currently is
not specifically addressed by the HDR image codec.

3.5 Dictionary-based compression

The remaining redundancies in the tuple stream from the run-
length encoder are further condensed with a second lossless
compressor. Because of its speed, the LZ4 algorithm (Collet,
2016) (Collet, 2019) was chosen which is also integrated into
the Linux kernel (Schmidt, 2017). LZ4 is a variant of the LZ77
dictionary-based encoders (Ziv and Lempel, 1977) that replace
repeating sequences of (not necessarily identical) symbols with
a single reference to their previous occurrence. To find the
matches, an implicit dictionary formed by a sliding window
over the most recent data gets examined.

For the proposed image codec, the high compression mode func-
tions of the LZ4 open source reference library are invoked with
a fixed reduction level of two. This setting offered a reasonable
compromise between runtime and data reduction in combina-
tion with the other codec stages during a quick test. Neverthe-
less, while LZ4 in practice performs much faster than arithmetic
or Huffman coding as used for JPEG, its compression ratio gen-
erally will stay behind these entropy-based algorithms.

4. PERFORMANCE ANALYSIS

As a proof-of-concept, the HDR transform coder was imple-
mented as a C++ library whose functions are called by an ac-
companying demo application and the tool for the genetic op-
timization of the quantization matrices. The library does not
utilize machine-specific instructions and hence can be compiled
on different target platforms. Its code further is single-threaded.
Parallel execution for the designated application of real-time
mapping will be accomplished by running multiple codec in-
stances concurrently on the images captured. To save memory
for the intermediate bitmaps created by the HDR codec stages,

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-1049-2023 | © Author(s) 2023. CC BY 4.0 License.

 
1053



each supported bit depth is associated a set of specific data types
aggregated in a trait class. The algorithms involved in image en-
coding and decoding get instantiated with the respective trait at
translation time. This enables type-specific compiler optimiza-
tions and boosts speed at the price of object code duplication.

To evaluate the achievable image quality and runtime for both
compression and decompression, the library initially got con-
figured with luma and chroma quantization matrices from ge-
netic optimization. The dedicated optimizer tool was run on a
diverse set of 16 RGB pinhole and mapped ortho images of 16
and 32 bits per component yielding 48 and 96 bits per pixel re-
spectively. Except for computer-generated renderings, the data
was originally captured by 14 bit sensors whose dynamic range
was subsequently scaled with a non-linear transfer function to
emulate true HDR hardware. Multithreaded calculation of the
quantization matrices for the test bitmaps was conducted with a
population size of 512 individuals and 128 generations. It took
around three days on a fully utilized high-performance server
with 56 physical processor cores and simultaneous multithread-
ing (SMT) enabled even though downsampling to between 11
and 16 megapixels was applied to the input images in advance.

Optimizer data got recalled for performance analysis in full res-
olution ranging from 11 to 67 megapixels. Compression and
decompression were carried out on the control and image pro-
cessing unit of the DLR MACS-nano aerial camera (Kraft et
al., 2023). MACS-nano fits into the nose section of a Quantum
Systems Vector fixed-wing UAS and has been recently involved
in real-time mapping missions on disaster sites (figure 4). The
integrated computer builds on entry-level PC hardware with an
Intel i3-1115G4E embedded processor that nominally operates
at 3.0 GHz and 8 GiB of automotive LPDDR4 memory clocked
at 1833 MHz. It runs the Linux operating system.

(a) (b)

Figure 4. (a) MACS-nano in UAS nose, (b) Real-time mapping
for damage assessment (Ahr valley flash flood, Germany, 2021)

Table 2 lists selected timings and bitrates plus the PSNR, UIQ
and UCC quality readings as introduced in section 3.3.2 for a
subset of four images of natural, urban and synthetic environ-
ments (figure 5). Measurements were also taken for the JPEG
and JPEG 2000 codecs using release versions of the IJG libjpeg
9e (IJG, 2022) and OpenJPEG 2.5.0 (OpenJPEG Development
Team, 2022) software libraries. Libjpeg was specifically com-
piled to handle raster data with 12 bits per sample. The dynamic
range of the 16 bpc input imagery had to be linearly reduced af-
ter loading, and the fastest DCT option with Huffman entropy
coding got chosen to ensure a fair comparison. Native bitmaps
with 16 bits per component could be tested only for JPEG 2000
since the used accompanying command-line tools refused to
read in 32 bpc bitmaps. The OpenJPEG utilities were invoked
with the default compression and decompression settings.

For the 16 bpc bitmaps, the compression throughput of the pro-
posed HDR image codec excluding I/O grows with the reduc-
tion rate. It increases from roughly 140 to nearly 400 megasam-
ples per second (MS/s), i.e., 262 MiB/s to 750 MiB/s, mostly

(a) (b)

(c) (d)

Figure 5. Subset of test imagery (cropped for display) (a) Drew
Point/Alaska, (b) Berlin, (c) Kathmandu, (d) Synthetic Scene

because less data has to be handled by LZ4. The asymmetric
runtime characteristics particularly of the lossless stages make
decompression even faster. Decoding throughput always ex-
ceeds 300 MS/s and peaks at 486 MS/s or nearly 1 GiB/s of
data. In both disciplines, the reference JPEG implementation
is outperformed by almost a factor of two. The popular JPEG
2000 library at best is roughly 60 times slower during compres-
sion and five times behind on decompression. For 32 bpc im-
agery, less megasamples are processed per second in absolute
numbers. However, the larger sample type increases the byte
count that can be compacted per unit of time by 46% to 75%
for comparable bitrates. At reduction settings of 1:24 and 1:48,
frame rates greater than 1.5 Hz and 1.8 Hz are reached respec-
tively by the HDR encoder for the 50 megapixel bitmaps of both
color depths. The resulting data streams can be transmitted over
4G networks considering their nominal data rates (Dahlman et
al., 2013). In the special case of on-board-mapping, when over-
lapping image parts get clipped during the projection onto a
surface model to remove redundancies in advance (Hein and
Berger, 2018), the achievable frame rates will further increase.
A gain linear to the pixel count reduction could be expected.

Regarding image quality, the HDR codec introduces more arti-
facts than the established compression standards on the 16 bpc
bitmaps. PSNRs for the urban Berlin scene are lower by about 5
dB compared to the 12 bit-enabled JPEG library for quality fac-
tors of q = 20 and q = 4 to achieve equal bitrates of bt = 2 and
bt = 1 bpp. The delta to wavelet-based JPEG 2000 is roughly
8 dB. The unique color counts of the proposed approach and
JPEG are almost on par. Despite the drop to approximately 39%
in the worst case for the subset, the UCC remains well into the
millions. Eight-bit tone mapping solutions that allow standard
JPEG streams to be transmitted likely will reproduce much less
color shades, e.g., 575046 for the Berlin photo when applying
the GIMP open-source image processor. JPEG 2000 manages it
to preserve and slightly extend the original chromaticity. UCC
readings beyond 100% of the original value also appear with the
HDR codec on high bitrates. These overshots can be attributed
to inaccuracies in the frequency transforms and quantization er-
rors. For all compressors, the UIQ values approach the theo-
retical maximum and reflect the PSNR behavior. Figures 6 and
7 visualize the achieved image quality. Fine contrasts are pre-
served by all codecs for medium bitrates. With stronger com-
pression, block artifacts characteristic for DCT-based methods
become noticeable especially for the HDR image encoder.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-1049-2023 | © Author(s) 2023. CC BY 4.0 License.

 
1054



image
reduction compress time decompress time PSNR UIQ UCC

bpp ratio ms MS/s MiB/s ms MS/s MiB/s dB [0,1] orig # rndtrip # %

Proposed HDR codec, 16 bpc RGB (48 bpp)
Drew Point
4864x3232

16 Mpix, 90 MiB

6.04 7.95 335 140.78 268.52 148 318.66 607.79 34.47 0.9915
14920049

15707328 105.28
2.22 21.61 178 264.95 505.36 116 406.56 775.46 28.94 0.9690 14190133 95.11
1.00 48.08 121 389.76 743.41 98 481.24 917.89 26.54 0.9455 9847884 66.00

Berlin
4864x3232

16 Mpix, 90 MiB

5.25 9.14 309 152.63 291.11 140 336.87 642.52 39.45 0.9983
15533264

9944454 64.02
2.12 22.69 170 277.42 529.14 108 436.68 832.90 35.87 0.9960 10974934 70.65
1.00 48.01 120 393.01 749.61 97 486.20 927.35 32.21 0.9907 6775190 43.62

Kathmandu
8192x8192

67 Mpix, 384 MiB

5.88 8.16 1465 137.42 262.12 620 324.72 619.36 37.54 0.9966
65503284

60253954 91.99
2.11 22.70 738 272.80 520.33 462 435.77 831.17 34.40 0.9937 49454824 75.50
1.00 47.85 537 374.91 715.08 421 478.21 912.11 32.25 0.9901 36732520 56.08

Synthetic Scene
8192x6144

50 Mpix, 288 MiB

5.41 8.88 973 155.19 296.00 419 360.37 687.35 35.56 0.9976
50304958

25029684 49.76
2.05 23.38 548 275.54 525.55 354 426.54 813.56 31.57 0.9938 29393152 58.43
1.03 46.47 416 362.97 692.31 326 463.18 883.44 28.73 0.9877 19701873 39.16

Proposed HDR codec, 32 bpc RGB (96 bpp)
Drew Point
4864x3232

16 Mpix, 180 MiB

6.99 13.73 410 115.03 438.80 165 285.83 1090.34 33.95 0.9904
14920049

15703298 105.25
2.36 40.65 222 212.44 810.39 119 396.31 1511.82 28.78 0.9679 13533093 90.70
1.12 86.00 165 285.83 1090.34 103 457.88 1746.66 26.37 0.9432 8852251 59.33

Berlin
4864x3232

16 Mpix, 180 MiB

6.28 15.27 353 133.60 509.65 138 341.75 1303.67 39.79 0.9984
15533264

14405587 92.74
2.00 47.90 199 237.00 904.05 109 432.67 1650.52 35.34 0.9956 9994728 64.34
1.05 91.70 163 289.33 1103.72 104 453.47 1729.87 32.41 0.9913 5988145 38.55

Kathmandu
8192x8192

67 Mpix, 768 MiB

6.76 14.20 1678 119.98 457.69 609 330.59 1261.08 37.92 0.9971
65503284

62749313 95.80
1.98 48.58 877 229.56 875.71 475 423.85 1616.84 33.79 0.9930 45423919 69.35
1.08 88.77 728 276.55 1054.95 441 456.52 1741.50 31.40 0.9880 31336736 47.84

Synthetic Scene
8192x6144

50 Mpix, 576 MiB

6.28 15.29 1150 131.30 500.87 457 330.41 1260.39 35.51 0.9975
50304958

44767833 88.99
1.98 48.55 649 232.66 887.52 360 419.43 1600.00 30.86 0.9925 29219272 58.08
1.06 90.89 529 285.44 1088.85 333 453.44 1729.73 28.51 0.9869 18601917 36.98

IJG libjpeg v9e (JPEG), 16 bpc ↓ 12 bpc RGB (48 ↓ 36 bpp)
Berlin (q=20) 2.08 23.08 349 135.13 257.75 199 236.99 452.03 40.64 0.9987

15533264
10833048 69.74

Berlin (q=4) 0.96 49.87 284 166.06 316.74 172 274.19 522.98 37.20 0.9970 5632683 36.26

OpenJPEG (JPEG 2000), 16 bpc RGB (48 bpp)
Berlin (cr=24) 2.00 24.01 10042 4.70 8.96 814 57.94 110.51 43.75 0.9993

15533264
15670555 100.88

Berlin (cr=48) 1.00 48.01 9980 4.73 9.01 540 87.34 166.58 39.50 0.9983 15493831 99.75

Table 2. HDR image codec results on the image subset for target bitrates of bt = 6, 2 and 1 bits per pixel (bpp) in comparison to
popular JPEG and JPEG 2000 implementations

(a) (b)

(c) (d)

Figure 6. Image quality comparison for the Berlin scene, bt = 2
bpp (1:24) (a) original, (b) HDR codec, (c) JPEG, (d) JPEG 2000

(a) (b)

(c) (d)

Figure 7. Image quality comparison for the Berlin scene, bt = 1
bpp (1:48) (a) original, (b) HDR codec, (c) JPEG, (d) JPEG 2000

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-1049-2023 | © Author(s) 2023. CC BY 4.0 License.

 
1055



Quality and compression ratio control based on the mapping
from bitrates to quantization matrices from genetic optimiza-
tion in combination with zone-adaptive image encoding seems
to work as expected. The actually obtained bitrates mostly
stay close to the targets of bt = 6, 2 and 1 bpp. Deviations
concentrate on low reduction ratios for which fewer quantiza-
tion matrix samples have been generated and stored inside the
lookup table. Although the perfection of JPEG 2000 remains
unmatched, the accuracy obtained with the HDR image codec
will enable on-line adjustments of the compression degree to
the capacity of the actual communication downlink indepen-
dently of the upcoming image content to be transmitted.

5. CONCLUSION

This paper has outlined the design and implementation of a
fast transform coder for HDR real-time mapping applications
that runs on affordable off-the-shelf general purpose comput-
ing hardware. The proposed codec covers a wide range of bit
depths to which it can be specifically adapted using genetic op-
timization. The portable proof-of-concept library that encapsu-
lates the underlying highly optimized subalgorithms is capable
of compressing and decompressing 50 megapixel RGB bitmaps
of 16 and even 32 bits per component in less than a second on a
single CPU core. Runtime outperforms optimized reference im-
plementations of the JPEG and JPEG 2000 standards at the cost
of an acceptable level of image quality degradation. Depending
on the image size and intended frame rate, the achieved com-
pression ratios will enable real-time transmission of the com-
pressed data streams over decent radio downlinks and cellular
networks.

REFERENCES

Belyaev, E., Mantel, C., Forchhammer, S., 2017. High bit depth
infrared image compression via low bit depth codecs. Infrared
Remote Sensing and Instrumentation XXV, 10403, SPIE Inter-
national Society for Optics and Photonics.

CCSDS, 2017. Image Data Compression - Recommended Stan-
dard CCSDS 122.0-B-2. Consultative Committee for Space
Data Systems (CCSDS), CCSDS Secretariat, NASA, Washing-
ton, D.C., USA.

Collet, Y., 2016. LZ4 Frame Format Description.
github.com/lz4/lz4/blob/dev/doc/lz4 Frame format.md (23
April 2023).

Collet, Y., 2019. LZ4 Block Format Description.
github.com/lz4/lz4/blob/dev/doc/lz4 Block format.md (23
April 2023).

Dahlman, E., Parkvall, S., Skold, J., 2013. 4G: LTE/LTE-
Advanced for Mobile Broadband. 2nd edn, Academic Press,
Cambridge, MA, USA.

Hein, D., Berger, R., 2018. Terrain Aware Image Clipping for
Real-Time Aerial Mapping. ISPRS Annals of the Photogram-
metry, Remote Sensing and Spatial Information Sciences, IV-1,
61–68.

IJG, 2022. Libjpeg 9e. Independent JPEG Group. ijg.org (27
April 2023).

ISO, 2004. Information technology – Computer graphics and
image processing – Portable Network Graphics (PNG): Func-
tional specification. Standard, International Organization for
Standardization, Geneva, Switzerland.

ISO, 2019. Information technology – JPEG 2000 image coding
system – Part 1: Core coding system. Standard, International
Organization for Standardization, Geneva, Switzerland.

ISO, 2020a. Information technology – High efficiency coding
and media delivery in heterogeneous environments – Part 2:
High efficiency video coding. Standard, International Organi-
zation for Standardization, Geneva, Switzerland.

ISO, 2020b. Information technology – Scalable compression
and coding of continuous-tone still images – Part 1: Core cod-
ing system specification. Standard, International Organization
for Standardization, Geneva, Switzerland.

ITU, 2007. BT.601: Studio encoding parameters of digital tele-
vision for standard 4:3 and wide screen 16:9 aspect ratios.
Standard, International Telecommunication Union, Geneva,
Switzerland.

Kraft, T., Meißner, H., Geßner, M., Gäde, J., Brauchle, J.,
Hein, D., Gonschorek, J., Helmrich, J., Bayer, S., Berger, R.,
2023. Hybride UAV-Systeme: Technologie und Anwendun-
gen. DVW e.V. (ed.), UAV 2023 - Geodaten nach Maß, DVW-
Schriftenreihe 105, Wißner-Verlag, Augsburg, Germany, 61–
73.

Loeffler, C., Ligtenberg, A., Moschytz, G. S., 1989. Practi-
cal fast 1-D DCT algorithms with 11 multiplications. Interna-
tional Conference on Acoustics, Speech, and Signal Processing
(ICASSP), 2, 988–991.

Mantel, C., Forchhammer, S., 2017. Compression of Infrared
Images. Electronic Imaging, 2017, 21-26.

Manthey, K., 2014. A New Real-Time Architecture for Image
Compression onboard Satellites based on CCSDS Image Data
Compression. On-Board Payload Data Compression Workshop,
Venice, Italy.

Melián, J. M., Jiménez, A., Dı́az, M., Morales, A., Horstrand,
P., Guerra, R., López, S., López, J. F., 2021. Real-Time Hy-
perspectral Data Transmission for UAV-Based Acquisition Plat-
forms. Remote Sensing, 13(5).

Mitchell, M., 1998. An Introduction to Genetic Algorithms.
MIT Press, Cambridge, MA, USA.

OpenJPEG Development Team, 2022. OpenJPEG 2.5.0. Im-
age and Signal Processing Group, Université de Louvain.
openjpeg.org (27 April 2023).

Pennebaker, W. B., Mitchell, J. L., 1992. JPEG Still Image Data
Compression Standard. Kluwer Academic Publishers, Norwell,
MA, USA.

Salomon, D., 2006. Data Compression: The Complete Refer-
ence. Springer-Verlag, Berlin/Heidelberg, Germany.

Schmidt, S., 2017. Implementierung von LZ4Fast im Linux-
Kernel. Technical report, Universität Hamburg.

Wang, Z., Bovik, A., 2002. A universal image quality index.
IEEE Signal Processing Letters, 9(3), 81-84.

Ziv, J., Lempel, A., 1977. A universal algorithm for sequential
data compression. IEEE Transactions on Information Theory,
23(3), 337-343.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-1049-2023 | © Author(s) 2023. CC BY 4.0 License.

 
1056




