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ABSTRACT:

Automated tree classification from unmanned aerial vehicle (UAV) images is a challenging task with several applications in forest
management and conservation. In this study, we propose UAV4Tree a Deep Learning based system that automatically classifies
RGB optical images obtained by the UAV. In particular, we explore the use of augmented datasets and various deep learning models,
including ResNet, DenseNet, InceptionV3, and Vision Transformer, for the classification of tree images obtained from UAVs. Our
experiments show that the use of an augmented dataset can significantly improve the accuracy of the classification by approximately
10 points compared to the use of a non-augmented dataset. We also found that fine-tuning and the introduction of dropout were
essential for improving the generalization ability of the models on the augmented dataset. Furthermore, the use of Super Resolution
Generative Adversarial Network (SR-GAN) in the original dataset allowed us to increase the performance of some models. Our
findings provide valuable insights into the use of deep learning models for automated tree classification from UAV imagery, which
has significant implications for sustainable forest management and conservation.

1. INTRODUCTION

Trees play an important role in forest science because they are
involved in many aspects of the ecosystem and human life (Salleh
et al., 2023). Trees remove carbon dioxide from the air and store
it in their roots, trunks, and leaves. They are one of the most ef-
fective ways to combat climate change by reducing the amount
of carbon emissions in the atmosphere (Palmer, 2021). They
provide a habitat for many species of animals, birds, insects,
and plants and are an essential component of the forest ecosys-
tem and support biodiversity (Andreas et al., 2023). Moreover,
trees invest a huge importance in soil conservation by redu-
cing erosion and improving fertility. Their roots help to bind
the soil together, preventing it from being washed away during
heavy rainfall. Trees are also a valuable resource for human
beings. They provide timber, fuelwood, medicines, and fruits
for consumption and forests also provide recreational and cul-
tural opportunities. Tree species mixing is a common occur-
rence in natural forests. As per the 2018 MODIS Collection
6 MCD12C1 IGBP land cover classification, roughly 42% of
forests in Canada and 28% around the world consist of com-
bined establishments (Sulla-Menashe and Friedl, 2018). Identi-
fying the species compositions and interactions in the ecolo-
gical setting is a significant guide for forest management tech-
niques like reforestation, harvesting, and selective thinning (White
et al., 2016).

In the dimension of the modern practices used for the detec-
tion of tree species, the adoption of airborne remote sensing
technologies has remarkably increased in recent times. Such
techniques have enabled the swift measurement and classifica-
tion of a multitude of trees (Quan et al., 2023). Remote sensing
with the use of satellites can capture extensive regions of urban
∗ r.pierdicca@staff.univpm.it

forests, where cloud cover and fog can greatly impact on data
collection. Unmanned aerial vehicle (UAV)-based remote sens-
ing, being an effective method for obtaining high-quality im-
ages, has gained wide adoption in several domains, especially
in forestry tree classification due to its affordability, rapid data
collection, and adaptable functionality (Pereira et al., 2023).

Knowledge of tree species is crucial for effective forest man-
agement, planning, environmental protection, and statistics per-
taining to forest resources. Every year, companies and gov-
ernments conduct forestry investigations, which absorb a large
amount of energies and financial resources (Zou et al., 2017).
Forest companies desire species-specific size distributions of
trees for optimal output, since traditional methods based on
field inventory are laborious, time-consuming and limited by
spatial extent. Consequently, remote sensing methods using
large-scale aerial color or infra-red images have been intro-
duced (Jutras-Perreault et al., 2023). While such techniques
have found widespread use in forest applications, traditional
optical remote sensing methods suffer from a lack of the ability
to capture the complex three-dimensional structures of mixed-
species forests with multiple canopy layers, particularly those
that are unevenly-aged (Lovell et al., 2003). However, act-
ive remote sensing techniques (particularly those adopting laser
scanning) have recently emerged as a promising alternative for
forest mapping and other applications due to their ability to
provide comprehensive 3D forest information.

Diverse tree species display distinct qualities in both spectral
and textural aspects. Currently, some academics implement hy-
perspectral and LiDAR data to classify various tree species (Dian
et al., 2016). Maschler et al. (Maschler et al., 2018) accom-
plished the automatic classification of 13 tree species with the
use of hyperspectral data, revealing highly dependable results
from hyperspectral data containing the visible and near-infrared
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(NIR) spectral features. In (Liu et al., 2017), the authors iden-
tified that the variables extracted from LiDAR data outmatched
spectral features for species prediction. Nonetheless, the pro-
cedure for extricating hyperspectral data is elaborate, and the
spectral interval information may be redundant among differ-
ent tree species, leading to inaccuracies whilst classifying. An
array of weather phenomena including rain, snowfall, and fog
reduce the quality of LiDAR data. In contrast, it is convenient to
acquire RGB optical images. Therefore, investigating whether
RGB optical images gathered through an UAV can be valuable
information for tree-species classification.

Developing appropriate algorithms is crucial for the classific-
ation of tree species. Traditionally, feature selection is often
mixed with the selection of a proper classifier. The classifica-
tion process encompasses choosing the optimal classifier, fine-
tuning and training it, testing its repeatability, and investigat-
ing its implementation. A wide range of supervised and un-
supervised methods can be employed to tackle trees classific-
ation, including logistic regression (LR), probabilistic graph-
ical models (PGM), decision tree (DT) classifiers, support vec-
tor machines (SVM), nearest-neighbor (NN) classifiers, clus-
tering techniques like k-means, and deep learning approaches
such as multi-layered perceptron and convolutional neural net-
works (CNNs). Each of these classification methods exhibits
distinct functionality, benefits, and limitations which have been
extensively explored by researchers in the field of tree species
classification (Xi et al., 2020). Recent studies have shown that
Deep Learning (DL) models outperform more conventional ap-
proaches such as SVM, KNN, or redclassical machine learn-
ing based methods for images classification tasks (Wang et al.,
2021), (Nezami et al., 2020). In particular, the work of Wang
et al. (Wang et al., 2021) compares classical machine learn-
ing techniques (e.g., SVM) and deep learning techniques (e.g.,
CNN). In their study, the DL-based models (e.g., CNN) outper-
formed classical machine learning models (e.g., SVM) in terms
of accuracy for image classification on large-scale datasets. For
large datasets with high spatial and spectral resolution, Deep
Neural Networks (DNNs) have been shown to be particularly
effective classifiers, which exhibit unique capabilities for hand-
ling high-dimensional classification challenges that other tech-
niques may struggle with. However, there has been limited ef-
ficient assessment of tree species classifications from complex
forest scans using DL models.

Considering the above, in this paper it is proposed UAV4Tree
a DL-based system for tree species classification. The aim of
UAV4Tree is the automatic analysis and processing of huge
amount of RGB optical images obtained by the UAV. This prob-
lem has not been investigated by the computer vision com-
munity properly yet due to weather conditions, camera Cal-
ibration (to obtain accurate RGB images, the camera moun-
ted on the UAV must be calibrated correctly, any minor er-
rors during calibration can result in inaccurate color reproduc-
tion and distortion in the images), image Resolution, flight path
and altitude (this impacts the quality of the RGB images pro-
duced), and processing technique (obstructions or changes in
lighting conditions during the flight can impact the accuracy
of the data extracted). The proposed approach aims at redu-
cing hand-operated analysis and at the same time using manual
annotation as a form of continuous learning. The whole sys-
tem needs manual tagging of large training data. Up until now,
large datasets have been necessary to boost the performance
of DL models and all manually verified data will be used as
continuous learning and will be maintained as training datasets.

Tree4UAV comprises three important phases: images classific-
ation by using Resnet (He et al., 2016), Densenet (Huang et al.,
2017), InceptionV3 (Szegedy et al., 2016), Vision Transformer
(ViT) (Dosovitskiy et al., 2020) on a dataset composed by tree
images collected from iNaturalist1; testing with UAV images;
performance improvement by using the Super Resolution tech-
nique to increase the resolution of the images obtained from
UAVs trhrough SR-GAN (Ledig et al., 2017).

The paper is organized as follows. Section 2 provides a descrip-
tion of AI approaches that were adopted for tree images classi-
fication. Section 3 describes the proposed DL-based pipeline.
In Sections 4 and 5, an evaluation of our approach is offered, as
well as a detailed analysis of each component of our DL sys-
tem. Finally, in Section 6, conclusions and discussion about
future directions for this field of research are drawn.

2. RELATED WORKS

Tree species information is crucial in order to estimate stem size
and amount of biomass accurately, and is consequently imper-
ative in making informed decisions for effective management.
Remote sensing can provide information on forest structure and
health, which can be used to identify changes in forest composi-
tion and assist in the conservation and management of forest re-
sources. This information can help to inform decisions related
to forest management, such as the identification of areas of high
conservation value, monitoring of forest growth and restoration
programs, and assessment of the impact of natural and human-
induced disturbances on forest ecosystems (Yu et al., 2017). In
recent years, DNNs have been applied to recognize tree species
since they automatically learn features and patterns that are dif-
ficult for humans to detect, such as subtle differences in leaf
shape, texture, and color. DL models can also handle large and
complex datasets, allowing for better representation of the di-
versity and variability of tree species across different regions
and environments (Li et al., 2016).

He et al. (He et al., 2023) employed a deep learning method for
classifying forest tree species. They compared the performance
of DenseNet, EfficientNet, MobileNet, ResNet, and ShuffleNet.
The experiments were assessed on remote sensing classification
satellite imagery dataset, NWPU RESISC-45 was also trained
and validated in the paper.

In (Anagnostis et al., 2021), the authors proposed a DL ap-
proach for the detection of leaves with disease. They developed
an object detection system that identified anthracnose-infected
leaves on walnut trees. Another study that adopted DL ap-
proaches for leaves classification is the work proposed by Minowa
et al. (Minowa et al., 2022). The goal of this paper was to verify
the accuracy of tree species identification by DL with leaf im-
ages of broadleaf and coniferous trees in outdoor photographs.
They used the DL framework Caffe and AlexNet and GoogLe-
Net as DNNs.

In literature, the classification of tree species using 3D point
clouds has drawn wide attention in surveys and forestry invest-
igations. There are research papers that use 3d point cloud data
for recognizing trees. Zou et al. (Zou et al., 2017) proposed
voxel-based deep learning method to classify tree species in 3-
D point clouds collected from complex forest scenes. Their
method comprised three stages: 1) individual tree extraction

1 https://www.inaturalist.org
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considering the point clouds density; 2) low-level feature rep-
resentation through voxel-based rasterization; and 3) tree spe-
cies classification using deep learning model.

In (Martins et al., 2021), the authors proposed a multi-task CNN
to map tree species in a highly diverse neighbourhood in Rio
de Janeiro, Brazil. The network described architecture took an
aerial image and had two outputs: a semantically segmented
image and a distance map transform. The post-processing ap-
proach aimed to produce realistic tree species composition map
by labelling only pixels of the target species with high class
membership probabilities.

Considering the development of AI technologies, and in par-
ticular DL, in this paper it is proposed UAV4Tree a DL-based
system for the automatic establishment of RGB optical images
obtained by the UAV. The main contributions could be summar-
ized as follows:

• the design of an efficient DL-based system to realize the
automatic learning and analysis of RGB optical images ob-
tained by the UAV. Moreover, it includes the performance
comparison of state-of-art deep learning models, including
ResNet, DenseNet, InceptionV3, and Vision Transformer,
for tree classification.

• the automatic design method of DNN combined with SR-
GAN for improving the recognition accuracy.

• investigation of the use of augmented datasets for auto-
mated tree classification from UAV imagery.

• Identification of fine-tuning and dropout as essential tech-
niques for improving the generalization ability of the mod-
els on augmented datasets.

• valuable insights into the development of accurate and re-
liable automated tree classification systems from UAV im-
agery, which has significant implications for sustainable
forest management and conservation.

3. METHODOLOGY

In this section, UAV4Tree as well as the study area where the
dataset for evaluation is collected, are introduced. In particular,
it comprises three phases: Data collection, use of Deep Learn-
ing Pipeline and Performance Evaluation. The details are given
in the following Subsections.

3.1 Study Area

The study area is located in the Marche Region, in the cen-
ter of Italy, in particular, some species present in the province
of Ascoli Piceno ( 42°51’17” N, 13° 34’31” E ) were studied
(in Figure 1 is reported the Geographical Localization of the
area). As far as the climate of this area is concerned: in the
lowland and hill areas a rather subcontinental climate reigns,
with very sultry summers and cold winters. In the mountain-
ous and high hill areas there are cool summers and cold winters
with a large possibility of snow; winters are also harsh in the in-
land hilly areas where low temperatures can occur. Among the
species present in the Marche Apennines we find Acer opalus,
found in abundance in the mountainous area of the territory of
Ascoli Piceno and in other areas of the region, including the
Metauro valley in the coastal area of Monte Conero (Ancona),
together with other species including Quercus pubescens. In the

woods near Ascoli Piceno (Monte Ascensione), it is possible
to find Acer opalus and mixed woods of downy oak (Quercus
pubescens) and chestnut (Castanea sativa). In the mountain-
ous area of the province of Ascoli Piceno (Monti Sibillini and
Monti della Laga), it is possible to find vast woods of chest-
nut (Castanea sativa) associated with Acer opalus and other
species. In these areas, chestnut woods are of particular im-
portance from an economic point of view (the area occupied
by chestnut groves corresponds to about 2300 ha, which is al-
most 100% of the chestnut area in the entire region). In the
Ascoli Piceno area and in other areas of the region, the cultiva-
tion of the Olea europaea species is widespread, particularly in
the “Tenera ascolana” variety, which is particularly important
for the economy of these territories. Cultivation takes place in
both hilly and coastal areas. The cultivation of Olea europaea
in these territories has historical origins dating back to before
the Romans. It was in fact introduced by the Phoenicians and
Greeks. The images of the test dataset, taken by UAV, were
collected in this geographical area.

Pesaro

Urbino
Ancona

Macerata

San Benedetto

Ascoli
Piceno

Figure 1. Geolocalization of the area of study, where the dataset
have been collected.

3.2 Dataset

In the above-described geographical area, images from the test
dataset were collected using UAVs in different weather con-
ditions and lighting. As previously explained, a significantly
different set of images from the training and validation dataset
is used, obtained through the iNaturalist website, depicting the
specimens of the four species in different phenological states,
captured from the ground, framing the subject from an ”at-eye
level” perspective. The images were divided as follows: 2690
images in the training dataset (Figure 2), 560 in the validation
dataset, and 2650 in the testing dataset (Figure 3). Manual se-
lection operations were carried out on the training dataset to
eliminate potentially noisy images (presence of blurs, presence
of plants belonging to other species). The class IDs present in
the datasets are as follows: 0 for the Acer opalus class, 1 for
the Castanea sativa class, 2 for the Olea europaea class, and
3 for the Quercus pubescens class. The RGB images, in JPG
format with various resolutions, are processed and transformed
using the RandomResizedCrop() function present in the PyT-
orch module, to obtain images of appropriate size for the dif-
ferent network models used. The test dataset contains images
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obtained through frame grabs from films made using UAVs in
the geographic areas of interest for this study.

The images were partly captured using a DJI drone equipped
with an FC7303 camera, with a focal length of 4.5 mm, and at
an altitude ranging from 20 to 40 meters (above ground level).
However, it should be noted that in most cases, the images were
extracted from videos captured by external sources, and there-
fore, such information is not available.

The objective of our work was to compare the results of differ-
ent deep learning models for image classification obtained from
UAV (Unmanned Aerial Vehicle) captured images. These mod-
els were trained on a dataset of tree images captured at close
range and already accurately annotated by participants in the
iNaturalist project. These models were used to recognize im-
ages captured by UAV, which show trees from a different per-
spective and with less detail compared to the images used for
training and validation of the models. The use of highly de-
tailed images for the training/validation dataset allows captur-
ing the details of different species (textures, shapes, leaf col-
ors) with higher resolution than what can be achieved with a
UAV device. The process of selecting training and validation
images in our experiments was facilitated by the fact that the
images were already annotated by iNaturalist. Therefore, we
only needed to crop some images to remove any extraneous ele-
ments unrelated to the main subject. The images acquired with
UAVs that we used in our tests sometimes exhibited inadequate
quality and noise levels, which could compromise accurate an-
notation for use in the training dataset. This could potentially
lead to a degradation in the precision of the models. To util-
ize these images correctly and avoid the risk of mislabeling, it
would have been necessary to supplement them with ground
truth information that we did not possess. Obtaining such in-
formation often requires additional time-consuming human in-
tervention. At the same time, we chose to use UAV-acquired
images, which potentially could have mislabeling issues due to
the difficulty of precisely identifying the plant classes, only for
the test dataset. This approach allowed us to achieve good res-
ults during prediction and subsequently manually analyze only
the images that were not correctly recognized by the model. In-
cluding ”mislabelled” images in the training dataset could have
significantly degraded the model’s performance, as we inferred
from the results obtained by reversing the training/validation
dataset with the test dataset. We adopted this approach spe-
cifically to study the behavior of different deep learning models
when the images in the training/validation dataset and those in
the test dataset, despite representing the same subject, vary in
viewpoints and resolutions for various reasons. Certainly, in the
future, this work can be expanded by incorporating other deep
learning models or by performing object detection tasks.

Figure 2. The image shows few images, provided as example, of
the pictures composing the Training Dataset.

3.3 Deep Learning pipeline

The following tasks were executed: first, various DL models
(namely Resnet, Densenet, InceptionV3, Vision Transformer)

Figure 3. Few images taken from the Test Dataset, respectively
Class ID 2 e Class ID 1

were tested on datasets; afterwards, fine-tuning (running adjust-
ment of drop-out, learning rate, weight decay) where necessary
to achieve better performance and avoid overfitting. The vari-
ous models used are pre-trained (Imagenet1K), and the number
of training epochs for each model is less than 300 epochs. Des-
pite achieving high accuracy values during the train/validation
phase, the Resnet and InceptionV3 networks achieved unsat-
isfactory accuracy results during testing. This is likely due to
the limited number of images in the datasets, as well as the
significant difference, especially for some classes, between the
images in the train/validation dataset, which were taken from
ground level, and the test dataset containing images taken via
UAV. Fine-tuning, for some network models, has allowed for
the avoidance of overfitting and improvement in performance,
especially through the introduction of drop-out and modifica-
tion of weight-decay and learning rate. Improved performance
has been noticed when using the SGD optimizer, as opposed to
Adam. The model with the best performance is Densenet161
(Huang et al., 2017) (Fig. 5) (Fig. 4) with LR=0.0004 and SGD
optimizer. Super Resolution is then used to evaluate possible
improvements in performance achieved in the previous tests,
applying high resolution to the images obtained via UAV in the
test dataset. The test dataset images are processed via an SR-
GAN (Ledig et al., 2017). The images are obtained by applying
Super Resolution (with a multiplier 4×) via GAN to the images
in the original test dataset, previously subjected to manual crop
operations. For some tests (InceptionV3), an improvement in
performance in terms of accuracy of up to 10-15 points is de-
tected, compared to the inference on the dataset that does not
use images generated by SR-GAN. The results obtained are
summarized in Table 1, where they are compared to the res-
ults of the previous test on the original dataset, and the values
obtained via the ViT B16 model are shown in Table 3. By re-
versing the train/validation dataset with the test dataset, some
tests are carried out using the aforementioned models, resulting
in an accuracy lower than 0.60 in all cases. The train/validation
dataset used so far was then modified using augmentation tech-
niques to verify the increase in generalization capabilities of the
various models. Following what is reported in (Dosovitskiy et
al., 2020), the network Densenet161 is chosen to test the per-
formance, having shown the best performance in the test on
the original dataset, with the Vision Transformer B16 model,
generating an augmented dataset from the original train data-
set. The images in the train/validation dataset have been trans-
formed with augmentation techniques like: flip (random flip,
flip top/bottom, and flip left/right), skew, and ”random eras-
ing” (Zhong et al., 2020). For the use of Vision Transformer
B16, the images are resized via RandomResizedCrop to the size
of 224×244, necessary to manage the typical 16×16 patches
of this model. The test dataset is not modified. The results
are presented in Table 4. The Vision Transformer B16 model
shows a precision of 0.75 for the Acer opalus class, 0.87 for the
Castanea sativa class, 0.89 for the Olea europaea class, and
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0.60 for the Quercus pubescens class, with an overall accuracy
of 0.81 and F1-score of 0.81. Even for the augmented dataset,
a test is carried out by running some models after reversing the
train/validation dataset with the test dataset. The overall accur-
acy of the Vision Transformer B16 model is illustrated in Table
5, showing an accuracy of 0.48.

The purpose of the reversing process was to evaluate the ability
of various neural network models to correctly classify close-
range images of trees (from an ”eye level” viewpoint) based
on images captured by a drone. The low level of accuracy
achieved by the models is certainly attributed to the difficulty
of manually annotating images captured by a drone, where dif-
ferent tree species are often present in the same photo. In such
cases, the photo editing work required to avoid mislabeling is-
sues becomes complex and time-consuming. However, in UAV
images where only one tree species is present, the model’s per-
formance is satisfactory.

4. RESULTS

In this section, we present the results of our experimental study,
which was conducted following the previously described meth-
ods. The purpose of this study was to automatically classify tree
images obtained from UAV. As already stated, the classification
of these images is critical for various applications, including
forest management and conservation. To achieve this goal, we
designed and implemented deep learning algorithms that can
accurately classify the images based on various features, such
as leaf size, color, and shape. Specifically, we evaluated the per-
formance of state-of-art deep learning models, including Res-
Net, DenseNet, InceptionV3, and Vision Transformer. These
models were trained using a dataset of labeled images, and their
performance was evaluated using various metrics, including ac-
curacy, precision, recall, and F1-score. These experiments were
conducted to compare the performance of each algorithm and
identify the best-performing model for tree image classification.

Firstly, we introduce the table regarding the starting dataset and
on the test set, through SR-GAN (Table 1).

For the classes examined in this experiment, we report the res-
ults of Precision, Recall and F1-Score obtained with the Densenet161
(Table 2).

Besides, for the sake of completeness, the confusion matrix ob-
tained with the Densenet161 is reported in Figure 4, while the
Accuracy and Loss for both training and validation are depicted
in Figure 5.

As stated in the methodology section, the Vision Transformer
B16 method has been used on the test set SR-GAN; here below
the results achieved (Table 3).

In order to evaluate the performances on the dataset after the
augmentation, we report the results in the following table (Table 4).

We finally report the results on the dataset with augmentation,
but exchanging the training set with the test set.

The results of our experiments provide valuable insights into
the use of deep learning for automated tree classification from
UAV imagery.

Figure 4. Confusion Matrix

Figure 5. Accuracy and Loss curves for both the training and
validation set

5. DISCUSSIONS

Starting from the initial test (that involved the execution of sev-
eral models on the starting dataset characterized by a few hun-
dred training images for each class), the Inception V3 network
shows (Table 1) superior performance compared to other mod-
els, as is typical of this network in situations where datasets
have a low number of samples. It is worth noting how in the test
using SR-GAN for the Inception V3 model, an improvement in
performance (Table 1) in terms of accuracy was detected, with
an increase of up to 10-15 points compared to what was ob-
tained from inference on the dataset that did not use images
generated by SR-GAN. Despite the worse performance of the
Densenet161 model when using an augmented dataset (Table 1)
compared to the test previously performed on the initial dataset,
an increase in performance of the ViT-B16 model is noted us-
ing the augmented train/validation dataset, confirming the char-
acteristic of this model to improve its performance when the
dataset has larger dimensions and the model improves its gen-
eralization ability. The ”augmented” dataset consists of 63,000
images in the training dataset, 3,000 images in the validation
dataset, and 2,640 images in the test dataset.
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Table 1. Results on the original dataset

Model
Accuracy

(validation)
Accuracy

(original test dataset)
F1-score

(original test dataset)
Accuracy

(SR-GAN test dataset)
F1-score

(SR-GAN test dataset)
Resnet152 0.92 0.53 0.54 Not Verified Not verified

Densenet161 0.93 0.72 0.74 0.69 0.72

VGG19 0.91 0.57 0.59 Not verified Not Verified

InceptionV3 0.98 0.37 0.34 0.54 0.55

Vision Transformer B16 0.96 0.68 0.68 0.75 0.76

Figure 6. Grad-Cam analysis, performed on the ground truth Class 1 (Castanea sativa)

Table 2. Results obtained with the Densenet161

Class-ID Precision Recall F1-score
0 0.75 0.79 0.77
1 0.76 0.74 0.75
2 0.78 0.70 0.74
3 0.51 0.62 0.56

Table 3. Results of the Vision Transformer B16 model on the
dataset test SR-GAN.

Class-ID Precision Recall F1-score
0 0.98 0.42 0.59
1 0.69 0.61 0.65
2 1.00 0.71 0.83
3 0.69 1.00 0.82

Table 4. Results on test dataset with augmentation.

Model Epoch Accuracy
(validation)

Accuracy
(augmented)

F1-score
(augmented)

Densenet161 50 0.90 0.67 0.69
Vision
Transformer B16 30 0.87 0.81 0.81

Analyzing the metrics reported in the various tests (Tables 2 and
3, lower results can be noticed regarding class 3 Quercus pu-
bescens, probably due to the presence of ”noise” in the test data-
set, caused by the presence of plants of other species in the im-
ages. It should also be noted that, as reported by (Zhang et al.,
2021), variations during different periods of the year, such as
the shape, color, and consistency of the tree crowns in the data-
set, can reduce classification accuracy. By reducing the classi-

Table 5. Results on the dataset by exchanging training and test
set

Class-ID Precision Recall F1-score
0 0.75 0.27 0.39
1 0.31 0.16 0.21
2 0.90 0.43 0.58
3 0.41 0.86 0.55

fication to only classes with ID 0, 1, and 2, an overall accuracy
of 0.89 is obtained with the Vision Transformer L16 model and
an overall accuracy of 0.91 with the Vision Transformer DeiT
model. From the tests performed, using the Vision Transformer
B16 model, the importance of using an appropriate drop-out
value to avoid overfitting has emerged. The model, in fact, with
a 0.3 drop-out, reaches an average accuracy of 0.81 (using the
dataset with 4 classes), while the same model, without the use
of drop-out, achieves an accuracy of about 0.57. Analyzing the
results of the tests performed by reversing the train/validation
dataset with the test dataset, better performance is highlighted
regarding classes 0 Acer opalus and 2 Olea europaea. This is
probably due to the fact that in the images present in the dataset
used for training (i.e., the test dataset used in the initial task),
there are images of forests with species of classes 1 and 3 in
which trees of other species are also present, while in olive cul-
tivations and maple forests, it is easier to identify and isolate
only the plants of the species under study in the images. This
difficulty is further compounded by high variability in the phen-
ological state in the images of the train and test dataset, which
is more marked for some of the classes under study.

With the aim of improving the results comprehension and inter-
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Figure 7. Original images and corresponding Rollout Attention
for the classes 1, 2 and 3

pretability, we performed few test with visualization methods,
helping in the visualization of the attention models and, con-
sequently, the features learned by the models. Class Activation
Maps (CAM) (Selvaraju et al., 2016) are visualization meth-
ods used to explain various deep learning models, identifying
which features of the image motivated the selection of our clas-
sification model. Grad-Cam (Figure 6) is used for CNN models
(Selvaraju et al., 2017) because Gradient-Weighted Class Ac-
tivation Mapping is highly class-discriminative and therefore
targeted at identifying which features and regions of the image
exclusively influence the choice of the indicated class (Class ID
= 1 in the case of the Figure 6 image). For the Vision Trans-
former model, Visual Attention Maps are used: matrices rep-
resenting the importance of different parts of an input image
with respect to different parts of the model’s learned represent-
ations. In particular, the Rollout Attention technique (Figure 7)
is used to visualize the regions of the image that have been most
relevant for the model’s prediction and how these regions have
been weighted during the attention process.

6. CONCLUSION AND FUTURE WORKS

Automated tree classification from UAV images is a critical
task that has numerous applications in forest management and
conservation. Accurate classification of tree species and indi-
vidual trees can provide valuable information for monitoring
forest health, predicting forest growth and yield, and identi-
fying areas that require intervention or protection. With the
growing demand for sustainable forest management practices,
the need for accurate and efficient automated tree classifica-
tion systems has become increasingly important. UAVs offer
a cost-effective and efficient way to collect high-resolution im-
agery of forests, making it possible to accurately classify trees
at a large scale. Automated tree classification from UAV im-
ages can also help reduce the need for manual labour and costly
field surveys, making it an attractive option for forestry man-
agement and research. Overall, the development of accurate

and reliable automated tree classification systems from UAV
imagery has significant implications for the sustainable man-
agement and conservation of forests around the world. In this
paper, we investigated the use of augmented datasets and we
have applied state-of-art deep learning models for the classific-
ation of tree images obtained from UAV. Our results show that
the use of an augmented dataset can significantly improve the
average accuracy by approximately 10 points compared to the
use of a non-augmented dataset. We found that the Densenet
model performed reasonably well on the non-augmented data-
set, but not on the augmented dataset, where it showed lower ac-
curacy compared to the Vision Transformer (VIT) model. Fur-
thermore, we found that fine-tuning and specifically the intro-
duction of dropout were essential in the tests on the augmented
dataset to improve the generalization ability and avoid overfit-
ting. Finally, we explored the use of SR-GAN in the original
dataset and found that it allowed us to increase the performance
of some models. Our study provides valuable insights into the
use of augmented datasets and deep learning models for auto-
mated tree classification from UAV imagery. Our findings can
inform future research in this area and contribute to the develop-
ment of more accurate and reliable automated tree classification
systems.
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