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ABSTRACT: 

 

For UAV large oblique image geo-localization in the dense buildings area, there are still two main challenges. One is the presence of 

obvious occlusion and large viewpoint differences in UAV images, and the other arises from the fact that reference images, 

particularly orthographic satellite images, lack façade information of man-made structures (such as buildings and roads), which is 

crucial for UAV large oblique images. Most of existing image-based geo-localization methods only address the first challenge, 

neglecting the interference brought by the second challenge, especially for UAV large oblique image geo-localization in the dense 

buildings area. Motivated by both these two challenges, we have proposed a novel method for UAV large oblique image geo-

localization in the dense buildings areas, with the segments direction statistics (SDS) features and their histogram descriptors 

designed. By considering both the local and global features of man-made structures, the proposed method effectively addresses the 

significant information difference encountered in cross-view image matching. We conducted experiments on both the public UAV 

images dataset University-1652 and our own collected dataset of UAV large oblique long focal whiskbroom (LO-LF-W) images. 

Comparative analysis with state-of-the-art (SOTA) methods demonstrated that the proposed method improves the geo-localization 

accuracy by approximately 10%. Furthermore, the proposed method exhibits greater robustness to noise and changing orientation of 

reference images, making it particularly well-suited for dense buildings areas that pose challenges for existing methods. 
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1. INTROSUCTION 

Image-based geo-localization is to determine the approximate 

location of UAV images, which plays a crucial role in various 

UAV-based applications such as border management, building 

monitoring, and urban modelling. (Berton et al., 2022; Zhou et 

al., 2021) However, existing image-based geo-localization 

methods face challenges when applied to UAV large oblique 

images, especially in urban areas with dense buildings. There 

are several reasons for this limitation. Firstly, UAV oblique 

images significantly differ form orthographic images in terms of 

viewpoint, scale and resolution. Secondly, orthophotos lack 

detailed façade information of buildings that is present in UAV 

oblique images. This absence of façade information hampers the 

matching of cross-view images, leading to reduced accuracy in 

UAV image-based geo-localization. 

 

The image-based geo-localization methods for UAV images can 

be categorized into two main groups: methods utilizing 

handcrafted features and methods leveraging deep learning. 

(Yao et al., 2019) Existing handcrafted features are often 

designed for specific types of scenes, making them less 

applicable to unknown or novel scenes. Consequently, there is a 

lack of suitable handcrafted features to address the challenges of 

image-based geo-localization in dense buildings areas. 

Moreover, gathering training datasets specifically for UAV 

large oblique images poses significant challenges. The scarcity 

of such datasets limits the accuracy of existing deep learning 

networks, as they are predominantly trained on a limited 

number of publicly accessible datasets. 

The term “UAV large oblique image” in this paper refers to 

images captured at an oblique angle greater than 32 degrees. 

Specifically, in our own collected Dataset2, the oblique angle of 

UAV images is approximately 60 degrees. 

 

We mainly made the following three contributions in this paper: 

 

1. We have introduced feature filters to address the interference 

segments caused by façade information, which is crucial aspect 

of our method for solving geo-localization in dense buildings 

areas. 

 

2. We have designed SDS features and histogram descriptors as 

the stable features for UAV large oblique images geo-

localization with obvious viewpoint and scale gaps. 

 

3. Instead of soring original reference images, we opted to store 

extracted feature descriptors, which significantly reduces the 

memory and computation costs on the online platform. 

 

2. RELATED WORK 

The airborne POS (Position and Orientation System) has 

emerged as a popular strategy for UAV positioning. However, 

the large oblique angle of UAV images amplifies the influence 

of POS data errors on image-based geo-localization. 

Additionally, the limited load capacity of UAVs often prevents 

them from carrying high-precision POS equipment. Therefore, 

UAV image geo-localization has gained significant attention, 

focusing on image matching between UAV images and 
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orthographic reference images with geo-tags, typically satellite-

view images or Digital Ortho Maps (DOMs). 

 

Early research on image-based geo-localization primarily 

focused on ground-view images collected by mobile platforms, 

and it allowed for image localization in environments where 

GNSS (Global Navigation Satellite System) signals are 

unavailable or unreliable. (Zamir et al., 2014) Compared to 

ground-view images, satellite-view images offer a closer view 

range that closely aligns with UAV images. Moreover, satellite-

view images are less affected by occlusion and moving targets, 

making them valuable reference images for UAV image geo-

localization. (Couturier et al., 2021) 

 

Due to significant differences in flight height, acquisition time 

and shooting pose between UAV and satellite images, existing 

image-based geo-localization methods that rely on handcrafted 

features demonstrate poor performance. As a result, researches 

have directed their efforts towards enhancing these traditional 

features or exploring approaches that combine multiple features 

for effective cross-view image matching. (Goel et al., 2022) 

combined extracted SURF (Speed-Up Robust Features) and 

FLANN (Fast Library for Approximate Nearest Neighbours) 

feature matcher to improve the accuracy of geo-localization. 

(Hasheminasab et al., 2021) improved SIFT (Scale-Invariant 

Feature Transform) with image consistency check to realize the 

UAV image geo-localization with DOM. However, the above 

improvements on existing handcrafted features still retain the 

limitations for images with large viewpoint differences. (Xu et 

al., 2021) designed a novel contour line feature descriptor, 

which can be used for image matching with deformed UAV 

images and reference images. While handcrafted features 

typically demonstrate high geo-localization accuracy and 

efficiency for small oblique images in non-building areas, they 

often encounter limitations when applied to UAV large oblique 

images due to the presence of façade information. Consequently, 

it becomes necessary to develop novel feature patterns, 

descriptors and matching strategies that are specifically tailored 

for UAV large oblique images. 

 

Since deep learning networks are able to obtain more advanced 

features and descriptors, learning-based UAV image geo-

localization has become a popular research topic. (Ding et al., 

2021) transformed the image-based geo-localization into image 

classification task. (Zhang et al., 2020) extracted RCF (Richer 

Convolutional Features) generated feature maps and determined 

the similarity of UAV-view and satellite-view images. 

Meanwhile, to reduce the memory cost, many studies take pre-

training or coding reference images into account. (Bianchi et al., 

2021) encoded Google maps automatically, and compressed 

them into dimensional vectors and key features. Since CNN-

based methods lead to information and features loss with down-

sampling, feature extraction and matching network based on 

Transformer framework has been applied in image-based geo-

localization. (Zhuang et al., 2022) proposed a Transformer-

based network to extract more image context features, and 

matched them by the semantic guidance module (SGM). As 

another kind of strategy, (Tian et al., 2021) transformed UAV 

oblique images into nadir view images closer to satellite images 

by PPT (Perspective Projection Transformation), and used the 

local feature pattern network for image-based geo-localization. 

However, the application of the aforementioned deep learning 

networks is challenging due to the scarcity of datasets 

specifically tailored for UAV oblique image geo-localization. 

As a result, these networks face limitations in terms of 

generalizability and may struggle to perform effectively in 

scenarios beyond the scope of publicly available datasets. 

In summary, for above handcrafted features based and learning-

based geo-localization methods, they obey the development 

trend of low memory and computation costs. (Ma et al., 2021) 

Most existing methods mainly solve the problems caused by 

viewpoint differences. However, in densely built-up areas, the 

façade interference information can also easily lead to mis-

localization, which is rarely considered in existing methods. To 

overcome these difficulties, we designed SDS features and their 

histogram descriptors, for accurate and efficient UAV large 

oblique images geo-localization. 

 

3. METHODOLOGY 

For UAV large oblique images, image-based geo-localization 

faces two primary challenges. Firstly, the large oblique 

viewpoints result in image deformation, leading to poor 

matching results. Extensive research has been conducted to 

address this challenge. Secondly, UAV large oblique images 

contain abundant façade information that is rarely found in 

orthographic reference images. This façade information poses a 

significant interference to the topological consistency of 

corresponding targets, especially in dense buildings areas. To 

overcome these challenges, particularly the latter, the proposed 

UAV large oblique images geo-localization method consists of 

three main components: contour segments extraction, SDS 

feature and descriptor, and image-based geo-localization. 

 

3.1 Contour Segments Extraction 

For extracting contour segments from images, the LSD (Line 

Segment Detection) algorithm is widely employed due to its 

favourable performance in accuracy and efficiency. In the 

proposed method, the target feature segments are the contour 

segments of building top surfaces and roads. As a result, the 

segments extracted by LSD serve as the initial extracted 

specifically vertical features. To enhance accuracy, filters are 

designed to eliminate interference segments, specifically 

vertical lines of buildings, from the initial extraction results. 

 

3.1.1 Segments Length Filter: Due to the influence of noise, 

occlusion and shadow, there are plenty of scattered short 

segments in initial extracted results, which greatly interfere with 

statistics and description of features, and are necessary to be 

screened out. Segments length filter is usually used in this case, 

and it generally uses the average length or the maximum length 

to set the filter threshold. However, the contour segments 

extracted from UAV large oblique images contain both building 

and road contours with large length differences. Therefore, 

existing length filters could wrongly screen out many valuable 

contour segments due to long road contour segments. Since the 

interference segments still account for a mall proportion in the 

initial extracted results, a length filter based on the median 

length is constructed, as shown in formula (1): 

 

i

m

L
( i 1,2, ,n )

L
 =  (1) 

 

where  
iL  = the length of the thi  segment 

 
mL  = the median length of extracted segments 

   = the set filtering threshold 

 

3.1.2 Facades Segments Filter: In the extracted segments of 

UAV large oblique images, the interference features also 

include contour segments of architectural facades, which does 

not exist in the orthophotos. Architectural facades information 

is widely used in the field of buildings reconstruction. However, 
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this façade information on UAV large oblique images leads to 

great interference on image-based geo-localization using 

orthographic reference images. It is necessary to filter out these 

segments of facades in the initial extracted ones before cross-

view image matching. Meanwhile, though low-precision POS 

directly assisted geo-localization shows poor accuracy with 

UAV large oblique images, it still can be used to provide 

constraints for architectural facades segments filter in geo-

localization. The vertical segments are the significant feature of 

façade information, which should satisfy the constraints like 

∆X⁄∆Z→0 and ∆Y⁄∆Z→0. In the proposed method, the ratio 

threshold is set for the façade segments filter, as formula (2): 

 

1

2

X
Z

Y
Z

 


 






 
(2) 

 

where  
1 2,   = the set filtering thresholds 

 X , Y , Z    = the coordinate difference of endpoints 

 

Since the façade constraint belongs to WCS (World Coordinate 

System) while the segments feature is located in IPCS (Image 

Plane Coordinate System), the transformation between these 

two coordinate systems is determined with the collinear 

condition equation, as shown in formula (3): 

 

1 S 1 S 1 S

3 S 3 S 3 S

2 S 2 S 2 S

3 S 3 S 3 S

a ( X X ) b (Y Y ) c ( Z Z )
x f

a ( X X ) b (Y Y ) c ( Z Z )

a ( X X ) b (Y Y ) c ( Z Z )
y f

a ( X X ) b (Y Y ) c ( Z Z )

− + − + −
= − 

− + − + −

− + − + −
= − 

− + − + −

 
(3) 

 

where  X ,Y ,Z  = the ground coordinate of the feature point 

 x,y  = the image coordinate of the same feature point 

 f  = the focal length of images 

 
S S SX ,Y ,Z  = the position parameters of UAV 

 
i i ia ,b ,c  = the orientation parameters of camera 

 

Based on the collinear condition equation and the homonymous 

points obtained by image matching algorithm, which we used 

here are SuperPoint (DeTone et al., 2018) and SuperGlue 

(Sarlin et al., 2020) for key points extraction and matching. The 

WCS can be determined with the IPCS of the homonymous 

points on two images using formula (4): 

 

1 2 3 x

4 5 6 y

l X l Y l Z l 0

l X l Y l Z l 0

+ + − =

+ + − =
 (4) 

 

where  
il  = the coefficient values 

 

 

Figure 1. Contour segments extraction and filter results. (a) 

Original image; (b) Initial segments; (c) Filtered segments. 

 

Due to the poor geometric intersection conditions of UAV-

based large oblique images, the location directly solved are not 

accurate. However, we find that the spatial relationship between 

these locations is still stable, which can be used to filter out the 

façade information. With only the contour segments of building 

top surface retained, the façade segments are screened out. So 

far, based on the initial extraction segments by LSD, the 

designed filters can screen out interference like short segments 

and architectural facades segments. Contour segments of road 

and building top surface are extracted, as shown in Fig. 1. 

 

3.2 SDS Feature and Descriptor 

Due to the substantial disparities in viewpoint, resolution and 

scale between UAV large oblique images and orthographic 

images, the existing features of the same target exhibit 

noticeable differences, resulting in reduced accuracy in geo-

localization. To address these limitations, this paper introduces 

the SDS (Segments Direction Statistics) feature and its 

corresponding descriptor. The SDS feature comprises both a 

local part and a global part, specifically designed to mitigate the 

impact of the impact of these significant differences on UAV 

large oblique image geo-localization. 

 

3.2.1 Local SDS: With large viewpoint and scale gaps, there 

are significant differences in length and direction of extracted 

homonymous segments. It is difficult to apply segments features 

for cross-view image matching directly, but the statistics of 

segments direction shows stable for image translation, rotation 

and other deformations. Therefore, SDS is designed in this 

paper as features to be matched. For the extracted contour 

segments  1 2 nL L L，， ， , the IPCS is established with the lower 

left corner as the origin point. The slope of these segments 

 1 2 nk，k， ，k  and the angle with the horizontal axis 

 1 2 n  ，， ，  are obtained, shown in formula (5): 

 


 − =


= − =


− =
−

1 2

i 1 2

1 2
i

1 2

0, y y 0

, x x 0
2

y y
arctank arctan ,else

x x


 

(5) 

 

where  ( ) ( )1 1 2 2x ,y , x , y  = the endpoints of segments 

 

Due to the large number of segments and uneven distribution 

density, segments in dense building areas are counted 

repeatedly. Therefore, the images are divided by set windows, 

and the major value of 
i  in the window is determined as the 

local SDS feature. The local SDS features are counted as 16 

intervals (through lots of experiments, SDS with 16 intervals 

show the best geo-localization results), and each window 

provides the largest number of statistics. The local SDS features 

are counted to establish its histogram descriptor, as shown in 

formula (6): 

 

( )  +
=  = 

  

j j

L i i

n 1nHist , , ,n 0,1, ,15
16 16

   
(6) 

 

where  
LHist  = the histogram descriptor of local SDS 

 j

i  = the local SDS feature of the thj  image window 
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Since there is a large resolution difference between UAV 

images and orthographic images, the window size should be set 

inversely proportion to the resolution, which is able to ensure 

the scale invariance of the local SDS feature. 

 

3.2.2 Global SDS: With the local SDS feature, it can ensure 

the robustness when there are only simple deformation and 

scale difference between images. But for UAV large oblique 

images, the deformation is more complex. (Wu et al., 2021) 

verified that the angle between feature lines can be used as a 

stable feature for matching the images with large deformation. 

Therefore, it can be applicated to construct the global SDS 

feature in the proposed method. The angle between contour 

segments can be determined with formula (7): 

 

 −
=  

+ 
 

i j

i
i j

k k
arctan

1 k k
  

(7) 

 

where  
i  = the angle between contour segments 

 

Due to the specific segment slopes, there are several cases 

where 
i  needs to be determined separately, as shown in 

formula (8): 

 

 = −

 = =


= 
− =


− =



i j

i j

i

i j

j i

k 1
2

0, nan

arctank , nan
2

arctank , nan
2








，k

k k

k

k

 

(8) 

 

where  nan  = this parameter cannot be obtained correctly 

Similarly, 
i  of contour segments is counted to form the global 

SDS feature, which is described by its histogram descriptor, as 

shown in formula (9): 

 

( )  +
=  = 

  
G i i

n 1nHist , , ,n 0,1, ,15
16 16

   
(9) 

 

where  
GHist  = the histogram descriptor of global SDS 

 

For extracted contour segments, the SDS feature including the 

local and global parts is described with 
LHist  and 

GHist , as 

shown in Fig. 2. 

 

 

Figure 2. Segments direction statistical (SDS) feature and its 

descriptor. 

 

3.3 Image-Based Geo-Localization 

In this paper, UAV large oblique image geo-localization is to 

obtain the location of UAV images through matching them with 

the orthographic reference images. Based on SDS feature and its 

descriptor, the similarity measure is designed as formula (10): 

 

  
=  − +  −   

   
 

2216 16 UAV SATUAV SAT

G GL L
max1 max2 max1 max2L G

L L G G1 1

Hist HistHist Hist
S p p

Hist Hist Hist Hist
 (10) 

 

where  S  = the similarity of cross-view image matching 

 UAV UAV SAT SAT

L G L GHist ,Hist ,Hist ,Hist  = the SDS feature histograms of UAV oblique images and satellite orthographic images 

 

In order to highlight the effective features and suppress the 

interference information, two weight parameters 
Lp  and 

Gp  are 

introduced as similarity measure, as shown in formula (11): 

 

( )=  +
UAV SAT

max1 max2
Hist Histp 0.5

Hist Hist
 (11) 

 

By determining the similarity between UAV images and 

orthographic reference images with formula (9), geo-tags with 

the highest similarity can be obtained as the location of UAV 

images, which means geo-localization has been completed. 

However, with some interference features in UAV large oblique 

images caused by viewpoint and scale gaps, mismatching is 

hard to be avoided in image-based geo-localization. With UAV 

sequence images, the bilateral matching strategy is designed to 

improve the robustness of the proposed method, as formula (12): 

 

( )= + i iS max S(UAV ,SAT ) S( SAT ,UAV )  (12) 

 

where  ( ) ( )
i i

S UAV ,SAT ,S SAT ,UAV  = the matching similarity 

   = the set relaxation factor 

Since ( )S UAV ,SAT  is the main factor and ( )S SAT,UAV  plays a 

fine-tuning role,   can usually be set within 0.5. Similarity 

with bilateral matching can be used as a better geo-localization 

evaluation criterion. 

 

4. EXPERIMENTS AND ANALYSIS 

4.1 Experimental Datasets 

4.1.1 Dataset1: University-1652: University-1652 is a UAV 

oblique image dataset provided by (Zheng et al., 2020), which is 

a popular public dataset for image classification, matching and 

image-based geo-localization. It contains images of 1652 

buildings from 72 universities around the world. Each target 

includes images from three viewpoints: UAV-view, satellite-

view and street-view, as shown in Fig. 3. UAV-based image 

geo-localization experiments mainly use UAV-view and 

satellite-view images in this paper, usually with 54 UAV 

oblique images and a satellite-view image of each target. 

 

4.1.2 Dataset2: UAV LO-LF-W Images: Different from 

UAV-view images in the University-1652, there is a significant 
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gap in the actually collected UAV large oblique image. In order 

to verify the reliability of the proposed method in real 

applications, UAV large oblique long focal whiskbroom images 

(Ye et al., 2022) are collected for geo-localization experiments. 

As shown in Fig. 4, the oblique angle of these images is about 

66°, and the flight height is more than 4 km, with smaller scale 

and lower spatial resolution than Dataset1. Therefore, it is much 

more challenging for image-based geo-localization on this 

actual image dataset. This dataset is collected in Weinan city, 

Shaanxi province, China. Similarly, Google Map products are 

obtained as the orthographic images with geo-tags. 

 

 

Figure 3. Dataset1: University-1652. Images of different views 

including UAV-view, Satellite-view and Street-view. 

 

 

Figure 4. Dataset2: UAV LO-LF-W images and orthophotos. 

 

4.2 Experimental Results 

4.2.1 Evaluation Indicators: In most existing image-based 

geo-localization researches (Patel et al., 2022), Recall @K  is a 

popular accuracy evaluation indicator, which reflects the correct 

geo-localization result occurring in the top K  results of 

matching score. K  is often set to 1, 5 and 10. K 1=  represents 

the ratio of automatically corrected geo-localization images, 

while =K 5 10，  can also reduce the labour cost in the man-

machine interactive UAV-based image geo-localization task. 

Recall @K  can be determined with formula (13): 

 

= N
Recall

Re call @ K 100%
N

 (13) 

 

where  N  = the total number of geo-localization images 

 
NRecall  = the number of correctly geo-located images 

 

The average precision of image retrieval AP is another popular 

evaluation indicator for image-based geo-localization, which 

shows the area under the precision-recall curve, and can be 

determined with formula (14): 

 
N

i i 1

1

i

1AP 0.5
N

1 i 0

TP 1
,i 0

TP FP

−= 

=


=  +
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 +

 （P +P ）

，
P

 
(14) 

 

where  iP  = the precision of the previous thi  images 

 TP  = the number of correctly geo-located images 

 FP  = the number of incorrectly geo-located images 

 

4.2.2 Geo-Localization Accuracy Evaluation on Dataset1: 

Three UAV-view images and the top five satellite-view images 

are selected from Dataset1, to show the geo-localization results 

with the proposed method, as shown in Fig. 5. The images with 

green border are the correctly matched satellite-view image, and 

images with the red border are the mismatched results. 

 

On Dataset1, the geo-localization accuracy of the proposed 

method is evaluated and compared with Zheng’s model (Zheng 

et al., 2020) and Ding’s model (Ding et al., 2021). The 

experiments are carried out with 37854 UAV-view images, and 

the accuracy of geo-localization is counted in Tab. 1. Compared 

with Zheng’s model, the proposed method shows the 

improvement of 16.66%, 8.80% and 16.89% on Recall @1 , 

Recall @5  and AP ; Meanwhile, compared with Ding’s model, 

the proposed method shows the improvement of 8.50%, 3.96%, 

4.01% and 9.20% on Recall @1 , Recall @5 , Recall @10  and 

AP . On Recall @1  and AP indicators, the proposed method 

shows obvious advantages over the other two models. 

 

Method Recall @1  Recall @5  Recall @10  AP  

Zheng’s 

model 
58.49 - 85.23 63.13 

Ding’s 

model 
66.65 84.93 90.02 70.82 

Our 

method 
75.15 88.89 94.03 80.02 

Table 1. Comparison of geo-localization accuracy among our 

method, Zheng’s model and Ding’s model. 

 

To achieve automatic geo-localization of UAV images, 

Recall @1  needs to be close to 100%. However, due to the 

large differences between oblique images and orthographic 

images, the existing methods, including the proposed method, 

are still difficult to reach this ideal goal. Recall @5  and 

Recall @10  of the proposed method reach about 90% and 95%, 

which means that the vast majority of correctly geo-located 

results will occur in the top 10 or even the top 5 images in the 

matching score. For the man-machine interactive UAV image 

geo-localization, compared with selecting among a large 

number of UAV images, the efficiency and accuracy of geo-

localization can be greatly improved with the proposed method. 

 

4.2.3 Geo-Localization Accuracy Evaluation on Dataset2: 

Similarly, three UAV LO-LF-W images and their top five 

orthographic images are selected from Dataset2, to show the 

geo-localization results with the proposed method, as shown in 

Fig. 6. With the proposed method, the geo-localization accuracy 

of 150 UAV image blocks in the UAV LO-LF-W images is 
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evaluated, and the results are shown in Tab. 2. Due to the larger 

viewpoint gap of images on Dataset2, the scene is more 

complex and the resolution is greatly different from that of 

orthographic images. The accuracy of geo-localization on this 

dataset is significantly lower than that of Dataset1, especially 

with an obvious decrease of about 20% on Recall @1 . However, 

most methods (including Zheng’s model and Ding’s model) that 

perform well on public UAV large oblique images datasets even 

fail on Dataset2. Therefore, on the challenging Dataset2, the 

geo-localization accuracy of the proposed method is relatively 

high. Moreover, the Recall @10  of the proposed method on 

Dataset2 can still reach 85%. Compared with the existing UAV-

based image geo-localization methods used in engineering such 

as SIFT, ASIFT and HAPCG, the accuracy and efficiency of the 

proposed method have been improved. 

 

Dataset Recall @1  Recall @5  Recall @10  AP  

Dataset1 75.15 88.89 94.03 80.02 

Dataset2 52.67 74.67 86.00 69.11 

Table 2. Comparison of geo-localization accuracy of our 

method on Dataset1 and Dataset2. 

 

 

Figure 5. Top 5 matched satellite-view images of UAV images (1619th, 0839th and 1605th in Dataset1). 

 

 

Figure 6. Top 5 matched orthographic images of UAV images (18th, 46th and 119th in Dataset2). 
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4.3 Influencing Factors Analysis 

4.3.1 Orientation and noise of nonstandard reference 

images: The two experimental datasets in this paper use the 

satellite-view images provided by Google Maps, which possess 

consistent orientation and quality. However, real-world 

scenarios often involve nonstandard reference images that 

exhibit varying orientations and significant noise. To assess the 

geo-localization accuracy of the proposed method under such 

conditions, the reference images in the two datasets have been 

rotated and subjected to noise augmentation. These modified 

reference images, featuring nonstandard orientations and 

Gaussian noise, are then used as input for the original dataset. 

Subsequently, the geo-localization accuracy of the proposed 

method has been evaluated as shown in Fig. 7. 

 

 

Figure 7. Geo-localization accuracy on original and augmented 

datasets. 

 

The results indicate that the geo-localization accuracy of the 

proposed method experiences minimal fluctuations, about 1%, 

when reference images are subjected to rotation and Gaussian 

noise. Interestingly, the accuracy demonstrates both slight 

improvements and declines. This highlights the robustness of 

the proposed method in handling variations in reference image 

orientation and noise. Consequently, the method exhibits 

favourable suitability for practical applications involving multi-

source reference images with diverse orientations and image 

qualities, facilitating UAV large oblique image geo-localization. 

 

4.3.2 Artificial feature abundance: With designed SDS 

feature constructed by the contour segments of buildings and 

roads, the abundance of these artificial features should be one of 

the important influencing factors. Since the UAV images on 

Dataset1 are taken around single of a few buildings, the 

artificial feature abundance is much higher. However, for 

images of Dataset2, the artificial feature abundance is lower. 

Therefore, it is assumed that the artificial feature abundance is 

the main reason for lower accuracy of geo-localization on 

Dataset2. The artificial feature abundance is described by the 

proportion of artificial feature pixels on UAV images, 

determined with formula (15): 

 

a
PN

abd 100%
PN

=   (15) 

 

where  abd  = the artificial feature abundance of images 

 
aPN ,PN  = the number of artificial feature pixels and 

the whole image pixels 

The artificial constructions on the UAV oblique image are 

segmented, and the number of pixels it contains is counted. 

According to the artificial feature abundance, the UAV images 

of Dataset2 can be divided into four intervals: {0~25%, 

25%~50%, 50%~75%, 75%~1}. The average and standard 

deviation of the geo-localization accuracy in different features 

abundance intervals have been obtained respectively, as shown 

in Fig. 8. When the artificial feature abundance belongs to 

0~25%, the geo-localization accuracy of the image is below 

10%, that is, it is difficult for the proposed method to obtain 

accurate geo-localization results of UAV large oblique images 

with rare buildings areas. However, when the feature abundance 

is higher than 50%, the geo-localization accuracy of the 

proposed method is higher than that of the entire Dataset2. 

Moreover, when the feature abundance reaches 75%, the geo-

localization accuracy evaluation index Recall @10  can reach 

90%, indicating that when the feature abundance is high enough, 

the proposed method can well meet the geo-localization 

requirements of challenging UAV LO-LF-W images. It shows 

that the abundance of artificial features is the key influencing 

factor of the proposed geo-localization method. 

 

 

Figure 8. Geo-localization accuracy on images with different 

artificial feature abundance (abd). 

 

In summary, for UAV large oblique images, the proposed 

method shows high accuracy and robustness, especially in the 

challenging scenes with dense buildings. On the public dataset 

University-1652, the geo-localization accuracy of the proposed 

method is much higher than existing methods; On the actually 

collected UAV LO-LF-W images, the proposed method can still 

obtain reliable geo-localization results, while many other 

methods that perform well on the public dataset are hardly to 

solve the image-based geo-localization on these actually 

collected images. Moreover, for reference satellite-view images 

with different orientation and noise, geo-localization results 

obtained by the proposed method are very stable, which proves 

that it can use challenging multi-source nonstandard reference 

images to realize UAV large oblique images geo-localization. 

And the accuracy of geo-localization depends on the abundance 

of artificial features. 

 

5. CONCLUSIONS 

Accurately geo-locating UAV large oblique images remains an 

immensely challenging task due to the substantial viewpoint 

differences and the presence of considerable façade interference 

information, particularly in dense buildings areas. To address 

these challenges, this paper presents a novel method for UAV 
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large oblique image geo-localization. The proposed method 

incorporates feature filters to eliminate interference features, 

introduces SDS feature patterns for extraction and description, 

and employs a bilateral similarity measure strategy for matching 

and geo-localization. The proposed method fully addresses the 

robustness of the designed features in handling image matching 

across varying viewpoints and scales while considering both 

local and global features. In addition to focusing on the 

significant viewpoint differences addressed by existing methods, 

the proposed method also accounts for the interference caused 

by architectural façade information, resulting in improved geo-

localization accuracy. Experimental results show that the 

proposed method can better serve the geo-localization for UAV 

large oblique images, especially in the dense building areas. 

 

Meanwhile, since the proposed method is based on the segment 

features of artificial structures, it is hard to obtain accurate geo-

localization results for natural landforms or areas with sparse 

buildings and roads. Therefore, we will consider to expand the 

application scenes into scenes with more complex or sparse 

features as our future work. 
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