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ABSTRACT:

In this paper, we present a comprehensive investigation of the challenges of Monocular Visual Simultaneous Localization and

Mapping (vSLAM) methods for underwater robots. While significant progress has been made in state estimation methods that utilize

visual data in the past decade, most evaluations have been limited to controlled indoor and urban environments, where impressive

performance was demonstrated. However, these techniques have not been extensively tested in extremely challenging conditions,

such as underwater scenarios where factors such as water and light conditions, robot path, and depth can greatly impact algorithm

performance. Hence, our evaluation is conducted in real-world AUV scenarios as well as laboratory settings which provide precise

external reference. A focus is laid on understanding the impact of environmental conditions, such as optical properties of the

water and illumination scenarios, on the performance of monocular vSLAM methods. To this end, we first show that all methods

perform very well in air and subsequently investigate the degradation of their performance in ever more challenging underwater

environments. The final goal of this study is to identify techniques that can improve accuracy and robustness of SLAM methods in

such conditions. To achieve this goal, we investigate the potential of image enhancement techniques to improve the quality of input

images used by the SLAM methods, specifically in low visibility and extreme lighting scenarios in scattering media. We present

a first evaluation on calibration maneuvers and simple image restoration techniques to determine their ability to enable or enhance

the performance of monocular SLAM methods in underwater environments.

1. INTRODUCTION

Underwater environments present unique challenges for robotic

navigation. The low visibility, extreme lighting conditions, and

unpredictable nature of underwater terrain make it difficult for

robots to accurately perceive their surroundings and navigate

effectively. Monocular vSLAM (visual Simultaneous Localiza-

tion and Mapping) methods have emerged as a promising solu-

tion for underwater robot navigation, allowing robots to create

a map of their surroundings while simultaneously determining

their own position within that map (Durrant-Whyte and Bailey,

2006).

In monocular vSLAM, a single camera is used to capture im-

ages of the environment, which are then used to construct a

map of the surrounding area. The camera’s position and orient-

ation are estimated in real-time, allowing the robot to determ-

ine its own location within the map. However, the accuracy

of monocular vSLAM methods can be significantly impacted

by environmental conditions, particularly low visibility and ex-

treme lighting scenarios, which are common in underwater en-

vironments. To address this challenge, various image enhance-

ment techniques have been proposed to improve the quality of

the input images and thereby enhance the performance of mon-

ocular vSLAM methods (Song et al., 2022). These techniques

comprise rather heuristic, physically-basedly-based as well as

machine learning-based approaches, such as Generative Ad-

versarial Networks (GANs).

In addition to monocular vSLAM methods, sensor fusion al-

gorithms are crucial for accurate and robust navigation of un-

derwater robots. Underwater environments pose unique chal-

lenges, such as low visibility and unpredictable terrain, that

can significantly impact the accuracy of navigation systems.

Therefore, integrating data from multiple sensors, such as In-

ertial Navigation Systems (INS), sonars, lasers, and cameras,

can improve the overall performance of the navigation system.

For example, combining data from an Inertial Navigation Sys-

tem (INS) and a Doppler Velocity Log (DVL) can improve the

accuracy of underwater robot navigation by providing velocity

measurements that are not affected by currents. Similarly, in-

tegrating data from an INS and a sonar can improve underwater

localization by providing depth information that can be used

to correct INS drift. Sonar sensors, such as multibeam sonars,

can also be used to provide high-resolution 3D maps of under-

water environments that can be used for localization and map-

ping (Drews Junior et al., 2016). Laser-based sensors, such as

scanning laser rangefinders, can also be used to provide high-

resolution 3D maps of underwater environments that can be

used for localization and mapping (Palomeras et al., 2016). In-

corporating data from multiple sensors can be challenging due

to the different modalities and measurement noise associated

with each particular sensor. However, advancements in sensor

fusion algorithms, such as Extended Kalman Filters (EKF) and

Unscented Kalman Filters (UKF), have made it possible to ef-

fectively combine data from multiple sensors in real-time (Yu

et al., 2019), (Yang et al., 2019).

While sensor fusion using multiple modalities has shown great

potential in improving underwater robot navigation and map-

ping, it also comes with additional cost and complexity. There-

fore, in this paper, we evaluate the performance of offline and

online monocular vSLAM methods for underwater robot nav-

igation in both a real-world and a water tank in a laboratory

setting. Our focus is on the impact of environmental condi-

tions, such as water and illumination, on the performance of
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Figure 1. (Middle) Sparse Colmap reconstruction of the real Girona 500 Series AUV A3 surveying mission. After an initialization

maneuver, a typical lawn mower patter followed by two cross tracks to support loop closing attempts are executed. The camera

trajectory is drawn in red. Left lower magnification: increased number of loop closing opportunities (correspondences drawn in Pink)

by executing cross-tracks, while the upper one shows a top- and a side-view of the initialization maneuver carried out to support

SLAM algorithms. (Right) AUV in deep underwater mission and deployed camera-light-system.

monocular vSLAM methods. To this end, we first show the

good performance of the chosen SLAM methods in air and then

investigate their performance degradation with respect to vary-

ing environmental conditions in a scattering medium, i.e., wa-

ter. Finally, we investigate the potential of image enhancement

techniques to improve accuracy and robustness in challenging

underwater environments.

2. MONOCULAR VSLAM

Monocular vSLAM methods are commonly classified into three

categories: feature-based methods, direct methods, and visual-

inertial methods (Zhou et al., 2019). Feature-based methods,

such as ORB-SLAM2 (Mur-Artal et al., 2017), rely on detect-

ing and tracking distinctive features in the image frames to

estimate camera poses and create a map of the environment.

These methods have been shown to achieve accurate results in

a variety of scenarios, including indoor and outdoor environ-

ments. However, they can be sensitive to changes in illumin-

ation, texture, and occlusions, which can cause feature track-

ing failures and affect their robustness (Mur-Artal and Tardós,

2015). Newer versions of ORB-SLAM2, ORB-SLAM3 (Cam-

pos et al., 2021) incorporate semantic information to improve

the robustness and accuracy of the system. Direct methods,

such as DSO (Engel et al., 2018) and LSD-SLAM (Engel et al.,

2014) estimate camera motion and 3D structure directly from

the intensity values of the image frames, without relying on fea-

ture detection and tracking. LSD-SLAM uses semi-dense depth

maps to estimate the camera poses and create a map of the en-

vironment. This method is known for its ability to handle large-

scale environments and low-texture scenes while ORB-SLAM2

uses ORB features to detect and track keypoints in the image

frames, and then estimates the camera poses and creates a map

of the environment based on the feature matches. BAD-SLAM

(Bian et al., 2020) is another direct method that estimates the

camera motion and 3D structure directly from the intensity val-

ues of the image frames. It aims to improve the accuracy and

robustness of SLAM systems by directly leveraging the RGB-D

information and performing real-time bundle adjustment.

These methods can provide accurate and dense reconstructions

in low-texture environments, but they require significant com-

putational power and are less robust to changes in illumination

and scene geometry (Engel et al., 2017).Visual-inertial meth-

ods, such as OKVIS (Leutenegger et al., 2015) and VINS-

Mono (Qin et al., 2018), fuse camera and inertial measure-

ments to estimate camera poses and create a map of the envir-

onment. These methods can achieve accurate results in highly

dynamic and challenging environments, but they require ad-

ditional sensors and calibration (Forster et al., 2017). How-

ever, also these methods face challenges when operating in

highly dynamic underwater or low-light environments (Köser

and Frese, 2020). To address these challenges, researchers

have proposed various modifications to existing methods or de-

veloped entirely new methods. For example, (Ferrera et al.,

2019) proposed a new visual odometry method specifically

designed to handle the challenging conditions of underwater

environments without any previous image enhancement step.

Howerver, in our study we focus only monocular vSLAM meth-

ods that use camera data alone and do not incorporate inertial

measurements.

3. IMAGE ENHANCEMENT / RESTORATION

Underwater environments typically exhibit extreme light con-

ditions and poor visibility, which can significantly impair the

performance of monocular vSLAM methods. To mitigate this

issue, researchers have proposed various techniques for enhan-

cing underwater images, which we here broadly divide into four

categories: heuristic, statistical, physically-based, and machine

learning methods (see (Song et al., 2022) for a comprehensive

survey).

3.1 Statistical methods

Statistical methods for underwater image restoration aim to re-

cover the original image from its degraded underwater version.

These methods use statistical models to estimate the degrad-

ation factors, such as light attenuation, scattering, and noise,

and then use these estimates to restore the image. For instance,

(Chiang and Chen, 2012) proposed a wavelength compensa-

tion and dehazing approach that estimates the light attenuation

coefficient and compensates for color distortion caused by the

water medium. In (Ancuti et al., 2012) the authors proposed

an underwater image enhancement method that relies only on

the degraded version of the image for input and weight meas-

ures. They used two inputs to represent color correction and

contrast enhancement of the original underwater image/frame,

while four weight maps are employed to enhance the visibility
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of distant objects degraded by medium scattering and absorp-

tion. (Drews Jr et al., 2017) proposed a statistical approach that

estimates the parameters of a degradation model and inverts the

degradation process to restore the original image.

3.2 Heuristic methods

Heuristic-based methods for underwater image restoration ex-

ploit specific underwater environment characteristics. Li et al.’s

underwater dark channel prior (UDCP) (Li et al., 2016) uses

the dark channel prior principle to estimate transmission and

restore the image. Kim and Lee’s adaptive histogram equaliz-

ation (AHE) (Kim and Lee, 2017) applies histogram equaliza-

tion to small image regions for contrast enhancement. Pizer et

al.’s contrast-limited adaptive histogram equalization (CLAHE)

(Pizer et al., 1987) limits contrast enhancement to prevent over-

amplification of noise. In (Köser et al., 2021), the authors

present a practical approach to compensating for these lighting

effects on flat seafloor regions found in the Abyssal plains. The

method is parameter-free and performs robust statistics-based

estimates of additive and multiplicative nuisances without re-

quiring explicit parameters for light, camera, water, or scene.

Although heuristic models can produce impressive outcomes

in situations that align with their underlying assumptions, their

results may lack consistency in other scenarios. Moreover, they

do not assure to adhere to physical principles.

3.3 Machine Learning methods

Machine learning-based methods have shown promising results

in enhancing underwater images by learning from a large data-

set of annotated images. One popular machine learning-based

method is the Deep Underwater Image Enhancement (DUIE)

framework proposed by Zhang et al. (Zhang et al., 2019). DUIE

uses a convolutional neural network (CNN) to learn the map-

ping between the low-quality input underwater image and the

high-quality output image. Generative Adversarial Networks

(GANs) are a type of deep neural network that consist of a gen-

erator and a discriminator. GANs have been used to learn the

mapping between degraded and enhanced underwater images.

The Underwater GAN (UW-GAN) proposed by Li et al. (Li

et al., 2018) aims to improve the visibility of underwater im-

ages. UW-GAN uses an underwater image dataset to train the

generator to generate enhanced versions of degraded underwa-

ter images. Other GAN-based methods for underwater image

enhancement include the Conditional GAN (CGAN) (Fu et al.,

2018) and the Multi-Scale GAN (MSGAN) (Xu et al., 2019).

Despite benefiting from the expressive capabilities of neural

networks, machine learning methods are typically trained un-

der specific conditions. However, underwater environments are

often characterized by dynamic conditions and their unpredict-

ability, which can pose challenges to these methods.

3.4 Physically-based methods

Physically-based methods for underwater image restoration aim

to model the physically-based processes that cause image de-

gradation, such as light attenuation, scattering, and absorption,

and then invert these models to restore the image. In doing

so, they are the only methods able to do image restoration as

opposed to image enhancement. These methods typically re-

quire knowledge of the physical properties of parts of the scene

and can be computationally intensive. (Garcia et al., 2017) pro-

posed a graph-based algorithm for color correction of under-

water images. This method uses a graph-based representation

Figure 2. Top view of a sparse Colmap reconstruction of an

example trajectory (in red) in the water tank: in the lower left,

we exhibit an initialization maneuver (wiggle over one point),

then we execute a lawn mower pattern, and finally cross the

tracks, to improve the loop closing impact.

to model the relationships between different color channels in

the image and to estimate the color correction factors. An-

other method is the Sea-thru method proposed by Akkaynak

and Treibitz (Akkaynak and Treibitz, 2018) which estimates

the backscatter using the dark pixels and their known range

information, and then uses an estimate of the spatially vary-

ing illuminant to obtain the range-dependent attenuation coef-

ficient. The latter method, however, is only valid for the Sun-

light case, which exhibits homogeneous illumination. (Boit-

tiaux et al., 2023) implemented multiview extensions, to im-

prove the estimates and applied the method to datasets with

artificial illumination. However, to make this approach work,

the artificial illumination has to be locally homogeneous. Fur-

ther approaches, which can be applied to true heterogeneous

underwater artificial scenarios, i.e., with artificial illumination,

are presented in (Bryson et al., 2016) and (Nakath et al., 2021).

While physically-based methods have the advantage of being

based on well-established principles, they can be limited by the

availability and accuracy of the precise parameters needed for

the models.

4. DATASETS

With Girona 500 series AUVs, we collected A-datasets in real

waters, as well as T-datasets in a water tank with a precise

ground truth estimate. In all settings, we carried out dedic-

ated calibration maneuvers, which foster the initialization of

SLAM approaches. Furthermore, in the tank and the AUV sets,

we carried out classical lawn mower patterns with a stable fly-

ing height with subsequent cross-tracks, to support loop-closing

approaches. In the tank, we additionally recorded sets, wich

resemble a more free-flying scanning path. The latter brings

about a lot of loop closing opportunities, which will however

be impaired by big height variances, which in turn induce big

changes in visual appearance in scattering media.

4.1 Water Test Tank with Ground Truth

We equipped a 2.2 × 1 × 0.8m water test tank with three 50w

Wasler daylight bulbs (5400k) housed in Walimex diffusors to

create a homogeneous illumination setting akin to heavy atmo-

spheric scattering. In addition, we attached two Ulanzi L2 Lite

(5500k) co-moving lights, to be able to simulate active under-

water light systems to a custom-build externally-tracked under-

water camera (Winkel et al., 2023).

After building a small-scale test scene, we took several sets, to

acquire underwater imagery with external reference as ground

truth. As this is close to impossible in real waters, we equipped
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Figure 3. Left to right: Example images of tank sets: with

Sunlight, Sun-and artificial light and artificial light. Upper row:

in air T1-3, T4-5, and T6-7. Lower row: underwater T8-9,

T10-11, and T12-13. Please note that the images are still

distorted, but shown in sRGB-space for better visibility.

Figure 4. Left to right: Example images from A1, A2, and A3.

the camera with a stick and attached two Vive controllers,

whose pose (position and attitude) in space can be precisely de-

termined in air. This information can be used, to obtain a fused

estimate of the pose of the underwater camera. We found the

mean accuracy of the system tracking performance to be smal-

ler 3 mm and 0.3 deg for translation and attitude, respectively

(Winkel et al., 2023). For the dataset, an in-air fisheye calib-

ration was conducted, with a residual error of 0.22px. Then,

we center the camera within a dome port, to exclude refrac-

tion effects from the dataset, stemming from the traversal of

interfaces of media with different optical densities (She et al.,

2019, She et al., 2022). Finally, we conducted an underwa-

ter fisheye calibration of the camera, with residual reprojec-

tion error of 0.55px to capture remaining disturbances, which

have not been captured by the preceding steps. Hence, we will

exclusively deal with color distortion effects in those datasets.

Specifically, we took homogeneously illuminated sets (T1-3),

sets with mixed illumination (T4/5) and finally two sets with

co-moving lights (T6/7) in air (see Fig. 3). Subsequently, we

added water and dye for the attenuation as well as Maaloxan

as the scattering agent until the working range was clearly dis-

torted by the corresponding effects. This setup enables us to

mimic the underwater conditions in Sunlight (T8/9), a mixed

(Sun-artificial) light scenario (T10/11), as well as deep sea con-

ditions, where only the artificial light is visible (T12/13); see

Fig. 3). All former sets of those pairs execute a lawn mover

pattern, while all latter sets execute free scanning trajectories

with bigger depth variances.

For evaluation, we undistort the images into canonical pinhole

space to provide them to the SLAM algorithms. Their results

are then compared to the ground truth provided by the external

reference system.

4.2 AUV Datasets

We also collected three challenging real datasets with Girona

500 series AUVs in the Baltic Sea. The A1/2 datasets are

without initialization maneuvers (see Figs. 4 a,b), while A3

set features an initialization maneuver tailored to SLAM ap-

proaches (see Fig. 4 c).

The AUVs have a circular-arranged active lighting system,

comprised of 8 LED-compounds cast in rasin (see Fig. 1)

(Sticklus et al., 2017, Song et al., 2021a). Specifically, the

AUVs are equipped with a dome port camera, which was again

calibrated in air with a fisheye model. Subsequently, it was

centered (She et al., 2019, She et al., 2022) to avoid refraction

effects. We then overtake the underwater fisheye parameters

estimated by Metashapes Photoscan into an adapted Colmap

(Schönberger and Frahm, 2016) version to establish ground

truth with an offline reconstruction method. In the latter pro-

cess, the navigation data is fused into the visual reconstruction

using a prose-graph-approach (She et al., 2023). For evaluation,

the images are then undistorted and provided in canonical pin-

hole space for the SLAM algorithms. Finally, the results from

Colmap’s sparse reconstruction serve as the ground truth poses.

5. EVALUATION

We evaluated the performance of four SLAM methods, ORB-

SLAM2, ORB-SLAM3, LSD-SLAM, and BADSLAM. For

each underwater dataset, we applied six different image en-

hancement methods: the UDCP algorithm, the CLAHE al-

gorithm, UW-GAN algorithm that was trained on three different

types of water and the median filter from (Köser et al., 2021).

We also evaluated each method on the basic, unenhanced im-

ages. For BADSLAM and GRADSLAM, we estimated the

depth maps using UW-Net (Gupta and Mitra, 2019) and UD-

epth (Yu et al., 2023) in underwater scenarios and Monodepth2

(Godard et al., 2019) for the in-air sets.

We categorized failures into three types: not initializing (NOT

INIT), initializing but losing track (TR-Lost), and complete fail-

ure (FAILED). Not initializing means the method could not start

tracking the camera pose. Initializing but losing track indic-

ates that the method began tracking but eventually lost the cam-

era pose without recovery. If the camera poses are lost but the

map has enough keyframes, the algorithm is considered suc-

cessful. Complete failure means the method provided no output

(e.g., LSD-SLAM). BADSLAM may fail to start if the estim-

ated depth map is inaccurate.

We used a solid alignment approach to match up the SLAM

estimates and the ground truth. We initially temporally aligned

the SLAM estimates and the ground truth interpolating the latter

such that for each ground truth pose there is a corresponding

estimated pose. Afterwards, we employed the SIM3 (Allen-

Blanchette et al., 2014) Umeyama (Umeyama, 1991) alignment

technique, which considers scale, translation, and rotation, to

accurately align the result trajectory with the ground truth in

space. Specifically, we optimize

min
s,R,t

k
∑

i=1

∥x̂i − (sRxi + t)∥2
2
, s ∈ R; t ∈ R

3;R ∈ SO3 (1)

where x̂i and xi ∈ R
3 are the paired positions. This approach

also entails an error-measure in the units of the ground-truth-

data, i.e., position in [m] and attitude in [deg]. We used the

(Grupp, 2017) Python package to perform the alignment. If the

method was able to successfully initialize and track the cam-

era pose, we used the absolute trajectory error (ATE) to com-

pare the ground truth trajectory with the estimated trajectory.

The ATE is calculated by finding the difference between the
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Figure 5. From left to right: base image from an A-set, UDepth depth map, UW-Net depth map, Colmap depth map; base image from

T-set, Monodepth2 depth map, Colmap depth map

ground truth and estimated camera poses at each frame and then

computing the root mean squared error (RMSE) of these differ-

ences. This allowed us to compare the accuracy of the SLAM

methods under different conditions.

The ATE can be further broken down into the error for transla-

tion and the error for rotation. The translation error measures

the difference between the estimated and ground truth position

of the camera, while the rotation error measures the difference

between the estimated and ground truth orientation of the cam-

era. Both of these errors are calculated using the same approach

as for the ATE, by finding the difference between the ground

truth and estimated values at each frame and then computing

the RMSE of these differences. The ATE errors for translation

and rotation are computed as follows:

ATEt =

√

√

√

√

1

N

N
∑

i=1

||pi − p̂i||2 , and

ATEr =

√

√

√

√

1

N

N
∑

i=1

2 · arccos
(

min(|q−1

i · q̂i|, 1)
)

·
180

π
,

(2)

where N is the number of poses in the trajectory, pi, p̂i ∈ R
3

and qi, q̂i ∈ SO3 are the ground truth and estimated positions

and attitudes of the robot at pose i.

6. RESULTS

According to the findings presented in Annex A, the experi-

ments conducted on the A1, A2, and A3 datasets revealed that

the algorithms encountered challenges and exhibited poor per-

formance due to various factors. Specifically, for the A1 data-

set, one of the main issues identified was the lack of sufficient

overlap between frames. This insufficient overlap hindered the

algorithms’ ability to establish robust correspondences and ac-

curately estimate the robot’s trajectory. On the other hand,

for the A2 dataset, although there was good overlap between

frames, the presence of unfavorable water and light conditions

posed significant difficulties for the algorithms. These condi-

tions, such as poor visibility, light scattering, and limited light-

ing, adversely affected the algorithms’ ability to accurately es-

timate depth and track the robot’s movement. Furthermore as

for the case of the A3 dataset, the challenges were further com-

pounded by the presence of low texture areas in addition to the

water and lighting conditions. Low texture areas, which lack

distinctive visual features, make it challenging for SLAM al-

gorithms to establish reliable correspondences and accurately

estimate the robot’s trajectory in those regions. In fact, while

the initialization trajectory of A3 helped for the initialization of

the ORB-SLAMS and the median method performed the best

on the A2 data-set, the ORB-SLAMS lost the track in the ma-

jority of the frames.

The experiments on the T8-13 dataset, which consisted of a

tank with water, have shown that light conditions are critical for

successful SLAM performance. The light cones produced from

the artificial lights, with and without the sunlight, had a signi-

ficant impact on the images, resulting in failure of the SLAM

methods. This is due to the fact that the presence of water

causes light to being refracted, attenuated and scattered. While

we controlled for the refraction effects, by centering the camera

in the dome, the two latter effects lead to changes in image ap-

pearance and the degradation of image quality. In addition, the

absorption and scattering of light in water varies depending on

the wavelength and scene depth, which can affect the accuracy

of visual odometry and feature tracking.

Our findings indicated that LSD-SLAM was ineffective for un-

derwater applications, as it failed to function properly on every

underwater dataset we tested, consistent with previous research

(Joshi et al., 2019). Furthermore, while the method was effect-

ive on the sunlight scenarios (T1-T3), it was ineffective on the

in-air sets with mixed lights and in-air sets with only artificial

light which is also consistent with previous research (Pascoe et

al., 2017). Additionally, our findings highlight the impact of ro-

bot maneuvers, both during the trajectory and during the initial-

ization phase, on SLAM accuracy. Specifically, we observed

that low dynamic maneuvers tended to result in better accur-

acy for SLAM. When the robot moved in a more controlled

and stable manner, the SLAM algorithm was able to more ac-

curately estimate the robot’s position and orientation. Further-

more, the initialization maneuver also had an impact on SLAM

accuracy. By carefully designing and executing an appropriate

initialization maneuver, we were able to improve the accuracy

of the SLAM algorithm. This initialization maneuver provided

the algorithm with a more accurate starting point, allowing it

to establish a better understanding of the environment and sub-

sequently improve the overall trajectory estimation.

The BADSLAM and GRADSLAM algorithms did not work

with either the UDepth or UW-Net depth estimators in under-

water scenarios and with Monodepth2 for the in-air sets. To

ascertain whether the depth estimators were the root of the is-

sue, we used Colmap for depth estimation and discovered that

BADSLAM was capable of at least initializing itself in the A1/2

and A3 datasets and in the T in-air sets it succeeded along-

side GRADSLAM. In regard to the UW-Net, U-Depth, and

Monodepth2 depth estimators, it is important to note that they

are primarily designed for forward-looking camera settings and

not specifically for top-down views. Unsurprisingly, they do not

perform well when applied to top-down views, such as those

encountered in underwater environments (see Fig. 5).

Concerning the in-air sets, our ORB-SLAM results are aligned

with results in (Song et al., 2021b) in which the authors cre-

ated multiple datasets using multiple cameras, IMU and a test

tank for visual inertial odometry. Finally our experiments also

highlighted the importance of using appropriate image enhance-

ment methods for different water conditions. Among the meth-

ods tested, CLAHE performed the best overall. The UW-GAN

with different water types performed similarly to UDCP, and the

second water type of the UW-GAN often performed as well as

UDCP, possibly because the water condition used for training

was similar to the water type of the dataset used for evaluation.
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7. CONCLUSION

In this paper, we conducted an investigation of the challenges

of underwater monocular visual SLAM. To this end, we pre-

pared several AUV-based and controlled lab-datasets. All geo-

metric distortions are controlled for in those sets, while they

are all taken in extremely low visibility and harsh light condi-

tions. This allows for an in-depth investigation of the impact of

radiometric distortions in the underwater setting. The ground

truth in the lab sets is established with a custom-build external

reference system, while the AUV sets – lacking external ref-

erence – are offline-reconstructed with a modified version of

Colmap. First, we showed that all selected SLAM algorithms

successfully run on in air tank-dataets with good performances.

Then, we evaluated several combinations of SLAM systems

and preprocessing methods on all datasets. We found that no

SLAM system is able to complete the real AUV-Datasets. Also

from the tank datasets, only the homogeneously illuminated

Sun-settings could be completed. Here, we found that the pre-

processing approaches showed some initial improvements of

the SLAM performance in the visually adversarial underwater

environments. In addition, we can also report mild improve-

ments, when special initialization-maneuvers are carried out.

The generalization of the pre-processing methods is a direc-

tion worth to further investigate, as they seem to be heavily

tuned to certain assumptions / scenarios. Furthermore, provid-

ing depth-information dependent SLAM systems with corres-

ponding top-down-view estimates also seems to be an interest-

ing route. However we had to resort to depth maps established

in an offline fashion, as the deep learning based estimators were

tuned to different use cases. Hence, in the future, we will strive

to preprocess underwater imagery to mitigate radiometric dis-

tortions and at the same time improve on underwater monocu-

lar depth estimation in order to leverage the already existing big

potential of in-air SLAM approaches.
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and image restoration techniques for deep ocean mapping: A

comprehensive survey. PFG–Journal of Photogrammetry, Re-

mote Sensing and Geoinformation Science, 90(3), 243–267.

Song, Y., Qian, J., Miao, R., Xue, W., Ying, R., Liu, P., 2021b.

Haud: A high-accuracy underwater dataset for visual-inertial

odometry. 2021 IEEE Sensors, 1–4.

Sticklus, J., Kwasnitschka, T., Hoeher, P. A., 2017. Method and

device for potting an led luminaire potted in a potting com-

pound, and led luminaire. US Patent App. 15/533,130.

Umeyama, S., 1991. Least-squares estimation of transformation

parameters between two point patterns. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 13(4), 376-380.

Winkel, B., Nakath, D., Woelk, F., Köser, K., 2023. Design,
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A. ANNEX ALGORITHM PERFORMANCES

A1, Real mission w/ Girona 500 AUV

Base CLAHE UDCP UW-GAN Water 1 UW-GAN Water 2 UW-GAN Water 3 Median

ORB-SLAM2 TR-Lost TR-Lost TR-Lost TR-Lost TR-Lost TR-Lost TR-Lost

ORB-SLAM3 TR-Lost TR-Lost TR-Lost TR-Lost TR-Lost TR-Lost TR-Lost

BADSLAM (UDepth) FAILED FAILED FAILED FAILED FAILED FAILED FAILED

BADSLAM (UW-Net) FAILED FAILED FAILED FAILED FAILED FAILED FAILED

BADSLAM (Colmap) TR-Lost TR-Lost TR-Lost TR-Lost TR-Lost TR-Lost TR-Lost

LSD-SLAM FAILED FAILED FAILED FAILED FAILED FAILED FAILED

GRADSLAM(UDepth) FAILED NA FAILED FAILED FAILED FAILED FAILED

GRADSLAM(UW-Net) FAILED NA FAILED FAILED FAILED FAILED FAILED

GRADSLAM(Colmap) FAILED NA FAILED FAILED FAILED FAILED FAILED

A2, Real mission w/ Girona 500 AUV

Base CLAHE UDCP UW-GAN Water 1 UW-GAN Water 2 UW-GAN Water 3 Median

ORB-SLAM2 NOT INIT TR-Lost TR-Lost NOT INIT NOT INIT NOT INIT TR-Lost

ORB-SLAM3 NOT INIT TR-Lost NOT INIT NOT INIT NOT INIT NOT INIT TR-Lost

BADSLAM (UDepth) FAILED FAILED FAILED FAILED FAILED FAILED FAILED

BADSLAM (UW-Net) FAILED FAILED FAILED FAILED FAILED FAILED FAILED

BADSLAM (Colmap) NOT INIT TR-Lost TR-Lost NOT INIT NOT INIT NOT INIT TR-Lost

LSD-SLAM FAILED FAILED FAILED FAILED FAILED FAILED FAILED

GRADSLAM(UDepth) FAILED NA FAILED FAILED FAILED FAILED FAILED

GRADSLAM(UW-Net) FAILED NA FAILED FAILED FAILED FAILED FAILED

GRADSLAM(Colmap) FAILED NA FAILED FAILED FAILED FAILED FAILED

A3, Real mission w/ Girona 500 AUV

Base CLAHE UDCP UW-GAN Water 1 UW-GAN Water 2 UW-GAN Water 3 Median

ORB-SLAM2 TR-Lost TR-Lost TR-Lost TR-Lost TR-Lost TR-Lost TR-Lost

ORB-SLAM3 TR-Lost TR-Lost TR-Lost TR-Lost TR-Lost TR-Lost TR-Lost

BADSLAM (UDepth) FAILED FAILED FAILED FAILED FAILED FAILED FAILED

BADSLAM (UW-Net) FAILED FAILED FAILED FAILED FAILED FAILED FAILED

BADSLAM (Colmap) TR-Lost TR-Lost TR-Lost TR-Lost TR-Lost TR-Lost TR-Lost

LSD-SLAM FAILED FAILED FAILED FAILED FAILED FAILED FAILED

GRADSLAM(UDepth) FAILED NA FAILED FAILED FAILED FAILED FAILED

GRADSLAM(UW-Net) FAILED NA FAILED FAILED FAILED FAILED FAILED

GRADSLAM(Colmap) FAILED NA FAILED FAILED FAILED FAILED FAILED

T8, Water Tank, homogenous illumination, lawn mower

Base CLAHE UDCP UW-GAN Water 1 UW-GAN Water 2 UW-GAN Water 3 Median

ORB-SLAM2 3.5
◦|1.42 2.2

◦|1.28 3.12
◦|1.41 4.0

◦|1.52 4.1
◦|1.53 3.9

◦|1.61 NOT INIT

ORB-SLAM3 4.5
◦|1.61 3

◦|1.19 2.6
◦|1.51 3.3

◦|1.54 3.8
◦|1.50 3.3

◦|1.59 NOT INIT

BADSLAM (UDepth) FAILED FAILED FAILED FAILED FAILED FAILED FAILED

BADSLAM (UW-Net) FAILED FAILED FAILED FAILED FAILED FAILED FAILED

LSD-SLAM FAILED FAILED FAILED FAILED FAILED FAILED FAILED

GRADSLAM(UDepth) FAILED NA FAILED FAILED FAILED FAILED FAILED

GRADSLAM(UW-Net) FAILED NA FAILED FAILED FAILED FAILED FAILED

T9, Water Tank, homogenous illumination, scanning trajectory

Base CLAHE UDCP UW-GAN Water 1 UW-GAN Water 2 UW-GAN Water 3 Median

ORB-SLAM2 2.7
◦|1.34 2.2

◦|1.26 2.2
◦|1.52 2.7

◦|1.47 2.8
◦|1.46 2.9

◦|1.61 NOT INIT

ORB-SLAM3 2.9
◦|1.53 1.8

◦|1.24 2.6
◦|1.51 2.62

◦|1.49 3.32
◦|1.59 2.9

◦|1.47 NOT INIT

BADSLAM (UDepth) FAILED FAILED FAILED FAILED FAILED FAILED FAILED

BADSLAM (UW-Net) FAILED FAILED FAILED FAILED FAILED FAILED FAILED

LSD-SLAM FAILED FAILED FAILED FAILED FAILED FAILED FAILED

GRADSLAM(UDepth) FAILED NA FAILED FAILED FAILED FAILED FAILED

GRADSLAM(UW-Net) FAILED NA FAILED FAILED FAILED FAILED FAILED

T10, Water Tank, mixed illumination, lawn mower

Base CLAHE UDCP UW-GAN Water 1 UW-GAN Water 2 UW-GAN Water 3 Median

ORB-SLAM2 NOT INIT TR-Lost NOT INIT NOT INIT NOT INIT NOT INIT NOT INIT

ORB-SLAM3 NOT INIT TR-Lost NOT INIT NOT INIT NOT INIT NOT INIT NOT INIT

BADSLAM (UDepth) FAILED FAILED FAILED FAILED FAILED FAILED NOT INIT

BADSLAM (UW-Net) FAILED FAILED FAILED FAILED FAILED FAILED FAILED

LSD-SLAM FAILED FAILED FAILED FAILED FAILED FAILED FAILED

GRADSLAM(UDepth) FAILED NA FAILED FAILED FAILED FAILED FAILED

GRADSLAM(UW-Net) FAILED NA FAILED FAILED FAILED FAILED FAILED

T11, Water Tank, mixed illumination, scanning trajectory

Base CLAHE UDCP UW-GAN Water 1 UW-GAN Water 2 UW-GAN Water 3 Median

ORB-SLAM2 NOT INIT TR-Lost NOT INIT NOT INIT NOT INIT NOT INIT NOT INIT

ORB-SLAM3 NOT INIT TR-Lost NOT INIT NOT INIT NOT INIT NOT INIT NOT INIT

BADSLAM (UDepth) FAILED FAILED FAILED FAILED FAILED FAILED NOT INIT

BADSLAM (UW-Net) FAILED FAILED FAILED FAILED FAILED FAILED FAILED

LSD-SLAM FAILED FAILED FAILED FAILED FAILED FAILED FAILED

GRADSLAM(UDepth) FAILED NA FAILED FAILED FAILED FAILED FAILED

GRADSLAM(UW-Net) FAILED NA FAILED FAILED FAILED FAILED FAILED

T12, Water Tank, artificial illumination, lawn mower

Base CLAHE UDCP UW-GAN Water 1 UW-GAN Water 2 UW-GAN Water 3 Median

ORB-SLAM2 NOT INIT TR-Lost NOT INIT NOT INIT NOT INIT NOT INIT NOT INIT

ORB-SLAM3 NOT INIT TR-Lost NOT INIT NOT INIT NOT INIT NOT INIT NOT INIT

BADSLAM (UDepth) FAILED FAILED FAILED FAILED FAILED FAILED FAILED

BADSLAM (UW-Net) FAILED FAILED FAILED FAILED FAILED FAILED FAILED

LSD-SLAM FAILED FAILED FAILED FAILED FAILED FAILED FAILED

GRADSLAM(UDepth) FAILED NA FAILED FAILED FAILED FAILED FAILED

GRADSLAM(UW-Net) FAILED NA FAILED FAILED FAILED FAILED FAILED

T13, Water Tank, artificial illumination, scanning trajectory

Base CLAHE UDCP UW-GAN Water 1 UW-GAN Water 2 UW-GAN Water 3 Median

ORB-SLAM2 NOT INIT TR-Lost NOT INIT NOT INIT NOT INIT NOT INIT NOT INIT

ORB-SLAM3 NOT INIT TR-Lost NOT INIT NOT INIT NOT INIT NOT INIT NOT INIT

BADSLAM (UDepth) FAILED FAILED FAILED FAILED FAILED FAILED FAILED

BADSLAM (UW-Net) FAILED FAILED FAILED FAILED FAILED FAILED FAILED

LSD-SLAM FAILED FAILED FAILED FAILED FAILED FAILED FAILED

GRADSLAM(UDepth) FAILED NA FAILED FAILED FAILED FAILED FAILED

GRADSLAM(UW-Net) FAILED NA FAILED FAILED FAILED FAILED FAILED

T1-7, Tank in-air

T1 T2 T3 T4 T5 T6 T7

ORB-SLAM2 1.68
◦|0.09 1.31

◦|0.08 2.12
◦|0.12 1.68

◦|0.10 2.47
◦|0.15 2.23

◦|0.21 2.54
◦|0.16

ORB-SLAM3 1.60
◦|0.09 1.23

◦|0.07 2.94
◦|0.17 1.92

◦|0.12 2.27
◦|0.14 2.22

◦|0.30 2.23
◦|0.29

LSD-SLAM 1.89
◦|0.10 1.68

◦|0.09 1.98
◦|0.20 2.20

◦|0.24 1.87
◦|0.20 FAILED FAILED

BADSLAM (Monodepth2) FAILED FAILED FAILED FAILED FAILED FAILED FAILED

BADSLAM (Colmap) 1.38
◦|0.08 1.47

◦|0.11 1.87
◦|0.12 1.94

◦|0.20 2.09
◦|0.25 2.07

◦|0.19 2.17
◦|0.23

GRADSLAM (Monodepth2) FAILED FAILED FAILED FAILED FAILED FAILED FAILED

GRADSLAM (Colmap) 1.45
◦|0.12 1.42

◦|0.13 2.10
◦|0.15 2.22

◦|0.17 2.3
◦|0.27 2.28

◦|0.24 2.41
◦|0.28
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B. ANNEX ORIGINAL AND PREPROCESSED IMAGES

Original CLAHE UDCP UWGAN W1

UWGAN W2 UWGAN W3 Median

Original

Figure 6. A1

CLAHE UDCP UWGAN W1

UWGAN W2 UWGAN W3 Median

Original

Figure 7. A2

CLAHE UDCP UWGAN W1

UWGAN W2 UWGAN W3 Median

Original

Figure 8. A3

CLAHE UDCP UWGAN W1

UWGAN W2 UWGAN W3 Median

Original

Figure 9. T8-9: sunlight

CLAHE UDCP UWGAN W1

UWGAN W2 UWGAN W3 Median

Figure 10. T10-11: sunlight and artificial lights

Original CLAHE UDCP UWGAN W1

UWGAN W2 UWGAN W3 Median

Figure 11. T12-13: artificial lights
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