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ABSTRACT: 
 

This paper proposes a real-time 3D image point clouds mapping algorithm for UAVs that is capable of mapping effectively in 
weak GNSS environments. And a UAV mapping system is integrated with a RGB camera, an inertial measurement unit (IMU), a 
GNSS receiver, data transmission devices, and a DJI M300 flight platform. To achieve real-time and robust mapping, the system 
utilizes a visual-inertial odometry (VIO) that tightly couples GNSS, RGB image, and IMU, which provides stable state estimation 
information for mapping. Subsequently, a dense matching algorithm based on key frames is adopted to recover 3D mapping 
information with low-computational cost. Extensive experiments are conducted on our test site, demonstrating the system's ability to 
build maps stably, even under the effect of wind. The results compared with the trajectory reconstructed by Pix4D show that the system 
achieves competitive accuracy of pose estimation and is capable of real-time mapping.  

 
 

1. INTRODUCTIONS 

In recent years, the advancement of UAV technology has 
driven its growing utilization in civil applications (Guan et al., 
2022), including the power industry where airborne point cloud 
data is used for related applications(C. Chen et al., 2018, 2022). 
In the field of computer vision and remote sensing, numerous 
algorithms for UAVs have been developed (Al-Kaff et al., 2018), 
typically utilizing multimodal data, such as both airborne point 
clouds and images for alignment(Yang & Chen, 2015). However, 
fewer algorithms are proposed for real-time mapping based 
solely on images. In the remote sensing field, aerial mapping is 
commonly performed by flying a UAV equipped with a GNSS 
receiver over an area, taking overlapping photos, and processing 
them with 3D modelling software like Pix4D. However, the 
processing time of the method varies depending on the quality 
and quantity of the images, which is time-consuming and 
unsuitable for fast map building scenarios. 

Most UAV mapping systems (Li et al., 2019; Lin et al., 2019) 
currently use Light Detection And Ranging (LiDAR) sensors for 
simultaneous localization and mapping(SLAM), resulting in 
accurate 3D reconstruction of target areas, which is however 
cost-consuming. Camera-based mapping systems rely on visual 
and inertial guidance information(Qin et al., 2018), which can 
lead to state estimation drift in the weakly textured regions or 
during significant system movement. Dense mapping algorithms 
require abundant computational resources, making real-time 
mapping a challenging task without powerful computing units. 

This paper proposes a real-time UAV 3D image point clouds 
mapping algorithm for outdoor environments with weak GNSS 
and low texture and integrates a UAV mapping system with an 
RGB camera as the main sensor. The system includes a calibrated 
sensor suite with a visual-inertial odometry, tightly coupling 
GNSS,  visual and inertial information, and a mapping algorithm 
on the on-board computer. The algorithm uses the estimated pose 
and GNSS data to recover scale information, acquired in real-

 
* Corresponding author 

time by computing key frame images. The details of the 
algorithm are1 presented in the Section 3 of this paper. 

The main contributions of this paper can be summarized in 
two points as follows: 

1. A robust visual-inertial odometry with tightly coupled 
GNSS data, vision, and inertial data is proposed, achieving 
competitive accuracy (0.778m) in position estimation. And a 
real-time mapping algorithm based on block matching is 
proposed, which utilizes GNSS data to recover scale information 
in the optimization process, enabling real-time mapping with a 
0.447 m accuracy. 

2. A low-cost real-time mapping system for UAVs is 
integrated and the experimental results demonstrate a great 
potential for practical applications . 

The remainder of this paper is structured as follows: Section 
2 introduces the related algorithms. Section 3 outlines the 
proposed system and algorithm. Section 4 presents the 
experiments and evaluation of the proposed algorithm. Finally, 
Section 5 concludes the paper. 

 
2. RELATED WORK 

      Current visual-inertial methods for estimating state, as well 
as mapping, have demonstrated efficacy. However, in certain 
scenarios, such as in weak GNSS or low texture environments, 
they may exhibit some shortcomings. 
 
2.1 VIO 

       Visual-inertial odometry is a real-time state estimation 
technique that utilizes the camera and IMU But it can drift easily, 
leading to unstable pose estimation, especially in the low-texture 
and dynamic environments. To address this issue, three main 
solutions are used: 1) introducing auxiliary exogenous data as 
constraints, 2) employing multiple primitive features during 
feature extraction and tracking, and 3) filtering out dynamic 
features in the environment to retain only static features. 
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        VINS series(Qin, Cao, et al., 2019; Qin et al., 2018; Qin, 
Pan, et al., 2019; Qin & Shen, 2018) and ORB-SLAM3(Campos 
et al., 2021) are popular VIO methods. VINS-Mono (Qin et al., 
2018) tightly couples visual and inertial measurements for real-
time pose estimation, while VINS-Fusion  supports multiple 
sensor suites(Qin, Pan, et al., 2019), online temporal offset 
calibration (Qin & Shen, 2018) and GNSS for global coordinate 
access (Qin, Cao, et al., 2019). ORB-SLAM3 (Campos et al., 
2021) track ORB feature points to improve pose estimation. 
        In low-texture scenes, VIO using only visual information 
and IMU suffers from drift. To tackle this issue, the data from 
multi-source sensors are incorporated to increase VIO's 
robustness. GVINS (Cao et al., 2022) and VINS-RGBD (Shan et 
al., 2019)  respectively combine GNSS data and depth 
information to improve VIO performance. Alternatively, front-
end feature extraction can include other primitive features in the 
visual scene to solve the few-point-feature problem in low-
texture scenario. PLD-VINS (Zhu et al., 2021) uses point features, 
line features, and depth information, while PL-VINS (Q. Fu et al., 
2022) is based on VINS-Mono and uses point and line features, 
both with improved accuracy over VINS-Mono. 
          Moreover, to adapt to dynamic scenes in VIO, DS-SLAM 
(Yu et al., 2018)  uses semantic segmentation and movement 
consistency to reduce the impact of dynamic objects and improve 
localization accuracy. VINS-Dimc (D. Fu et al., 2022) introduces 
epipolar constraints on the IMU-derived motion models and uses 
flow vector bound constraints to filter out deviating features, 
enhancing system stability in dynamic environments. DynaVINS 
(Song et al., 2022) improves pose estimation accuracy by 
discarding the features associated with dynamic and temporary 
static targets. 

Overall, mapping with UAVs faces several challenges such 
as wind-induced oscillations and low-texture features in aerial 
images that make it difficult to perform stable flight and pose 
estimation. To overcome these challenges, we tightly couple 
GNSS, visual, and IMU data in the VIO framework to provide 
more stable pose estimation. In addition, GNSS information is 
also optional to discard in case of poor signal quality. 
 
2.2 Mapping 

        The current image-based mapping algorithms can be 
categorized into two types based on the mapping results: the one 
produces 2D image stitching results while the other generates 3D 
results such as point clouds, Mesh, Grid Map, etc. Map2DFusion 
(Bu et al., 2016) achieves real-time stitching of aerial images by 
using monocular SLAM to estimate the position and orientation 
of camera, but it only generates 2D results without 3D 

information. TerrainFusion (Wang et al., 2019) generates local 
DSMs with 3D information in real-time by processing key frames 
generated by monocular SLAM, which are subsequently 
accessed into the global DSM. DenseFusion (L. Chen et al., 2020) 
uses a novel DSM fusion method to generate point clouds, DOM, 
and DSM in real-time from aerial imagery. OpenREALM (Kern 
et al., 2020) can acquire mosaics or 3D surface information with 
different modes of operation. Additionally, Miller et al. propose 
a mapping algorithm ASOOM (Miller et al., 2022) that can 
generate maps in the GridMap format in real-time for 
collaborative air-ground missions. 

In our proposed UAV mapping system, we also utilize an 
image-based dense mapping algorithm based on keyframes from 
VIO to output point cloud maps and meshes, reducing 
computational costs and achieving real-time mapping. 

Most real-time mapping systems for unmanned aerial 
vehicles (UAVs) currently rely on LiDAR technology. Zhou et 
al. proposes a UAV mapping system (Zhou, 2021) that tightly 
integrates camera and LiDAR data to generate point clouds and 
uses GNSS information for bundle adjustment. However, this 
system is computationally expensive. Similarly, Qian et al. 
proposes a robust mapping system (Qian et al., 2022) that 
combines vision and LiDAR data to acquire 3D maps with 
texture information, but it still requires costly LiDAR technology. 

In contrast, this paper introduces a low-cost UAV mapping 
system that uses only image data from an affordable RGB camera 
to generate 3D maps with RGB information, making it a more 
accessible and cost-effective option for UAV mapping 
applications. 

 
3. METHDOLOGY 

       This paper proposes a real-time 3D image point clouds 
mapping algorithm and integrates a real-time UAV 3D image 
point clouds mapping system called DCSI LUOJIA Explorer that 
employs the DJI 300 as the flight platform. The mapping suite 
comprises a RGB camera, an IMU, a GNSS receiver, a digital 
transmission module, an image transmission module, and a 
Nvidia AGX Xavier. Figure 1 illustrates the algorithm 
framework, which is composed of a pose estimation module and 
a mapping module. The pose estimation module includes four 
phases: data input, data pre-processing, initialization, and non-
linear optimization. The mapping module uses the pose obtained 
from the pose estimation module to identify the key frames, 
which adopts intensive stereo matching to obtain stereo 
information. The module then assigns the image colour 
information to the corresponding point cloud and generates a map 
via an optimization process.  

 

 
Figure 1. Framework of the proposed algorithm 
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3.1 DCSI LUOJIA Explorer system hardware composition 

      As depicted in Figure 2, the proposed low-cost real-time 
UAV mapping system called DCSI LUOJIA Explorer comprises 
of a multisensory suite and an unmanned aircraft platform. The 
UAV platform chosen for this system is the DJI 300 that has a 
maximum load capacity of approximately 2.5 kg and can endure 
a maximum of 30 minutes while carrying the maximum load. The 
multi-sensor suite includes a GNSS receiver, a digital 
transmission device, a low-cost IMU, an RGB camera, and a 
long-range image transmission device. 
 

 
Figure 2. DCSI LUOJIA Explorer hardware design 

 
      The GNSS receiver used in the system is the Ublox F9P 
GNSS receiver, which has a GNSS data accuracy of 1.5 m and 
operates at a reception frequency of 10 Hz. The used low-cost 
IMU is Xsens Mti300, with an in-run bias of 0.015 mg for the 
accelerometer and 10/h for the gyroscope during actual operation. 
The output frequency of the IMU is set to 200 Hz. The camera 
utilized in the mapping system is Intel Realsense D455, with a 
camera resolution of 1280*720 and an output frequency of 30 Hz. 
Notably, only the RGB image from the camera is utilized in the 
entire system. Table 1 presents the information for the relevant 
sensors utilized in the system. 
 

Sensors descriptions 
GNSS  receiver Supporting 

BDS/GPS/GLONASS/Galileo 
digital transmission device transmit power from 100mW 

to 1W;902-928 MHz 
frequency band; Range up to 

60km 
IMU accelerometer in-run bias is 

0.015mg; gyroscope in-run 
bias is 10 /h 

Camera 1280 ×720; 30Hz 
Video transmission devices 100Mbps; 5.1~5.9GHz; Range 

up to 2-4km; Delay 150ms 
Table 1. Sensor Information. 

 
3.2 Coordinate systems involved in the experiment 

     There are three coordinate systems involved in the experiment. 
1. Sensor coordinate system. The IMU coordinate system is 

the coordinate system of Xsens Mti-300 in our system. The 
camera coordinate system is a Cartesian 3D coordinate system 
with the RGB camera Intel Realsense D455 as the origin, and the 
relationship between the two coordinate systems is determined 
by advanced calibration. 

2. Local coordinate system. This coordinate system uses the 
position of the UAV mapping system at take-off as the origin, 

with the X-axis facing forward, the Y-axis facing left, and the Z-
axis facing up, and the visual odometry output takes this 
coordinate system as the reference system. 

3.ENU coordinate system, with a point on the earth 
reference ellipsoid as the origin, the XYZ axes of this coordinate 
system point to the east, north and gravity inverse direction 
respectively. 
 
3.3 Tightly coupled GNSS-visual-inertial Fusion 

       To achieve a stable and robust mapping algorithm, a reliable 
visual inertial odometry (VIO) system that can operate smoothly 
during UAV flight is necessary. However, VIOs used for 
estimating system states often face the issue of instability and 
drift, as shown in popular VIO frameworks like the VINS series 
and ORB-SLAM3. In practical scenarios, high-speed UAV 
flights at high altitudes or system jitter due to control can cause 
image magnitudes to shake and overall system accelerations to 
be significant, leading to VIO drift. To address this drift issue, 
this paper proposes a self-positioning method that integrates 
GNSS data. 
        The proposed visual-inertial odometry in this paper 
addresses the issue of drift in VIO by incorporating GNSS data 
in a tightly-coupled manner, resulting in better mapping 
performance and increasing robustness. The self-localization 
framework, as illustrated in Figure 1, consists of a data pre-
processing module, initialization module, and non-linear 
optimization module, with raw GNSS observation data, IMU 
data, and image data from the camera serving as inputs. In the 
pre-processing phase, GNSS data are altitude-filtered to remove 
lower altitude data, and only stable satellite signals from satellites 
that have been continuously locked for a period are accessed. 
IMU data are pre-integrated, and feature points are extracted and 
tracked from the image data. The three types of data are pre-
processed and then used to initialize the system state. During 
initialization, visual-only SfM operations are first performed to 
obtain an initial motion estimate, and the trajectory obtained from 
the IMU are aligned with the visual-only SfM results to recover 
velocity, scale, and gravity. If the visual inertial alignment is 
successful, a coarse-to-fine initialization process is conducted for 
GNSS data. This process includes obtaining a coarse anchor 
position using the SPP algorithm, aligning the local and global 
coordinate systems by using local velocity obtained from the 
visual inertial alignment process and GNSS Doppler 
measurements to achieve yaw alignment, and refining the global 
position of the anchor using precise local trajectory and clock 
constraints. Once initialization is completed, the system can 
continuously monitor and process the GNSS signal to prevent 
signal degradation. 
        If the GNSS signal becomes weak or absent, the GNSS 
initialization will fail, and the self-localization module will 
switch to VIO-only mode, using only visual inertial data for state 
estimation. In the non-linear optimization stage, a two-way 
marginalization method is added after sliding window 
optimization for actions that may cause visual inertial drift, such 
as rotation. This method removes certain frames based on the 
parallax test, ensuring real-time operation and system robustness, 
and finally outputs the estimated pose. 

The state estimation problem is formulated and derived 
using a probabilistic framework. This will allow us to model the 
uncertainties and correlations involved in the system and 
measurement processes, and to arrive at a more accurate and 
reliable estimate of the system state. All the problem is structured 
as a factor graph, where the measurements from sensors are 
represented as a series of interconnected factors. These factors, 
in turn, constrain the system states and help to determine the 
overall behavior of the system. To define the optimum system 
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state, we aim to maximize the posterior probability based on all 
the measurements. Assuming that each measurement is 
independent of the others and has a Gaussian-distributed noise 
with a zero mean, we can transform the MAP problem into a cost 
minimization problem where each cost corresponds to a specific 
measurement. 

 𝒳𝒳⋆ = arg𝑚𝑚𝑚𝑚𝑚𝑚
𝒳𝒳

𝑝𝑝(𝒳𝒳 ∣ 𝐚𝐚 )

 = arg𝑚𝑚𝑚𝑚𝑚𝑚
𝒳𝒳

𝑝𝑝(𝒳𝒳)𝑝𝑝(𝐚𝐚 ∣ 𝒳𝒳 )

    = arg𝑚𝑚𝑚𝑚𝑚𝑚
𝒳𝒳

𝑝𝑝(𝒳𝒳)� 
𝑛𝑛

𝑖𝑖=1

𝑝𝑝(𝐚𝐚𝑖𝑖 ∣ 𝒳𝒳)

                               = arg𝑚𝑚𝑚𝑚𝑚𝑚
𝒳𝒳

�∥∥𝐫𝐫𝑝𝑝 − 𝐇𝐇𝑝𝑝𝒳𝒳∥∥
2 + � 

𝑛𝑛

𝑖𝑖=1

∥∥𝐫𝐫(𝐚𝐚𝑖𝑖 ,𝒳𝒳)∥∥𝐏𝐏𝑖𝑖
2 � ,

(1) 

where 𝒳𝒳 is the system state and 𝒳𝒳⋆ is the optimum system state.  
�𝐫𝐫𝑝𝑝,𝐇𝐇𝑝𝑝� represents the prior information about the system state, 
while 𝐚𝐚  is the aggregation of 𝑚𝑚  independent sensor 
measurements. 𝐫𝐫(⋅)  denotes the residual function of each 
measurement, and ∥⋅∥𝐏𝐏 is the Mahalanobis norm used to evaluate 
the similarity between the measurements and the prior state 
information. 

The experimental process utilizes a soft synchronization 
method for time synchronization, where GNSS time is obtained 
through UbloxDriver and local time is adjusted to GNSS time. 

In this paper, experimental testing of the proposed VIO 
framework shows that it can accurately estimate the attitude of 
the UAV from take-off to landing without any drift, 
demonstrating its robustness and effectiveness during UAV flight. 
         
3.4 Real-time 3D mapping based on RGB image 

In the experimental tests, the mapping algorithm proposed 
in this paper has demonstrated its ability to perform real-time 
mapping with reliable accuracy. The algorithm utilizes the 
odometry from the real-time output of the state estimator in 
Section 3.3 as an exogenous data input and creates a new 
keyframe with recorded data such as keyframe image, odometry, 
and GNSS data once the UAV has moved a threshold distance. 
Dense stereo data is computed by block matching. In equation (2), 
the depth value for a given pixel location is determined by 
minimizing the sum of the differences between the grayscale 
values at corresponding locations in two images. The size of the 
matching window is denoted by 𝑤𝑤  and 𝑑𝑑  represents the 
displacement amount within the search window. The grayscale 
value is denoted by 𝐼𝐼. 

                   𝐷𝐷𝐿𝐿(𝑢𝑢, 𝑣𝑣) = arg,𝑚𝑚𝑚𝑚𝑚𝑚
𝑑𝑑

�  
𝑢𝑢+𝑤𝑤

𝑥𝑥=𝑢𝑢−𝑤𝑤

�  
𝑣𝑣+𝑤𝑤

𝑦𝑦=𝑣𝑣−𝑤𝑤

�𝐼𝐼𝐿𝐿(𝑚𝑚,𝑦𝑦)

− 𝐼𝐼𝑅𝑅(𝑚𝑚 − 𝑑𝑑,𝑦𝑦)�2                                          (2) 
And then dense stereo data is then projected into the point 

cloud with each point aligned to the corresponding cell in the 2D 
plane. Additionally, the colour of the corresponding pixel closest 
to the image center is assigned to each cell.  

To recover the scale information of the map and solve the 
scale problem using monocular visual odometry, pose estimates 
and GNSS data are used by an optimizer. 

 
4. EXPERIMENTS 

4.1 Experimental site and flight setup 

To verify the effectiveness of the proposed mapping system 
and evaluate the mapping results, an experiment was conducted 
in an abandoned playground. The old playground was chosen as 

the test site, and a satellite imagery of the area is shown in Figure 
4. 

 
Figure 4. The test site. 

 
The UAV was flown at an altitude of approximately 40 

meters above the ground, with a speed of 3 meters per second for 
data collection. The IMU frequency was set to 200 Hz, while the 
RGB camera had a resolution of 1280 * 720 pixels and operated 
at a frequency of 30 Hz. The GNSS data was set to a frequency 
of 10 Hz, but during the actual experiment, the GNSS frequency 
was between 7 to 8 Hz and the UAV is controlled to fly 
longitudinally and horizontally over the test site for 
approximately 30 minutes. The details of the experimental setup 
are provided in Table 2. 

 
Experimental setup Settings 

Site The old playground 
Flight Altitude (From the 

Ground) 
40m 

IMU Frequency 200Hz 
Camera Resolution 1920 * 720 
Image Frequency 30Hz/10Hz 
GNSS Frequency 10Hz(7~8Hz) 

Duration of the flight 30min 

Table 2. Experimental setup. 
 
4.2 Ground truth acquisition 

The 3D ground truth for the experiment was reconstructed 
by Pix4D with the images captured by the UAV. In the 
reconstruction process, one frame was extracted every 5 seconds 
from the data packet acquired during a section of the UAV's 
trajectory, and the corresponding latitude, longitude, and altitude 
of the GNSS receiver data were recorded. A total of 110 frames 
were extracted and input into the PiX4D software for 3D 
reconstruction. 

However, due to the 1.5m accuracy of the GNSS data used 
during the UAV flight, there may be some error in the ground 
truth. To minimize this error, 23 control points with precise 
geographic coordinates were collected at the experimental site 
using the same receiver before the reconstruction process. During 
the acquisition of the control points, the precise RTK 
measurements of control points were obtained. A total of 23 
control points were acquired using this method in the experiment. 
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The images obtained by frame extraction and the 
corresponding geographic coordinates file were imported into 
Pix4D along with the control point files. Control point punctures 
were conducted in Pix4D for the corresponding locations in the 
images as constraints, and the Pix4D software was then started 
for 3D reconstruction. The initialization process took 4 minutes 
and 41 seconds, point cloud generation took 47 seconds, 3D 
texture generation took 34 seconds, and DSM generation took 16 
seconds, for a total of 6 minutes and 18 seconds. The accuracy of 
the reconstructed 3D map using PiX4D is shown in Table 3, and 
the accuracy in the X, Y, Z axes reaches 0.01m, 0.014m, and 
0.006m, respectively. The indicators thus demonstrate that the 
constructed map can be used as the ground truth. The 3D model 
constructed by PiX4D is shown in Figure 5, and it is observed 
that the constructed 3D map is highly accurate.。 

 
RPE-X(m) RPE-Y(m) RPE-Z(m) Duration 

0.010 0.014  0.006  6min18s 
Table 3. Pix4D 3D reconstruction accuracy. 

 

 
Figure 5. Mesh built by Pix4D. 

 
4.3 Visual-inertial Odometry result 

        Experiments were conducted with data collected during a 
flight over the old playground. Figure 6 illustrates the real-time 
attitude estimation process using the low-cost UAV real-time 
mapping system proposed in this paper. In Figure 6 (a), there is 
an RGB image and an image with sparse feature points extracted, 
respectively while in Figure 6 (b) the pose estimator proposed in 
this paper performs pose estimation of the UAV system to obtain 
the estimated odometry. It can be qualitatively judged that the 

attitude estimator proposed in this paper can estimate the system 
state of the UAV flying at high altitude in a more stable manner, 
while also achieving real-time mapping. 
 

        
                 (a)                                                (b) 

Figure 6. Real-time pose estimation. 
 

        To evaluate the accuracy of the proposed attitude estimation 
method, the second half of the UAV flight data was selected since 
the GNSS data in the initial phase of the flight were unstable. 
After trajectory alignment, the accuracy evaluation results are 
presented in Table 4. The results demonstrate that the maximum 
error is 2.197m, the average error is 0.808m, the median error is 
0.778m, the minimum error is 0.174m, and the root mean square 
error is 0.922m. It is evident that the visual inertial odometry with 
tightly coupled GNSS proposed in this paper can achieve 
decimeter-level accuracy, surpassing the 1.5m accuracy of the 
used GNSS. These results suggest that the proposed pose 
estimation method can offer stable and precise pose estimation 
for the mapping system and meet the mapping requirements of 
the UAV real-time mapping system. 

 
Max Mean Median Min RMSE STD 
2.197 0.808  0.778  0.174 0.922 0.445 

Table 4. Accuracy of the proposed VIO method. 
 
       The accuracy evaluation results obtained using the EVO tool 
are presented in Figure 7. In Fig. 7(a), the experimental trajectory 
is compared with the reference true trajectory, and in Fig. 7(b), 
the differences between the X, Y, and Z coordinates and the true 
values are plotted, respectively. It can be observed that the 
experimental results are in good agreement with the true values 
in the X and Y directions, while some instability is observed in 
the Z direction, which may be attributed to the lower accuracy of 
the GNSS data used in this direction. The statistical plot of the 
experimental trajectory accuracy variation over time is shown in 
Figure 7 (c). 

 

   
                               (a)                                                                           (b)                                                                (c) 

Figure 7. Visualization of trajectory accuracy evaluation. 
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4.4 Mapping result 

The experimentally generated 3D map was first 
qualitatively compared with the ground truth generated using 
Pix4D, as shown in Figure 8. The 3D map reconstructed by our 
algorithm is shown in Figure 8 (a) and Figure 8 (c), while Figure 
8  (b) and Figure 8 (d) represent the map obtained using Pix4D, 
which is considered as ground truth. The comparison revealed 
that the map obtained by our mapping algorithm is almost as 
good as the one reconstructed using Pix4D. However, it does not 

work as well as Pix4D in processing the images of the edge part 
of the flight route. Specifically, the map built by our algorithm 
will have some sharp raised parts in the edge part, which is due 
to the less overlapping part of the edge image. As a result, the 
dense matching algorithm cannot estimate the elevation of this 
part. Unlike Pix4D, our algorithm does not utilize filtering 
process. Nonetheless, our proposed mapping algorithm is real-
time and can update the map once per second, making it far more 
efficient than Pix4D. 

 

      
(a)                                                                                                       (b) 

      
(c)                                                                                                      (d) 

Figure 8. Comparison of the built map with the ground truth. 
 

Besides, the point cloud data generated by our mapping 
algorithm was saved and compared with the point cloud data 
generated by Pix4D. However, due to the large number of points 
generated by our algorithm, the whole dense point cloud has a 
large file size. To improve the efficiency of the experiment, we 
first performed a thinning operation and then calculated the cloud 
to cloud distances using Cloud Compare with the point cloud 
generated by Pix4D. The results obtained are shown in Figure 9, 

where the average distance was found to be 0.447, and the 
standard deviation was 0.279. Specifically, Figure 9 (a) displays 
the result of comparing the distance between the experimentally 
generated point cloud and the point cloud generated by Pix4D 
and the distribution of the number of points in different distance 
ranges, and Figure 9 (b) displays the point cloud generated by 
Pix4D. 

                                     
                                                        (a)                                                                                                (b) 

Figure 9. Point cloud distances calculation. 
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5. CONCLUSIONS AND FUTURE WORK

        In this paper, we present a real-time UAV 3D image point 
clouds mapping algorithm and integrate a low-cost UAV 
mapping system, which includes an RGB camera, a GNSS 
receiver, an IMU, and image and digital data transmission 
devices. The system utilizes a visual inertial odometry with 
tightly coupled GNSS, visual, and inertial data to perform robust 
real-time state estimation of the UAV. Furthermore, a block 
matching-based mapping algorithm is employed to achieve real-
time mapping. The experimental results demonstrate that the 
proposed system can accomplish accurate and efficient real-time 
mapping. Notably, the accuracy of the system's visual inertial 
odometry can reach the decimetre level, showcasing the 
significant potential of the proposed system for 3D mapping 
applications. However, to obtain stable mapping and pose 
estimation, the proposed method still requires GNSS data. In a 
GNSS-denied environment, the proposed method might be 
limited. Introducing point cloud data at this time can help solve 
this problem. Furthermore, real-time semantic mapping will be 
explored in our future work. 
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