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ABSTRACT: 

 

Large-scale pretrained language models have been a revolution in human-machine communication. Recently, such language models 

also generate code for required tasks. The objective of this work is to evaluate the functionality of the codes generated by ChatGPT 

(version 15-Dec-2022) for point cloud processing. The programming language selected for the test was MATLAB due to the extensive 

use in prototyping and toolboxes for Computer Vision and LiDAR. Using the Question-Answer system, the ChatGPT was asked for 

codes to calculate surface normals, curvature, eigenvalues, and eigenfeatures, with specific parameters and outputs. The provided codes 

were compiled and executed. The results show that ChatGPT can generate functional code for very specific and short applications, 

however, it is not capable of generating large code involving the correct use of loops, indexes, or equations.  

 

 

1. INTRODUCTION 

Point cloud processing is a crucial technology for 3D object 

detection and mapping. A point cloud is a set of points in 3D 

space that represent the surface of an object or scene. These 

points are usually acquired using 3D sensors such as lidar or 

stereo cameras, and they provide a detailed representation of the 

geometry and structure of the object or scene. 

 

Point cloud processing refers to the algorithms and techniques 

used to analyse, manipulate, and extract information from point 

clouds. This includes tasks such as segmentation, registration, 

feature extraction, and classification. These techniques are 

essential for 3D object detection and mapping, as they allow us 

to identify and locate objects in a scene, and to create accurate 

and detailed 3D maps of the environment. 

 

Point cloud processing has many applications in fields such as 

robotics, autonomous vehicles, augmented and virtual reality, 

and computer vision. It allows us to accurately perceive and 

understand the 3D world around us, and to interact with it in a 

more natural and intuitive way. It also has important 

implications for fields such as security, surveillance, and 

environmental monitoring, where the ability to detect and track 

objects in 3D is crucial. 

 

Overall, point cloud processing is a key technology for 3D object 

detection and mapping, and it has numerous applications and 

implications in a variety of fields. 

 

The above introduction was ChatGPT's response to the question 

Can you write an introduction on the relevance of point cloud 

processing for 3D object detection and mapping? Although a bit 

repetitive emphasizing the importance of point clouds, the 

introduction was automatically structured on a correct definition 

of point clouds, the main tasks that compose processing (Che et 

al., 2019; Wang and Kim, 2019; Xia et al., 2020), and their 

applications (Li et al., 2021; Liu et al., 2019; Xie et al., 2020). 

 
*  Corresponding author 

 

 

ChatGPT is, in its own words, a large artificial neural network 

that has been trained on a vast amount of text data to generate 

human-like responses to questions and prompts. Its primary 

function is to assist with a variety of tasks by providing 

information and answering questions to the best of its ability 

(answer to the question In technical words, who are you?).  

 

Unlike other chatbots, ChatGPT is based on the GPT-3 AI 

language model, developed by OpenAI, and is not only able to 

provide more human-like responses to a conversation, but can 

also generate text and code in the desired programming language. 

  

The objective of this work is to evaluate the use of GPT chat to 

obtain the codes for point cloud processing in MATLAB, such as 

normal estimation or geometric feature extraction. This way it is 

evaluated if the proposed codes are functional and to what extent 

they can be useful to people with different degrees of knowledge 

in point cloud processing. 

 

The rest of this paper is organized as follows. In Section 2, the 

state of the art on Artificial Intelligence chats is collected. In 

Section 3, ChatGPT and the methodology of questions-answers 

are explained. Section 4 presents, analyses and discuss the results 

of scripts prosed by the chat. Section 5 concludes the work. 

 

 

2. STATE OF THE ART 

LARGE-SCALE PRETRAINED LANGUAGE MODELS 

The understanding and the treatment of the ubiquitous textual 

data is a major research challenge when the tremendous amount 

of such data produced by our society has exploded over the recent 

years. Natural Language Processing (NLP) aims to provide a set 

of techniques able to explain a wide variety of natural language 

tasks in the meaning extraction process to be successful. 

Recurrent Neural Networks (RNN) were massively used to solve 

NLP problems, especially with the success of Long Short-Term 
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Memory (LSTM) and Gated Recurrent Unit (GRU) architectures 

in preventing the vanishing gradient issue in training. However, 

those two models are also not perfect because of the recurrent 

structure made them hard to parallelize and the treatment of very 

long clauses is also problematic (Gillioz et al., 2020).  

 

To counter those limiting constraints, the Transformer 

architecture was introduced with the massively use of 

unsupervised pre-training principle (Gillioz et al., 2020). The 

pre-training principle works in two steps: 1) the pre-training 

phase, which computes a general representation from raw data in 

an unsupervised fashion; 2) the use of finetuning techniques to 

adapt to a concrete task. The original Transformer used an 

encoder–decoder architecture like earlier sequence-to-sequence 

models with adoption of the self-attention mechanism, 

differentially weighting the significance of each part of the input 

data. The recent significant increase in the performance of NLP 

models is due to the use of word embeddings and the attention 

mechanism aims to catch the long-term dependencies of 

sentences. Mathematically, Transformer takes a sequence X=(x1, 

…, xN) and produce a latent representation Z=(z1, …, zN), then the 

output sequence YM=(y1, …, yM) is produced one element at a 

time. This property is called the autoregressive property of the 

model, where a model takes the previous outputs to produce the 

next outcome. 

  

After that, various models coupled with the Transformer re using 

this property to produce accurate Language Model languages like 

ELMo (by Allen Institute for AI), BERT (Bidirectional Encoder 

Representations from Transformers), GPT (Generative Pre-

trained Transformer),  and GPT-2 (by OpenAI). Due to the high 

performance of BERT and the need of larger training datasets, 

there are a lot of post-BERT models (like RoBERTa, 

DistilBERT, AIBERT) aiming to tweaked it to specific needs 

such as simpler architecture, smaller models, reducing number of 

layers without a loss of performance. 

 

In the context with GPT, it is suitable to mention that OpenAI 

was founded as a non-profit research organisation in 2015 with 

the mission is to ensure that artificial general intelligence (AGI) 

benefits all of humanity. In 2019, OpenAI had restructured as a 

profit company and in 2020, despite various own previous 

concerns about malicious applications, it announced GPT-3, a 

new language model more than 100 times larger than GPT-2, 

with 175B parameters and 96 layers trained on a corpus of 499B 

tokens of web content (Dale, 2021). The model itself was not 

made available, but the access was provided via an API giving 

the model’s creators more control over its use (e.g., waiting list, 

high price). The typical use of the API is a prompt with an initial 

text to get the model going, along with optional parameter setting 

(Floridi and Chiriatti, 2020).  

 

Several produced outputs are truly breath-taking as candidates for 

being human-authored text. The technology has also been lauded 

for its results in a wide range of other areas such as capability in 

generating poetry, playing chess, doing arithmetic, and writing 

programming code based on requirements expressed in natural 

language. The technology made incredible, amazing, and 

challenging impression. It is also threatening, which can be 

expressed shortly as “even with 175B parameters and 450 

gigabytes of input data, it’s not a reliable interpreter of the 

world” (Gary Marcus and Ernest Davis, MIT Technology 

Review). After a hype and the conclusion (not reliable narrator), 

this is not to say that GPT-3 is devoid of practical application; 

meaning some use cases are appropriate and some are not (Zhang 

and Li, 2021) and unreliable doesn’t mean useless. As the GPT-

3 model presents security and uncontrollability problems, 

including false content and biased information during content 

generation, its application value is primarily reflected in 

intelligent auxiliary tasks, and it cannot directly interface with the 

end-users. 

 

 

3. METHODOLOGY 

3.1 ChatGPT 

The GPT-3 model offers many powerful functions that can cope 

with many practical application scenarios, such as question 

answering, reading comprehension, summary generation, 

automatic chat, search matching, code generation, and article 

generation (Zhang and Li, 2021). Recently, ChatGPT is fine-

tuned from a model in the GPT-3.5 series (Yao Fu et al., 2022), 

which finished training in early 2022 on an Azure AI 

supercomputing infrastructure. It is a sibling model to (OpenAI) 

InstructGPT model, which is trained to follow an instruction in a 

prompt (Figure 1) and provide a detailed response under the 

Reinforcement Learning from Human Feedback (RLHF) 

approach (OpenAI, 2022). 

 

Despite its powerful modelling and description capabilities, there 

are significant issues and limitations. Such GPT-a-like model 

does not understand writing well and sometimes generates 

uncontrollable content. Secondly, training such models requires 

a large amount of computing power, data, and capital 

investments. The most important thing is although ChatGPT is 

trained with human-in-loop, it is just more truthful and less toxic.  

 

 
Figure 1. ChatGPT user interface.  

 

3.2 Question and Answer process 

The way to obtain information from ChatGPT is through a 

process of queries and responses (Figure 2). The first question is 

the generation of a code for the execution of the desired 

operation. Then, the answer is evaluated to see if it matches the 

desired method. If it is observed that the code has no relation with 

the desired one, or if no code is generated, the Chat is instructed 

to try again, either by making variations in the question to focus 

the result or not. If the code looks like the desired one, it is tested 

in MATLAB with a point cloud. If the code generates an error, it 

is indicated to the chat in question mode. When a code that 

generates the desired output is obtained, modifications in 

parameters or outputs are applied. 

 

In order to evaluate code generation, some basic point cloud 

processing methods to extract feature information are selected to 

be generated automatically by ChatGPT. These features are the 

basis of point cloud processing for object segmentation and 

identification.  Given a 3D point cloud X = {p1, p2, · · · , pN } ∈ 
RN×3, with for each local sample Pi = {pi,j |pi,j ∈ KNN(pi)}, 

constructed by the k nearest neighbour (kNN) search (Zhou et al., 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-107-2023 | © Author(s) 2023. CC BY 4.0 License.

 
108



 

2021). The covariance matrix of the local neighbourhood can be 

used to estimate local surface properties (Pauly et al., 2002). The 

covariance matrix for a point p is given in equation (1) where �̅� 

is the centroid of the neighbourhood.  

 

 
 

Figure 2. Workflow of questions (Q.) and answers (A.) to 

generate functional code. 

 

 

𝐶 = [

𝑝𝑖1
− �̅� 
…

𝑝𝑖𝑘
− �̅� 

]

𝑇

· [

𝑝𝑖1
− �̅� 
…

𝑝𝑖𝑘
− �̅� 

] , 𝑖𝑗 ∈  𝑁𝑝 (1) 

 

Consider the eigenvector problem in equation (2) and since the 

covariance matrix C is symmetric and positive semi-definite, all 

eigenvalues 𝜆 are real-valued and the eigenvectors v form an 

orthogonal frame, corresponding to the principal components of 

the point set (Jolliffe, 2002). The 𝜆 measure the variation of the 

pi along the direction of the corresponding eigenvectors. 

 

𝐶 ·  𝑣𝑙 = 𝜆𝑙 · 𝑣𝑙 , 𝑙 ∈ {1,2,3} (2) 

 

Therefore, being 𝜆1 ≥ 𝜆2 ≥ 𝜆3 ≥ 0 with a plane  𝑇(𝑥): (𝑥 − �̅� ) ·
𝑣3 = 0. The 𝑣3 approximates the surface normal np at pi and 𝑣1 

and 𝑣2 are tangent vectors of plane T at pi. 

 

The curvature describes the surface variation along surface 

normal in equation (3). Alternatively, it can also be calculated as 

the variance of the normal, as shown in equation (4). 

 

𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒_𝜆 =  
𝜆3

𝜆𝑙 + 𝜆2 + 𝜆3
 (3) 

𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒_𝑛 =  
∑ (𝑛𝑖𝑗

− �̅�)
2

𝑘
1

𝑘
 

(4) 

 

Other eigenfeatures describe de dimensionality of point spatially 

distribution (Weinmann et al., 2015), such as linearity in equation 

(5), planarity equation (6) and scattering equation (7). 

 

linearity =  
𝜆1 − 𝜆2

𝜆𝑙
 (5) 

planarity =  
𝜆2 − 𝜆3

𝜆𝑙
 (6) 

scattering =  
𝜆3

𝜆𝑙
 (7) 

 

4. RESULTS AND ANALYSIS 

The communication was performed on ChatGPT Dec 15 Version. 

The code generated were tested with the Stanford bunny point 

cloud (50 thousand points) in ply format in MATLAB 2022b 

version. 

 

4.1 Surface normal estimation 

The question asked was: in MATLAB, generate a code to 

calculate the normals of a point cloud. ChatGPT's response was: 

 

To calculate the normals of a point cloud in MATLAB, you can 

use the function pcnormals, which is part of the Computer Vision 

System Toolbox. Here's an example of how you can use this 

function: 

 

Load the point cloud data into MATLAB. For example: 

 
ptCloud = pcread('pointCloud.ply'); 
 
Use the pcnormals function to calculate the normals of the point 

cloud. You can specify the number of nearest neighbors to use 

when calculating the normals, as well as the search radius. For 

example: 

 
normals = pcnormals(ptCloud, 10); 
 

The output of the pcnormals function is a matrix with the same 

number of rows as the input point cloud, and three columns for 

the x, y, and z components of the normal vector at each point. You 

can access the normals for a particular point by indexing into the 

matrix. For example: 

 
normal = normals(100,:); % get the normal at 
point 100 
 

If you want to visualize the normals, you can use the pcshow 

function to display the point cloud, and then use the quiver3 

function to plot the normals as arrows. For example: 

 
pcshow(ptCloud); 
hold on 
quiver3(ptCloud.Location(:,1), 
ptCloud.Location(:,2), ptCloud.Location(:,3), 
normals(:,1), normals(:,2), normals(:,3)); 
hold off 
 

I hope this helps! Let me know if you have any questions or need 

further assistance. 

 

Based on the authors' prior knowledge of the programming 

language, this response was perfectly suited to the desired 

objective. In addition, ChatGPT provided an explanation of how 

the code works almost line by line, as well as references to the 

necessary library, an example output of a point and an output 

image (Figure 3). 

 

In view of the success obtained, the next question was towards 

the variation of the number of nearest neighbours used for the 

calculation of normals: in MATLAB, generate a code to calculate 

the normals of a point cloud based on 25 neighbours. The answer 

given was a brief explanation of the code (which will not be 

reproduced below to save space), the Code 1, and an alternative 

Code 2. 
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Figure 3. Image generated from Matlab code provided by 

ChatGPT of normal estimation and zoom in. 

  

Code 1: Normal estimation k neighbours 

 
% Load the point cloud 
pc = pcread('pointCloud.ply'); 
 
% Extract the xyz coordinates of the point 
cloud 
xyz = pc.Location; 
 
% Set the number of neighbours to use for 
normal estimation 
k = 25; 
 
% Calculate the normals of the point cloud 
normals = pcnormals(pc, k); 

  

Code 2: Normal estimation (alternative) 

 
% Load the point cloud 
pc = pcread('pointCloud.ply'); 
 
% Extract the xyz coordinates of the point 
cloud 
xyz = pc.Location; 
 
% Set the number of neighbours to use for 
plane fitting 
k = 25; 
 
% Fit a plane to the points in the 
neighbourhood of each point 
[model, inlierIndices, outlierIndices] = 
pcfitplane(pc, k); 
 
% Extract the normal vector of the fitted 
plane 
normals = model.Normal; 

 

In this case both codes have completely different outputs. Code 

1 generated the surface normals point by point, while Code 2 

obtained the normal to the plane that fit the entire point cloud. 

Both codes were fully functional and were commented line by 

line. 

 

Since these codes produced no output, ChatGPT was asked for a 

specific output format: in MATLAB, generate a code to calculate 

the normals of a point cloud based on 25 neighbours and save 

xyz points and normals to disk on a txt file. The answer given was 

the following, in conjunction with Code 3. 

 

To calculate the normals of a point cloud and save the xyz points 

and normals to a text file in MATLAB, you can use the pcnormals 

function as described in the previous answer and then use the 

dlmwrite function to write the xyz points and normals to a text 

file. Here is an example of how to do this: 

 

Code 3: Normal estimation exporting data 

 
% Load the point cloud 
pc = pcread('pointCloud.ply'); 
 
% Extract the xyz coordinates of the point 
cloud 
xyz = pc.Location; 
 
% Set the number of neighbours to use for 
normal estimation 
k = 25; 
 
% Calculate the normals of the point cloud 
normals = pcnormals(pc, k); 
 
% Create a matrix with the xyz points and 
normals 
data = [xyz normals]; 
 
% Write the data to a text file 
dlmwrite('pointCloudData.txt', data, 
'delimiter', '\t'); 

 

 
 

Figure 4. Point cloud coloured based on normals and imported 

in Cloud Compare. 
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This result can be considered a success. ChatGPT made 

references to the previous answer so as not to repeat the 

explanation, it added the explanation of the new function, and it 

generated a code that exported the point cloud on a txt file with a 

correct separation between columns. Bunny point cloud with 

estimated normal is visible in Figure 4). 

 

4.2 Curvature 

For the curvature calculation, the following question was asked: 

in MATLAB, generate a code to calculate the point curvature of 

a point cloud based on 25 neighbours. Unfortunately, the chat 

response (Code 4) referred to adding a curvature output to the 

calculation of normal, which was not correct, since this function 

does not support multiple outputs. 

 

Code 4: Curvature (Attempt 1) 

 
% Load the point cloud 
pc = pcread('pointCloud.ply'); 
 
% Extract the xyz coordinates of the point 
cloud 
xyz = pc.Location; 
 
% Set the number of neighbours to use for 
normal estimation 
k = 25; 
 
% Calculate the normals and curvature of the 
point cloud 
[normals, curvature] = pcnormals(pc, k); 

 

When it was indicated that ‘pcnormals’ function did not support 

two outputs (Error using pcnormals. Too many output 

arguments), ChatGPT proposed an alternative fitting the point 

cloud to a geometric model (Code 5): 

 

I apologize for the error in the previous answer. It looks like the 

pcnormals function does not return the curvature of the point 

cloud when called with two output arguments. 

 

Code 5: Curvature (Attempt 2) 

 
% Load the point cloud 
pc = pcread('pointCloud.ply'); 
 
% Extract the xyz coordinates of the point 
cloud 
xyz = pc.Location; 
 
% Set the number of neighbors to use for plane 
fitting 
k = 25; 
 
% Fit a plane to the points in the 
neighbourhood of each point 
[model, inlierIndices, outlierIndices] = 
pcfitplane(pc, k); 
 
% Extract the curvature of the fitted plane 
curvature = model.Curvature; 

 

However, that model does not support curvature field. By a new 

attempt, ChatGPT referenced a function that does not exist in 

MATLAB: The surface normals can be calculated using the 

pcnormals function from the Computer Vision System Toolbox, 

and the curvature can be estimated using the pcurvature function. 

And by indicating that the ‘pccurvature’ function does not exist, 

ChatGPT re-proposed Code 5. 

 

Afterwards, an attempt was made to guide the GPT Chat by 

providing more information on how to calculate the curvature: in 

MATLAB, generate a code to calculate the normals of a point 

cloud based on 25 neighbours. Then calculate the curvature 

based on variance of normal. In the proposed response (Code 6), 

it can be seen how the indications were followed, however, the 

result was not as expected.   

 

Code 6: Curvature (Attempt 3) 

 
ptCloud = pcread('pointCloud.ply'); 
normals = pcnormals(ptCloud, 25); 
variance = var(normals); 

 
Finally, the authors decided to ask the ChatGPT what information 

it had on the point cloud curvature: which is the point cloud 

curvature? The following response was given:  

 

In the context of point clouds, curvature refers to the degree of 

curvature or bend in a surface at a particular point. In other 

words, it is a measure of how much a surface deviates from being 

flat at a given point. In a point cloud, curvature can be calculated 

by analysing the shape and orientation of the points in the cloud 

and how they vary in relation to one another. There are several 

different methods for calculating curvature in a point cloud, 

including principal curvature, mean curvature, and Gaussian 

curvature. The specific method used may depend on the intended 

application and the type of data being analysed. 

 

Based on the information provided (which was correct) and as 

there is no reference to the variance of surface normal to calculate 

the curvature, it was decided to ask for a code based on one of 

the methods mentioned: in MATLAB, generate a code to 

calculate point cloud Gaussian curvature. However, the answer 

(Code 7) again referred to a function that does not exist in 

MATLAB and the authors were decided to end this test without 

obtaining a correct code to calculate the curvature in point clouds. 

 

Code 7: Curvature (Attempt 4) 

 

% Load the point cloud data 
ptCloud = pcread('pointCloud.ply'); 
 
% Fit a surface to the point cloud using 
fitgmdist 
gmModel = fitgmdist(ptCloud.Location, 2); 
 
% Calculate the Gaussian curvature of the 
surface at each point 
K = gausscurvature(gmModel); 

 

4.3 Eigenvalues 

For the eigenvalues calculation, the following question was 

asked: in MATLAB, generate a code to calculate the eigenvalues 

of a point cloud. The answer referred to the Statistics and 

Machine Learning Toolbox with Code 8. The first thing to note 

was the change of input to a mat file. This was no problem, 

assuming that the point cloud is stored in a mat file. Next, 

Principal Component Analysis (PCA) was calculated, and the 

eigenvalues were indicated as the latent output. The code 
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provided the eigenvalues of the point cloud understanding that 

eigenvalues are obtained from PCA and a correct output of the 

function PCA, but the code did not give the eigenvalues point by 

point.  

 

Code 8: Eigenvalues (Attempt 1) 

 
% Load the point cloud data 
X = load('pointCloudData.mat'); 
 
% Perform PCA on the point cloud data 
[coeff,score,latent] = pca(X); 
 
% The latent variable contains the eigenvalues 
of the point cloud data 
eigenvalues = latent; 

 

The following question tried to specify the output format a little 

more: in MATLAB, generate a code to calculate the eigenvalues 

based on 25 nearest neighbours of a point cloud. The answer is 

shown in Code 9. In this case, the code input is again a ply file. 

The kNN was calculated correctly, doing a point cloud 

neighbourhood search with itself. It is remarkable to mention that 

the code used a k = 26 neighbours correctly, since in a 

neighbourhood search of a point cloud with itself, the nearest 

neighbour of the point is the same point. Also, in the next line, 

the code corrected this fact by deleting the first column. 

However, the output of PCA was not correct, ignoring the correct 

information provided in Code 8. The code provided an output in 

the form of a bar chart (Figure 5). 

 

Code 9: Eigenvalues (Attempt 2) 

 
% Load the point cloud data 
pc = pcread('pointCloud.ply'); 
 
% Find the indices of the 25 nearest neighbors 
of each point 
[nn, ~] = knnsearch(pc.Location, pc.Location, 
'K', 26); 
nn = nn(:, 2:end); % Remove the point itself 
from the list of neighbors 
 
% Perform PCA on the matrix of nearest 
neighbor indices 
[~, S, ~] = pca(nn); 
 
% Visualize the eigenvalues 
bar(diag(S)) 
xlabel('Principal Component') 
ylabel('Eigenvalue') 

 

Subsequent attempts did not give functional codes either. The 

chat proposed invented functions (pceigenvalues, pccovariance, 

pcdistancematrix) as well as examples that generate their own 

point cloud and used the eig function (Code 10). This code again 

produces an output of eigenvalues of the whole point cloud, so 

this experiment was terminated without success. However, it is 

interesting to observe how ChatGPT rendered correct 

assumptions such as PCA-dependent calculation of eigenvalues 

or covariance, and functions that calculate eigenvalues. 

 

 
 

Figure 5. Output of the code for calculating eigenvalues 

(Attempt 2). 

 

 

Code 10: Eigenvalues (Attempt 3) 

 
% Define the data points of the point cloud as 
a matrix, where each row represents a single 
point and each column represents a dimension 
of the data 
points = [1 2 3; 4 5 6; 7 8 9; 10 11 12]; 
 
% Calculate the covariance matrix of the 
points 
covariance = cov(points); 
 
% Calculate the eigenvalues and eigenvectors 
of the covariance matrix 
[eigenvectors, eigenvalues] = eig(covariance); 
 
% The eigenvalues are stored in the diagonal 
elements of the eigenvalues matrix 
eigenvalues = diag(eigenvalues); 
 
% Sort the eigenvalues in descending order 
[eigenvalues, sortIndices] = sort(eigenvalues, 
'descend'); 
 
% Reorder the eigenvectors in the same order 
as the eigenvalues 
eigenvectors = eigenvectors(:, sortIndices); 

 

4.4 Eigenfeatures 

Since these variables are dependent on the eigenvalues, for the 

calculation of linearity, planarity and scattering it was decided to 

propose a more complex question: in MATLAB, generate a code 

to calculate point linearity, planarity and scatter in point clouds 

following the paper "Semantic point cloud interpretation based 

on optimal neighbourhoods, relevant features and efficient 

classifiers" of Martin Weinmann. The first response from the 

ChatGPT was: 

 

I'm sorry, but I am not able to generate code based on specific 

research papers or publications. I am a large language model 

trained by OpenAI and do not have access to specific research 

papers or publications. My training is based on a vast corpus of 

text data, and I am not able to browse the internet or access 
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specific research papers or publications. I can only provide 

general information and advice based on my training. 

 

However, a new attempt generated code (11) with the answer: 

Here is a possible solution in MATLAB that follows the approach 

described in the paper "Semantic point cloud interpretation 

based on optimal neighbourhoods, relevant features and efficient 

classifiers" by Martin Weinmann. 

 

Code 11: Eigenfeatures (Attempt 1) 

 
% load the point cloud 
pc = pcread('pointCloud.ply'); 
 
% initialize arrays for storing the linearity, 
planarity, and scatter of each point 
linearity = zeros(pc.Count, 1); 
planarity = zeros(pc.Count, 1); 
scatter = zeros(pc.Count, 1); 
 
% set the number of nearest neighbors to use 
for normal estimation 
numNeighbors = 20; 
 
% calculate the surface normals of the points 
using the "pcnormals" function 
[normals, ~] = 
pcnormals(pointCloud(pc.Location), 
numNeighbors); 
 
% loop through each point in the point cloud 
for i = 1:pc.Count 
    % extract the x, y, and z coordinates of 
the point and its neighbors 
    x = pc.Location(i,1); 
    y = pc.Location(i,2); 
    z = pc.Location(i,3); 
 
    % extract the surface normal of the point 
    normal = normals(i,:); 
 
    % calculate the covariance matrix of the 
point and its neighbors 
    covariance = [x y z] \* [x y z]'; 
 
    % calculate the eigenvalues and 
eigenvectors of the covariance matrix 
    [eigenvectors, eigenvalues] = 
eig(covariance); 
 
    % store the linearity, planarity, and 
scatter of the point 
    linearity(i) = normal * eigenvectors(:,1); 
    planarity(i) = normal * eigenvectors(:,2); 
    scatter(i) = normal * eigenvectors(:,3); 
end 
 
% display the linearity, planarity, and 
scatter of the points 
disp(linearity); 
disp(planarity); 
disp(scatter); 

 

Code 11 did not compile. The calculation of normals, covariances 

and eigenfeatures were not well implemented. Although it was 

the first time that ChatGPT proposed a loop to calculate the 

features point by point. In new attempts, Chat GPT proposed 

again the non-existent function pceigenvalues. Then it proposed 

the calculation of features as observed in Code 12. In both Code 

(11 and 12), ChatGPT was not able to calculate the eigenvalues 

well, which was expected based on the results of Section 4.3. But 

the Chat did not calculate the eigenfeatures correctly from the 

eigenvalues either, although he did establish some (wrong) 

relation between each eigenfeature and the eigenvalue, according 

Equation 5 to 7. 

 

Code 12: Eigenfeatures (Attempt 2) 

 
% Load the point cloud 
pc = pcread('pointCloud.ply'); 
 
% Extract the xyz coordinates of the point 
cloud 
xyz = pc.Location; 
 
% Set the number of neighbors to use for 
eigenvalue calculation 
k = 25; 
 
% Calculate the eigenvalues of the point cloud 
[eigenvalues, eigenvectors] = 
pceigenvalues(pc, k); 
 
% Calculate the linearity, planarity, and 
scatter of the point cloud 
linearity = eigenvalues(:,1) ./ 
eigenvalues(:,2); 
planarity = eigenvalues(:,2) ./ 
eigenvalues(:,3); 
scatter = eigenvalues(:,1) ./ 
eigenvalues(:,3); 

 

 

5. DISCUSSION AND CONCLUSION 

In this work the generation of ChatGPT codes for point cloud 

processing was evaluated. The codes were generated by the Chat 

automatically as answers to questions where the process to be 

performed was indicated (normal calculation, curvature, 

eigenvalues and eigenfeatures) and specific requirements such as 

number of neighbors or output format were added. 

 

The evaluation of the codes was done by compiling and running 

the response in MATLAB. ChatGPT could generate short 

perfectly working code, usually based on very concrete functions. 

When more expert level code involving loop or index generation 

is required, the result was not satisfactory. 

 

Provided functional codes can be useful for the first steps of 

people learning point cloud processing. Although examples of 

codes can also be easily found in help libraries. As for extensive 

codes, these require more advanced knowledge to correct them 

and make them functional. Many of which may be easier to write 

from scratch since they contain invented functions or incorrect 

equations/relationships.   

 

Nevertheless, ChatGPT proves to be a useful tool for obtaining 

theoretical information on point cloud processing and simple 

code. Future work will focus on evaluating other widely used 

programming languages for point clouds, such as Python and 

C++, and develop complex codes step by step. 
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