
CHATGPT FOR POINT CLOUD 3D OBJECT PROCESSING

J. Baladoa,*, G. Nguyenb

aGeoTECH, CINTECX, Universidade de Vigo, 36310 Vigo, Spain (jbalado@uvigo.gal)

bFaculty of Informatics and Information Technologies, Slovak University of Technology, Ilkovičova 2, Bratislava 84216, Slovakia

(giang.nguyen@stuba.sk)

KEY WORDS: Language Models, Artificial Intelligence, LiDAR, Natural Language Processing, geometric features, eigenvalues.

ABSTRACT:

Large-scale pretrained language models have been a revolution in human-machine communication. Recently, such language models

also generate code for required tasks. The objective of this work is to evaluate the functionality of the codes generated by ChatGPT

(version 15-Dec-2022) for point cloud processing. The programming language selected for the test was MATLAB due to the extensive

use in prototyping and toolboxes for Computer Vision and LiDAR. Using the Question-Answer system, the ChatGPT was asked for

codes to calculate surface normals, curvature, eigenvalues, and eigenfeatures, with specific parameters and outputs. The provided codes

were compiled and executed. The results show that ChatGPT can generate functional code for very specific and short applications,

however, it is not capable of generating large code involving the correct use of loops, indexes, or equations.

1. INTRODUCTION

Point cloud processing is a crucial technology for 3D object

detection and mapping. A point cloud is a set of points in 3D

space that represent the surface of an object or scene. These

points are usually acquired using 3D sensors such as lidar or

stereo cameras, and they provide a detailed representation of the

geometry and structure of the object or scene.

Point cloud processing refers to the algorithms and techniques

used to analyse, manipulate, and extract information from point

clouds. This includes tasks such as segmentation, registration,

feature extraction, and classification. These techniques are

essential for 3D object detection and mapping, as they allow us

to identify and locate objects in a scene, and to create accurate

and detailed 3D maps of the environment.

Point cloud processing has many applications in fields such as

robotics, autonomous vehicles, augmented and virtual reality,

and computer vision. It allows us to accurately perceive and

understand the 3D world around us, and to interact with it in a

more natural and intuitive way. It also has important

implications for fields such as security, surveillance, and

environmental monitoring, where the ability to detect and track

objects in 3D is crucial.

Overall, point cloud processing is a key technology for 3D object

detection and mapping, and it has numerous applications and

implications in a variety of fields.

The above introduction was ChatGPT's response to the question

Can you write an introduction on the relevance of point cloud

processing for 3D object detection and mapping? Although a bit

repetitive emphasizing the importance of point clouds, the

introduction was automatically structured on a correct definition

of point clouds, the main tasks that compose processing (Che et

al., 2019; Wang and Kim, 2019; Xia et al., 2020), and their

applications (Li et al., 2021; Liu et al., 2019; Xie et al., 2020).

* Corresponding author

ChatGPT is, in its own words, a large artificial neural network

that has been trained on a vast amount of text data to generate

human-like responses to questions and prompts. Its primary

function is to assist with a variety of tasks by providing

information and answering questions to the best of its ability

(answer to the question In technical words, who are you?).

Unlike other chatbots, ChatGPT is based on the GPT-3 AI

language model, developed by OpenAI, and is not only able to

provide more human-like responses to a conversation, but can

also generate text and code in the desired programming language.

The objective of this work is to evaluate the use of GPT chat to

obtain the codes for point cloud processing in MATLAB, such as

normal estimation or geometric feature extraction. This way it is

evaluated if the proposed codes are functional and to what extent

they can be useful to people with different degrees of knowledge

in point cloud processing.

The rest of this paper is organized as follows. In Section 2, the

state of the art on Artificial Intelligence chats is collected. In

Section 3, ChatGPT and the methodology of questions-answers

are explained. Section 4 presents, analyses and discuss the results

of scripts prosed by the chat. Section 5 concludes the work.

2. STATE OF THE ART

LARGE-SCALE PRETRAINED LANGUAGE MODELS

The understanding and the treatment of the ubiquitous textual

data is a major research challenge when the tremendous amount

of such data produced by our society has exploded over the recent

years. Natural Language Processing (NLP) aims to provide a set

of techniques able to explain a wide variety of natural language

tasks in the meaning extraction process to be successful.

Recurrent Neural Networks (RNN) were massively used to solve

NLP problems, especially with the success of Long Short-Term

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-107-2023 | © Author(s) 2023. CC BY 4.0 License.

107

mailto:jbalado@uvigo.gal
mailto:giang.nguyen@stuba.sk

Memory (LSTM) and Gated Recurrent Unit (GRU) architectures

in preventing the vanishing gradient issue in training. However,

those two models are also not perfect because of the recurrent

structure made them hard to parallelize and the treatment of very

long clauses is also problematic (Gillioz et al., 2020).

To counter those limiting constraints, the Transformer

architecture was introduced with the massively use of

unsupervised pre-training principle (Gillioz et al., 2020). The

pre-training principle works in two steps: 1) the pre-training

phase, which computes a general representation from raw data in

an unsupervised fashion; 2) the use of finetuning techniques to

adapt to a concrete task. The original Transformer used an

encoder–decoder architecture like earlier sequence-to-sequence

models with adoption of the self-attention mechanism,

differentially weighting the significance of each part of the input

data. The recent significant increase in the performance of NLP

models is due to the use of word embeddings and the attention

mechanism aims to catch the long-term dependencies of

sentences. Mathematically, Transformer takes a sequence X=(x1,

…, xN) and produce a latent representation Z=(z1, …, zN), then the

output sequence YM=(y1, …, yM) is produced one element at a

time. This property is called the autoregressive property of the

model, where a model takes the previous outputs to produce the

next outcome.

After that, various models coupled with the Transformer re using

this property to produce accurate Language Model languages like

ELMo (by Allen Institute for AI), BERT (Bidirectional Encoder

Representations from Transformers), GPT (Generative Pre-

trained Transformer), and GPT-2 (by OpenAI). Due to the high

performance of BERT and the need of larger training datasets,

there are a lot of post-BERT models (like RoBERTa,

DistilBERT, AIBERT) aiming to tweaked it to specific needs

such as simpler architecture, smaller models, reducing number of

layers without a loss of performance.

In the context with GPT, it is suitable to mention that OpenAI

was founded as a non-profit research organisation in 2015 with

the mission is to ensure that artificial general intelligence (AGI)

benefits all of humanity. In 2019, OpenAI had restructured as a

profit company and in 2020, despite various own previous

concerns about malicious applications, it announced GPT-3, a

new language model more than 100 times larger than GPT-2,

with 175B parameters and 96 layers trained on a corpus of 499B

tokens of web content (Dale, 2021). The model itself was not

made available, but the access was provided via an API giving

the model’s creators more control over its use (e.g., waiting list,

high price). The typical use of the API is a prompt with an initial

text to get the model going, along with optional parameter setting

(Floridi and Chiriatti, 2020).

Several produced outputs are truly breath-taking as candidates for

being human-authored text. The technology has also been lauded

for its results in a wide range of other areas such as capability in

generating poetry, playing chess, doing arithmetic, and writing

programming code based on requirements expressed in natural

language. The technology made incredible, amazing, and

challenging impression. It is also threatening, which can be

expressed shortly as “even with 175B parameters and 450

gigabytes of input data, it’s not a reliable interpreter of the

world” (Gary Marcus and Ernest Davis, MIT Technology

Review). After a hype and the conclusion (not reliable narrator),

this is not to say that GPT-3 is devoid of practical application;

meaning some use cases are appropriate and some are not (Zhang

and Li, 2021) and unreliable doesn’t mean useless. As the GPT-

3 model presents security and uncontrollability problems,

including false content and biased information during content

generation, its application value is primarily reflected in

intelligent auxiliary tasks, and it cannot directly interface with the

end-users.

3. METHODOLOGY

3.1 ChatGPT

The GPT-3 model offers many powerful functions that can cope

with many practical application scenarios, such as question

answering, reading comprehension, summary generation,

automatic chat, search matching, code generation, and article

generation (Zhang and Li, 2021). Recently, ChatGPT is fine-

tuned from a model in the GPT-3.5 series (Yao Fu et al., 2022),

which finished training in early 2022 on an Azure AI

supercomputing infrastructure. It is a sibling model to (OpenAI)

InstructGPT model, which is trained to follow an instruction in a

prompt (Figure 1) and provide a detailed response under the

Reinforcement Learning from Human Feedback (RLHF)

approach (OpenAI, 2022).

Despite its powerful modelling and description capabilities, there

are significant issues and limitations. Such GPT-a-like model

does not understand writing well and sometimes generates

uncontrollable content. Secondly, training such models requires

a large amount of computing power, data, and capital

investments. The most important thing is although ChatGPT is

trained with human-in-loop, it is just more truthful and less toxic.

Figure 1. ChatGPT user interface.

3.2 Question and Answer process

The way to obtain information from ChatGPT is through a

process of queries and responses (Figure 2). The first question is

the generation of a code for the execution of the desired

operation. Then, the answer is evaluated to see if it matches the

desired method. If it is observed that the code has no relation with

the desired one, or if no code is generated, the Chat is instructed

to try again, either by making variations in the question to focus

the result or not. If the code looks like the desired one, it is tested

in MATLAB with a point cloud. If the code generates an error, it

is indicated to the chat in question mode. When a code that

generates the desired output is obtained, modifications in

parameters or outputs are applied.

In order to evaluate code generation, some basic point cloud

processing methods to extract feature information are selected to

be generated automatically by ChatGPT. These features are the

basis of point cloud processing for object segmentation and

identification. Given a 3D point cloud X = {p1, p2, · · · , pN } ∈
RN×3, with for each local sample Pi = {pi,j |pi,j ∈ KNN(pi)},

constructed by the k nearest neighbour (kNN) search (Zhou et al.,

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-107-2023 | © Author(s) 2023. CC BY 4.0 License.

108

2021). The covariance matrix of the local neighbourhood can be

used to estimate local surface properties (Pauly et al., 2002). The

covariance matrix for a point p is given in equation (1) where �̅�

is the centroid of the neighbourhood.

Figure 2. Workflow of questions (Q.) and answers (A.) to

generate functional code.

𝐶 = [

𝑝𝑖1
− �̅�
…

𝑝𝑖𝑘
− �̅�

]

𝑇

· [

𝑝𝑖1
− �̅�
…

𝑝𝑖𝑘
− �̅�

] , 𝑖𝑗 ∈ 𝑁𝑝 (1)

Consider the eigenvector problem in equation (2) and since the

covariance matrix C is symmetric and positive semi-definite, all

eigenvalues 𝜆 are real-valued and the eigenvectors v form an

orthogonal frame, corresponding to the principal components of

the point set (Jolliffe, 2002). The 𝜆 measure the variation of the

pi along the direction of the corresponding eigenvectors.

𝐶 · 𝑣𝑙 = 𝜆𝑙 · 𝑣𝑙 , 𝑙 ∈ {1,2,3} (2)

Therefore, being 𝜆1 ≥ 𝜆2 ≥ 𝜆3 ≥ 0 with a plane 𝑇(𝑥): (𝑥 − �̅�) ·
𝑣3 = 0. The 𝑣3 approximates the surface normal np at pi and 𝑣1

and 𝑣2 are tangent vectors of plane T at pi.

The curvature describes the surface variation along surface

normal in equation (3). Alternatively, it can also be calculated as

the variance of the normal, as shown in equation (4).

𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒_𝜆 =
𝜆3

𝜆𝑙 + 𝜆2 + 𝜆3
 (3)

𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒_𝑛 =
∑ (𝑛𝑖𝑗

− �̅�)
2

𝑘
1

𝑘

(4)

Other eigenfeatures describe de dimensionality of point spatially

distribution (Weinmann et al., 2015), such as linearity in equation

(5), planarity equation (6) and scattering equation (7).

linearity =
𝜆1 − 𝜆2

𝜆𝑙
 (5)

planarity =
𝜆2 − 𝜆3

𝜆𝑙
 (6)

scattering =
𝜆3

𝜆𝑙
 (7)

4. RESULTS AND ANALYSIS

The communication was performed on ChatGPT Dec 15 Version.

The code generated were tested with the Stanford bunny point

cloud (50 thousand points) in ply format in MATLAB 2022b

version.

4.1 Surface normal estimation

The question asked was: in MATLAB, generate a code to

calculate the normals of a point cloud. ChatGPT's response was:

To calculate the normals of a point cloud in MATLAB, you can

use the function pcnormals, which is part of the Computer Vision

System Toolbox. Here's an example of how you can use this

function:

Load the point cloud data into MATLAB. For example:

ptCloud = pcread('pointCloud.ply');

Use the pcnormals function to calculate the normals of the point

cloud. You can specify the number of nearest neighbors to use

when calculating the normals, as well as the search radius. For

example:

normals = pcnormals(ptCloud, 10);

The output of the pcnormals function is a matrix with the same

number of rows as the input point cloud, and three columns for

the x, y, and z components of the normal vector at each point. You

can access the normals for a particular point by indexing into the

matrix. For example:

normal = normals(100,:); % get the normal at
point 100

If you want to visualize the normals, you can use the pcshow

function to display the point cloud, and then use the quiver3

function to plot the normals as arrows. For example:

pcshow(ptCloud);
hold on
quiver3(ptCloud.Location(:,1),
ptCloud.Location(:,2), ptCloud.Location(:,3),
normals(:,1), normals(:,2), normals(:,3));
hold off

I hope this helps! Let me know if you have any questions or need

further assistance.

Based on the authors' prior knowledge of the programming

language, this response was perfectly suited to the desired

objective. In addition, ChatGPT provided an explanation of how

the code works almost line by line, as well as references to the

necessary library, an example output of a point and an output

image (Figure 3).

In view of the success obtained, the next question was towards

the variation of the number of nearest neighbours used for the

calculation of normals: in MATLAB, generate a code to calculate

the normals of a point cloud based on 25 neighbours. The answer

given was a brief explanation of the code (which will not be

reproduced below to save space), the Code 1, and an alternative

Code 2.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-107-2023 | © Author(s) 2023. CC BY 4.0 License.

109

Figure 3. Image generated from Matlab code provided by

ChatGPT of normal estimation and zoom in.

Code 1: Normal estimation k neighbours

% Load the point cloud
pc = pcread('pointCloud.ply');

% Extract the xyz coordinates of the point
cloud
xyz = pc.Location;

% Set the number of neighbours to use for
normal estimation
k = 25;

% Calculate the normals of the point cloud
normals = pcnormals(pc, k);

Code 2: Normal estimation (alternative)

% Load the point cloud
pc = pcread('pointCloud.ply');

% Extract the xyz coordinates of the point
cloud
xyz = pc.Location;

% Set the number of neighbours to use for
plane fitting
k = 25;

% Fit a plane to the points in the
neighbourhood of each point
[model, inlierIndices, outlierIndices] =
pcfitplane(pc, k);

% Extract the normal vector of the fitted
plane
normals = model.Normal;

In this case both codes have completely different outputs. Code

1 generated the surface normals point by point, while Code 2

obtained the normal to the plane that fit the entire point cloud.

Both codes were fully functional and were commented line by

line.

Since these codes produced no output, ChatGPT was asked for a

specific output format: in MATLAB, generate a code to calculate

the normals of a point cloud based on 25 neighbours and save

xyz points and normals to disk on a txt file. The answer given was

the following, in conjunction with Code 3.

To calculate the normals of a point cloud and save the xyz points

and normals to a text file in MATLAB, you can use the pcnormals

function as described in the previous answer and then use the

dlmwrite function to write the xyz points and normals to a text

file. Here is an example of how to do this:

Code 3: Normal estimation exporting data

% Load the point cloud
pc = pcread('pointCloud.ply');

% Extract the xyz coordinates of the point
cloud
xyz = pc.Location;

% Set the number of neighbours to use for
normal estimation
k = 25;

% Calculate the normals of the point cloud
normals = pcnormals(pc, k);

% Create a matrix with the xyz points and
normals
data = [xyz normals];

% Write the data to a text file
dlmwrite('pointCloudData.txt', data,
'delimiter', '\t');

Figure 4. Point cloud coloured based on normals and imported

in Cloud Compare.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-107-2023 | © Author(s) 2023. CC BY 4.0 License.

110

This result can be considered a success. ChatGPT made

references to the previous answer so as not to repeat the

explanation, it added the explanation of the new function, and it

generated a code that exported the point cloud on a txt file with a

correct separation between columns. Bunny point cloud with

estimated normal is visible in Figure 4).

4.2 Curvature

For the curvature calculation, the following question was asked:

in MATLAB, generate a code to calculate the point curvature of

a point cloud based on 25 neighbours. Unfortunately, the chat

response (Code 4) referred to adding a curvature output to the

calculation of normal, which was not correct, since this function

does not support multiple outputs.

Code 4: Curvature (Attempt 1)

% Load the point cloud
pc = pcread('pointCloud.ply');

% Extract the xyz coordinates of the point
cloud
xyz = pc.Location;

% Set the number of neighbours to use for
normal estimation
k = 25;

% Calculate the normals and curvature of the
point cloud
[normals, curvature] = pcnormals(pc, k);

When it was indicated that ‘pcnormals’ function did not support

two outputs (Error using pcnormals. Too many output

arguments), ChatGPT proposed an alternative fitting the point

cloud to a geometric model (Code 5):

I apologize for the error in the previous answer. It looks like the

pcnormals function does not return the curvature of the point

cloud when called with two output arguments.

Code 5: Curvature (Attempt 2)

% Load the point cloud
pc = pcread('pointCloud.ply');

% Extract the xyz coordinates of the point
cloud
xyz = pc.Location;

% Set the number of neighbors to use for plane
fitting
k = 25;

% Fit a plane to the points in the
neighbourhood of each point
[model, inlierIndices, outlierIndices] =
pcfitplane(pc, k);

% Extract the curvature of the fitted plane
curvature = model.Curvature;

However, that model does not support curvature field. By a new

attempt, ChatGPT referenced a function that does not exist in

MATLAB: The surface normals can be calculated using the

pcnormals function from the Computer Vision System Toolbox,

and the curvature can be estimated using the pcurvature function.

And by indicating that the ‘pccurvature’ function does not exist,

ChatGPT re-proposed Code 5.

Afterwards, an attempt was made to guide the GPT Chat by

providing more information on how to calculate the curvature: in

MATLAB, generate a code to calculate the normals of a point

cloud based on 25 neighbours. Then calculate the curvature

based on variance of normal. In the proposed response (Code 6),

it can be seen how the indications were followed, however, the

result was not as expected.

Code 6: Curvature (Attempt 3)

ptCloud = pcread('pointCloud.ply');
normals = pcnormals(ptCloud, 25);
variance = var(normals);

Finally, the authors decided to ask the ChatGPT what information

it had on the point cloud curvature: which is the point cloud

curvature? The following response was given:

In the context of point clouds, curvature refers to the degree of

curvature or bend in a surface at a particular point. In other

words, it is a measure of how much a surface deviates from being

flat at a given point. In a point cloud, curvature can be calculated

by analysing the shape and orientation of the points in the cloud

and how they vary in relation to one another. There are several

different methods for calculating curvature in a point cloud,

including principal curvature, mean curvature, and Gaussian

curvature. The specific method used may depend on the intended

application and the type of data being analysed.

Based on the information provided (which was correct) and as

there is no reference to the variance of surface normal to calculate

the curvature, it was decided to ask for a code based on one of

the methods mentioned: in MATLAB, generate a code to

calculate point cloud Gaussian curvature. However, the answer

(Code 7) again referred to a function that does not exist in

MATLAB and the authors were decided to end this test without

obtaining a correct code to calculate the curvature in point clouds.

Code 7: Curvature (Attempt 4)

% Load the point cloud data
ptCloud = pcread('pointCloud.ply');

% Fit a surface to the point cloud using
fitgmdist
gmModel = fitgmdist(ptCloud.Location, 2);

% Calculate the Gaussian curvature of the
surface at each point
K = gausscurvature(gmModel);

4.3 Eigenvalues

For the eigenvalues calculation, the following question was

asked: in MATLAB, generate a code to calculate the eigenvalues

of a point cloud. The answer referred to the Statistics and

Machine Learning Toolbox with Code 8. The first thing to note

was the change of input to a mat file. This was no problem,

assuming that the point cloud is stored in a mat file. Next,

Principal Component Analysis (PCA) was calculated, and the

eigenvalues were indicated as the latent output. The code

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-107-2023 | © Author(s) 2023. CC BY 4.0 License.

111

provided the eigenvalues of the point cloud understanding that

eigenvalues are obtained from PCA and a correct output of the

function PCA, but the code did not give the eigenvalues point by

point.

Code 8: Eigenvalues (Attempt 1)

% Load the point cloud data
X = load('pointCloudData.mat');

% Perform PCA on the point cloud data
[coeff,score,latent] = pca(X);

% The latent variable contains the eigenvalues
of the point cloud data
eigenvalues = latent;

The following question tried to specify the output format a little

more: in MATLAB, generate a code to calculate the eigenvalues

based on 25 nearest neighbours of a point cloud. The answer is

shown in Code 9. In this case, the code input is again a ply file.

The kNN was calculated correctly, doing a point cloud

neighbourhood search with itself. It is remarkable to mention that

the code used a k = 26 neighbours correctly, since in a

neighbourhood search of a point cloud with itself, the nearest

neighbour of the point is the same point. Also, in the next line,

the code corrected this fact by deleting the first column.

However, the output of PCA was not correct, ignoring the correct

information provided in Code 8. The code provided an output in

the form of a bar chart (Figure 5).

Code 9: Eigenvalues (Attempt 2)

% Load the point cloud data
pc = pcread('pointCloud.ply');

% Find the indices of the 25 nearest neighbors
of each point
[nn, ~] = knnsearch(pc.Location, pc.Location,
'K', 26);
nn = nn(:, 2:end); % Remove the point itself
from the list of neighbors

% Perform PCA on the matrix of nearest
neighbor indices
[~, S, ~] = pca(nn);

% Visualize the eigenvalues
bar(diag(S))
xlabel('Principal Component')
ylabel('Eigenvalue')

Subsequent attempts did not give functional codes either. The

chat proposed invented functions (pceigenvalues, pccovariance,

pcdistancematrix) as well as examples that generate their own

point cloud and used the eig function (Code 10). This code again

produces an output of eigenvalues of the whole point cloud, so

this experiment was terminated without success. However, it is

interesting to observe how ChatGPT rendered correct

assumptions such as PCA-dependent calculation of eigenvalues

or covariance, and functions that calculate eigenvalues.

Figure 5. Output of the code for calculating eigenvalues

(Attempt 2).

Code 10: Eigenvalues (Attempt 3)

% Define the data points of the point cloud as
a matrix, where each row represents a single
point and each column represents a dimension
of the data
points = [1 2 3; 4 5 6; 7 8 9; 10 11 12];

% Calculate the covariance matrix of the
points
covariance = cov(points);

% Calculate the eigenvalues and eigenvectors
of the covariance matrix
[eigenvectors, eigenvalues] = eig(covariance);

% The eigenvalues are stored in the diagonal
elements of the eigenvalues matrix
eigenvalues = diag(eigenvalues);

% Sort the eigenvalues in descending order
[eigenvalues, sortIndices] = sort(eigenvalues,
'descend');

% Reorder the eigenvectors in the same order
as the eigenvalues
eigenvectors = eigenvectors(:, sortIndices);

4.4 Eigenfeatures

Since these variables are dependent on the eigenvalues, for the

calculation of linearity, planarity and scattering it was decided to

propose a more complex question: in MATLAB, generate a code

to calculate point linearity, planarity and scatter in point clouds

following the paper "Semantic point cloud interpretation based

on optimal neighbourhoods, relevant features and efficient

classifiers" of Martin Weinmann. The first response from the

ChatGPT was:

I'm sorry, but I am not able to generate code based on specific

research papers or publications. I am a large language model

trained by OpenAI and do not have access to specific research

papers or publications. My training is based on a vast corpus of

text data, and I am not able to browse the internet or access

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-107-2023 | © Author(s) 2023. CC BY 4.0 License.

112

specific research papers or publications. I can only provide

general information and advice based on my training.

However, a new attempt generated code (11) with the answer:

Here is a possible solution in MATLAB that follows the approach

described in the paper "Semantic point cloud interpretation

based on optimal neighbourhoods, relevant features and efficient

classifiers" by Martin Weinmann.

Code 11: Eigenfeatures (Attempt 1)

% load the point cloud
pc = pcread('pointCloud.ply');

% initialize arrays for storing the linearity,
planarity, and scatter of each point
linearity = zeros(pc.Count, 1);
planarity = zeros(pc.Count, 1);
scatter = zeros(pc.Count, 1);

% set the number of nearest neighbors to use
for normal estimation
numNeighbors = 20;

% calculate the surface normals of the points
using the "pcnormals" function
[normals, ~] =
pcnormals(pointCloud(pc.Location),
numNeighbors);

% loop through each point in the point cloud
for i = 1:pc.Count
 % extract the x, y, and z coordinates of
the point and its neighbors
 x = pc.Location(i,1);
 y = pc.Location(i,2);
 z = pc.Location(i,3);

 % extract the surface normal of the point
 normal = normals(i,:);

 % calculate the covariance matrix of the
point and its neighbors
 covariance = [x y z] * [x y z]';

 % calculate the eigenvalues and
eigenvectors of the covariance matrix
 [eigenvectors, eigenvalues] =
eig(covariance);

 % store the linearity, planarity, and
scatter of the point
 linearity(i) = normal * eigenvectors(:,1);
 planarity(i) = normal * eigenvectors(:,2);
 scatter(i) = normal * eigenvectors(:,3);
end

% display the linearity, planarity, and
scatter of the points
disp(linearity);
disp(planarity);
disp(scatter);

Code 11 did not compile. The calculation of normals, covariances

and eigenfeatures were not well implemented. Although it was

the first time that ChatGPT proposed a loop to calculate the

features point by point. In new attempts, Chat GPT proposed

again the non-existent function pceigenvalues. Then it proposed

the calculation of features as observed in Code 12. In both Code

(11 and 12), ChatGPT was not able to calculate the eigenvalues

well, which was expected based on the results of Section 4.3. But

the Chat did not calculate the eigenfeatures correctly from the

eigenvalues either, although he did establish some (wrong)

relation between each eigenfeature and the eigenvalue, according

Equation 5 to 7.

Code 12: Eigenfeatures (Attempt 2)

% Load the point cloud
pc = pcread('pointCloud.ply');

% Extract the xyz coordinates of the point
cloud
xyz = pc.Location;

% Set the number of neighbors to use for
eigenvalue calculation
k = 25;

% Calculate the eigenvalues of the point cloud
[eigenvalues, eigenvectors] =
pceigenvalues(pc, k);

% Calculate the linearity, planarity, and
scatter of the point cloud
linearity = eigenvalues(:,1) ./
eigenvalues(:,2);
planarity = eigenvalues(:,2) ./
eigenvalues(:,3);
scatter = eigenvalues(:,1) ./
eigenvalues(:,3);

5. DISCUSSION AND CONCLUSION

In this work the generation of ChatGPT codes for point cloud

processing was evaluated. The codes were generated by the Chat

automatically as answers to questions where the process to be

performed was indicated (normal calculation, curvature,

eigenvalues and eigenfeatures) and specific requirements such as

number of neighbors or output format were added.

The evaluation of the codes was done by compiling and running

the response in MATLAB. ChatGPT could generate short

perfectly working code, usually based on very concrete functions.

When more expert level code involving loop or index generation

is required, the result was not satisfactory.

Provided functional codes can be useful for the first steps of

people learning point cloud processing. Although examples of

codes can also be easily found in help libraries. As for extensive

codes, these require more advanced knowledge to correct them

and make them functional. Many of which may be easier to write

from scratch since they contain invented functions or incorrect

equations/relationships.

Nevertheless, ChatGPT proves to be a useful tool for obtaining

theoretical information on point cloud processing and simple

code. Future work will focus on evaluating other widely used

programming languages for point clouds, such as Python and

C++, and develop complex codes step by step.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-107-2023 | © Author(s) 2023. CC BY 4.0 License.

113

ACKNOWLEDGEMENTS

This work is supported by Xunta de Galicia (ED481B-2019-061),

GAIN (ED431F 2022/08) and the ERDF ITMS 313011W988.

This paper is a result of the project PID2021-123475OA-I00,

funded by MCIN/AEI/10.13039/501100011033/ FEDER, UE.

REFERENCES

Che, E., Jung, J., Olsen, M., 2019. Object Recognition,

Segmentation, and Classification of Mobile Laser Scanning Point

Clouds: A State of the Art Review. Sensors 19, 810.

https://doi.org/10.3390/s19040810

Dale, R., 2021. GPT-3: What’s it good for? Nat Lang Eng 27,

113–118. https://doi.org/10.1017/S1351324920000601

Floridi, L., Chiriatti, M., 2020. GPT-3: Its Nature, Scope, Limits,

and Consequences. Minds Mach (Dordr) 30, 681–694.

https://doi.org/10.1007/s11023-020-09548-1

Gillioz, A., Casas, J., Mugellini, E., Khaled, O.A., 2020.

Overview of the Transformer-based Models for NLP Tasks, in:

2020 15th Conference on Computer Science and Information

Systems (FedCSIS). pp. 179–183.

https://doi.org/10.15439/2020F20

Jolliffe, I.T., 2002. Principal component analysis for special

types of data. Springer.

Li, Y., Ma, L., Zhong, Z., Liu, F., Chapman, M.A., Cao, D., Li,

J., 2021. Deep Learning for LiDAR Point Clouds in Autonomous

Driving: A Review. IEEE Trans Neural Netw Learn Syst 32,

3412–3432. https://doi.org/10.1109/TNNLS.2020.3015992

Liu, W., Sun, J., Li, W., Hu, T., Wang, P., 2019. Deep Learning

on Point Clouds and Its Application: A Survey. Sensors 19, 4188.

https://doi.org/10.3390/s19194188

OpenAI, 2022. ChatGPT: Optimizing Language [WWW

Document]. URL Models for Dialogue, 2022.

https://openai.com/blog/chatgpt/ (accessed 1.9.23).

Pauly, M., Gross, M., Kobbelt, L.P., 2002. Efficient

simplification of point-sampled surfaces, in: IEEE Visualization,

2002. VIS 2002. pp. 163–170.

https://doi.org/10.1109/VISUAL.2002.1183771

Wang, Q., Kim, M.-K., 2019. Applications of 3D point cloud data

in the construction industry: A fifteen-year review from 2004 to

2018. Advanced Engineering Informatics 39, 306–319.

https://doi.org/https://doi.org/10.1016/j.aei.2019.02.007

Weinmann, M., Jutzi, B., Hinz, S., Mallet, C., 2015. Semantic

point cloud interpretation based on optimal neighborhoods,

relevant features and efficient classifiers. ISPRS Journal of

Photogrammetry and Remote Sensing 105 (2015), 286–304.

https://doi.org/10.1016/j.isprsjprs.2015.01.016

Xia, S., Chen, D., Wang, R., Li, J., Zhang, X., 2020. Geometric

Primitives in LiDAR Point Clouds: A Review. IEEE J Sel Top

Appl Earth Obs Remote Sens 13, 685–707.

https://doi.org/10.1109/JSTARS.2020.2969119

Xie, Y., Tian, J., Zhu, X.X., 2020. Linking Points With Labels in

3D: A Review of Point Cloud Semantic Segmentation. IEEE

Geosci Remote Sens Mag 8, 38–59.

https://doi.org/10.1109/MGRS.2019.2937630

Yao Fu, Hao Peng, Tushar Shot, 2022. How does GPT Obtain its

Ability? Tracing Emergent Abilities of Language Models to their

Sources. [WWW Document]. URL

https://yaofu.notion.site/How-does-GPT-Obtain-its-Ability-

Tracing-Emergent-Abilities-of-Language-Models-to-their-

Sources-b9a57ac0fcf74f30a1ab9e3e36fa1dc1 (accessed 1.9.23).

Zhang, M., Li, J., 2021. A commentary of GPT-3 in MIT

Technology Review 2021. Fundamental Research 1, 831–833.

https://doi.org/https://doi.org/10.1016/j.fmre.2021.11.011

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-107-2023 | © Author(s) 2023. CC BY 4.0 License.

114

https://doi.org/10.3390/s19040810
https://doi.org/10.1017/S1351324920000601
https://doi.org/10.1007/s11023-020-09548-1
https://doi.org/10.15439/2020F20
https://doi.org/10.1109/TNNLS.2020.3015992
https://doi.org/10.3390/s19194188
https://doi.org/10.1109/VISUAL.2002.1183771
https://doi.org/https:/doi.org/10.1016/j.aei.2019.02.007
https://doi.org/10.1016/j.isprsjprs.2015.01.016
https://doi.org/10.1109/JSTARS.2020.2969119
https://doi.org/10.1109/MGRS.2019.2937630

