
3D Mapping of Benthic Habitat Using XGBoost and Structure from Motion Photogrammetry  
 

 

S. Morsy 1, 2 *, A. B. Yánez Suárez 1, 3, K. Robert 1 

 
1 School of Ocean Technology, Fisheries and Marine Institute, Memorial University of Newfoundland, St. John’s, NL A1C 5R3, 

Canada - (Salem.Morsy, Ana-Belen.Yanez, Katleen.Robert)@mi.mun.ca 
2 Public Works Department, Faculty of Engineering, Cairo University, 1 El Gamaa Street, Giza, Egypt, 12613  

3 School of Fisheries, Fisheries and Marine Institute, Memorial University of Newfoundland, St. John’s, NL A1C 5R3, Canada 

 

Commission II, WG II/7 

 

 

KEYWORDS: 3D mapping, SfM, Geometric features, Machine learning, XGBoost. 

 

 

ABSTRACT: 

 

Benthic habitats mapping is essential to the management and conservation of marine ecosystems. The traditional methods of 

mapping benthic habitats, which involve multibeam data acquisition and manually collecting and annotating imagery data, are time-

consuming. However, with technological advances, using machine learning (ML) algorithms with structure-from-motion (SfM) 

photogrammetry has become a promising approach for mapping benthic habitats accurately and at very high resolutions. This paper 

explores using SfM photogrammetry and extreme gradient boosting (XGBoost) classifier for benthic habitat 3D mapping of a 

vertical wall at the Charlie-Gibbs Fracture Zone in the North Atlantic Ocean. The classification workflow started with extracting 

frames from video footage. The SfM was then applied to reconstruct the 3D point cloud of the wall. Thereafter, nine geometric 

features were derived from the 3D point cloud geometry. The XGBoost classifier was then used to classify the vertical wall into 

rock, sponges, and corals (Case 1 - three classes). In addition, we separated the sponges class into three types of sponges: 

Demospongiae, Hexactinellida, and other Porifera (Case 2 - five classes). Moreover, we compared the results from XGBoost with 

the widely used ML classifier, random forest (RF). For Case 2, XGBoost achieved an overall accuracy (OA) of 74.45%, while RF 

achieved 73.10%. The OA improved by about 10% from both classifiers when the three types of sponges were combined into one 

class (Case 1). Results showed that the presented 3D mapping of benthic habitat has the potential to provide more detailed and 

accurate information about marine ecosystems. 

 

 

 
*  Corresponding author 

 

1. INTRODUCTION 

3D mapping of benthic habitats is critical in marine 

conservation and management. It involves creating accurate and 

detailed maps of the seafloor and the inhabiting organisms. 

These maps represent habitat types, and can be used to monitor 

changes over time, and inform management decisions. 

Traditionally, benthic habitat mapping has employed multibeam 

echosounder data acquisition (Brown et al., 2011; Trzcinska et 

al., 2020) and underwater imagery collection and annotation 

(Keogh et al., 2022; Mohamed et al., 2022).  

 

The underwater imagery represents high-resolution ground-

truthing data characterising the seafloor from which biological 

information can be extracted. The manual annotation of 

enormous underwater image datasets is tedious, error-prone, 

and time-consuming (Mahmood et al., 2020). However, the 

annotation of some of these images can be used to train machine 

learning (ML) algorithms to build full-coverage maps 

representing the composition of the seafloor (Brown et al., 

2011). Although recent studies have considered underwater 

image classification using ML (e.g., Mohamed et al., 2020; 

Ternon et al., 2022), they lose the advantage of considering the 

3D geometry of underwater habitats in the classification 

process.  

 

3D point clouds provide spatial information about the seafloor, 

including depth, shape, and texture. One approach for mapping 

benthic habitats in 3D is using structure-from-motion (SfM) 

photogrammetry (Price et al., 2019; Bayley et al., 2020). SfM 

photogrammetry is a technique for creating 3D models of 

objects or environments based on multiple 2D images. It 

involves taking overlapping images of the seafloor from 

different angles and using software to stitch them together to 

create a 3D model. This can produce a more detailed and 

accurate representation of the seafloor at high-resolution 

compared to images.  

  

One advantage of SfM-generated 3D points over other types of 

3D data (e.g., bathymetric LiDAR)) is that RGB values of 

points can be added to the geometric features traditionally 

employed to build full coverage classification maps. Geometric 

features (e.g., linearity, planarity, scattering) are based on 

eigenvalues and eigenvectors of neighbourhood points and are 

provided as input to ML classifiers (Chehata et al., 2009; 

Weinmann et al., 2015; Morsy and Shaker, 2022) such as 

XGBoost (Ghatkar et al., 2019; Nemani et al., 2022).   

 

Extreme Gradient Boosting (XGBoost) is an ML algorithm that 

uses decision trees to classify data. It is particularly effective at 

handling large, complex datasets and has been used successfully 

in various applications for images and 3D point cloud 

classification (Zhang et al., 2021). By training the algorithm on 

a dataset produced from SfM photogrammetry and 

corresponding ground-truth data, it is possible to create accurate 

maps of benthic habitats.   

 

One of the key advantages of using XGBoost and SfM 

photogrammetry for 3D mapping of benthic habitats is that it 

provides high-resolution maps that can be used to identify 
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small-scale features such as coral reefs, seagrass beds, and 

rocky outcrops. These maps can identify different habitat types, 

monitor their changes over time, and evaluate management 

strategies.  

 

2. RELATED WORK 

Underwater video surveys have recently gained significant 

interest for benthic habitat identification and classification 

(Keogh et al., 2022; Mohamed et al., 2022; Ternon et al., 2022). 

Videos are usually recorded using high-definition (HD) cameras 

mounted on remotely operated vehicles (ROVs) (Robert et al., 

2017; Keogh et al., 2022). These videos, in turn, are converted 

into 2D images to generate 3D point clouds using SfM 

photogrammetry (Casella et al., 2017; Price et al., 2021; 

Ventura et al., 2022). These point clouds are further classified 

for benthic habitat classification using different ML algorithms 

(Pierce et al., 2021; De Oliveira et al., 2021; De Oliveira et al., 

2022).  

 

So far, very few studies have considered using 3D point clouds 

in benthic habitat mapping. For instance, Pierce et al. (2021) 

labelled 10,000 image patches into seven classes of a coral reef 

area near Cheeca Rocks in the Florida Keys National Marine 

Sanctuary. Then, they assigned those labels to either the point 

cloud or mesh during the SfM process to create fully reference 

versions for image-based or point-based classification. A 

convolutional neural network was used as an image-based 

classification method with different thresholds and reached 

94.10% overall accuracy. In addition, two point-based 

classification methods were evaluated, namely fast multilevel 

semantic segmentation and the fully convolutional network. 

They achieved an overall accuracy of 88.50% and 90.00%, 

respectively. Ternon et al. (2022) used SfM to generate point 

clouds from underwater images and then create a DSM and 

RGB Ortho-mosaic image. Six spatial predictors were extracted 

from the DSM, including slope, aspect, profile convexity, plan 

convexity, maximum curvature, and change rate of the 

bathymetry. These predictors were combined with the DSM and 

the RGB Ortho-mosaic image, representing input layers for a 

maximum likelihood classifier (MLC). Two rocky reef sites at 

St Malo Bay in Brittany, France, were used for evaluation. The 

MLC achieved an average overall accuracy of 82.20% for eight 

classes. 

 

In the study of De Oliveira et al. (2021), they evaluated two 3D 

point-based classification methods for cold-water coral reef 

identification in the southwest of Ireland. The first was Support 

Vector Machines (SVM) which used dimensionality as a 

parameter for classification. Six datasets in the study area were 

tested for coral separation from the seabed. The highest, lowest, 

and average overall accuracies were 90.00%, 46.40%, and 

68.20%, respectively. The second method was based on eight 

geometrical features derived from the point cloud. Then, a 

Gradient Boosting Trees (GBT) algorithm was applied to label 

each point as coral or seabed. The same datasets were tested and 

demonstrated 94.60%, 9.30%, and 68.00% as the highest, 

lowest, and average overall accuracies, respectively. 

 

Moving on, De Oliveira et al. (2022) used SfM-derived 3D 

point cloud and ML algorithms for 3D mapping of cold-water 

coral reefs. They evaluated six ML algorithms, namely, SVM, 

Random Forest (RF), GBT, k-Nearest Neighbours (KNN), 

Logistic Regression, and Multilayer Perceptron (MLP). In order 

to evaluate accuracy variation between ML algorithms, they 

trained them based on different sample sizes (i.e., 1,000 samples 

and 10,000 samples) with different parameters. As a result, 

eighteen models of ML were created and tested. The Piddington 

Mound area, located in the southwest of Ireland, was used for 

3D point cloud reconstruction from HD video data acquired 

with an ROV. The 3D point clouds were classified into four 

classes: live coral, dead coral, coral rubble, and sediment and 

dropstones. The results showed that four models yielded F1-

scores of more than 90.00% and could distinguish between the 

four classes. The highest model was the GBT classifier, with an 

average F1-score of 95.10%, followed by RF, MLP, and KNN, 

with an average F1-score of 94.20%, 92.30%, and 91.60%, 

respectively. It should be noted that the four models were 

trained on 10,000 samples. Thus, increasing the training 

samples has improved the classification accuracy significantly.  

 

3. STUDY AREA 

The study area of this research is the Charlie-Gibbs Fracture 

Zone (CGFZ), which is located in the North Atlantic Ocean 

(Figure 1). It is roughly halfway between Greenland and the 

Azores and extends from the Mid-Atlantic Ridge to the 

Wyville-Thomson Ridge. The area is a major pathway for the 

flow of deep water in the Atlantic, which brings nutrients to the 

surface. The fracture zone is also associated with several 

seamounts and other undersea features, which are essential 

habitats for a diverse range of marine organisms such as cold-

water corals and sponges, which provide habitat for several 

associated species. 

 

 

 
Figure 1. The Charlie-Gibbs Fracture Zone and study area 

locations. The TOSCA survey area is marked with the red box 

(upper panel), and the location of Dive 9 with the vertical wall 

is highlighted in green (lower panel). 
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3.1 Data Acquisition  

In June 2018, the CGFZ was surveyed during the Tectonic 

Ocean Spreading of the Charlie-Gibbs Fracture Zone’s 

(TOSCA) expedition on-board the research vessel Celtic 

Explorer (CE18008). A HD oblique-facing camera, Kongsberg 

Maritime OE14-502a HDTV, was mounted on the ROV 

Holland I to record videos (1080i resolution at 25 frames per 

second) of benthic habitats. The position of the ROV was 

continuously recorded using Ultra Short Baseline (USBL) 

systems (IXSEA GAPS USBL and Sonardyne Ranger 2 USBL). 

 

3.2 Data Processing 

For this paper, we extracted images from a vertical wall from 

Dive 9 (Figure 1). Dive 9 exhibited a high abundance of 

Demospongiae and Hexactinellid sponges with a scatter of 

corals from the order Scleralcyonacea. A total of 135 images 

were extracted from the HD videos at a rate of one frame per 

second using Blender 2.92 software. The coordinates of each 

frame were obtained from the USBL data and exported as CSV 

files. The images and coordinates files were imported into 

Agisoft Metashape 1.6.1 software, where the coordinates of the 

images were projected to UTM zone 25N. The 3D point clouds 

were then reconstructed and exported as XYZ files Figure 2). 

The vertical wall has 17,264,337 points in total, with a 

dimension of 34.5 x 4.0 m and water depths ranging from 1,874 

m to 1,889 m.  

 

 

 
 

    
Figure 2. 3D point cloud reconstruction of the vertical wall 

with examples of the seafloor classes from left to right: Rock, 

Demospongiae, Hexactinellid, and Corals. 

 

Points for three categories (i.e., sponges, corals, and rock) were 

manually annotated and geotagged within the point clouds using 

the Agisoft Metashape software (Figure 3). Approximately, 

15% (2,648,414) of the total points were labelled as reference 

data (i.e., ground truth). Table 1 provides the class breakdown 

of the reference data for the vertical wall. 

 

Class Number of points 

Rock 1,466,955 

Demospongiae 363,992 

Hexactinellid 591,675 

Other Porifera 49,393 

Corals 176,399 

Table 1. Breakdown of the reference data. 

 

 
Figure 3. Part of the reconstructed point cloud with reference 

data. 

 

4. METHODOLOGY 

After the point cloud reconstruction and reference data 

annotation, nine geometric features were derived from the 3D 

point cloud geometry (i.e., coordinates) based on a spherical 

neighbourhood (Mohamed et al., 2021). These features included 

eight covariance features and verticality, as listed in Table 2. 

XGBoost was then used to classify the vertical wall into rock, 

sponges, and corals (Case 1). The sponges class was further 

separated into three types: Demospongiae, Hexactinellida, and 

other Porifera. Then, we evaluated the XGBoost performance 

for classifying the point cloud of the vertical wall into five 

categories rock, corals, and three types of sponges (Case 2). 

Moreover, we compared the results from the XGBoost classifier 

with the widely used ML classifier, RF. The resulting accuracy 

was assessed using the overall accuracy (OA), precision, recall, 

and F1-score. 

 

4.1 Geometric Features Extraction 

Based on the spatial distribution of the 3D points within the 

local neighbourhood, the respective 3D covariance matrix was 

calculated for each 3D point (Jutzi and Gross, 2009). The 

eigenvalues of the covariance matrix were directly used to 

describe the local 3D structure or derive features that express 

unique geometric properties (Mallet et al., 2011). For describing 

the local dimensionality, the features of linearity (L), planarity 

(P), and scattering (S) provided information about the presence 

of a linear 1D structure, a planar 2D structure, or a volumetric 

3D structure. Further measures were provided by omnivariance 

(O), anisotropy (A), eigenentropy (E), the change of curvature 

(C), and the sum of eigenvalues (S). In addition, the verticality 

(V) feature was considered, which was derived from the normal 

vector's vertical component (Demantké et al., 2012).       

 

4.2 Machine Learning Classifiers 

The XGBoost was applied with its standard parameters settings 

in the XGBoost python library, such as the number of trees 

(n_estimators=100) and features during a fit (n_features_in_=4). 

The objective function was set to account for multiclass 

labelling (objective=multi:softprob). The RF parameters were 

set to default as in the scikit-learn library, with the number of 

trees set to 300 and the class weight to “balanced” to consider 
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the percentage of classes in the training dataset while creating 

the model. 

 

C
o

v
ar

ia
n

ce
 F

ea
tu

re
s 

Linearity 
 

Planarity 
 

Scattering 
 

Omnivariance  

Anisotropy 
 

Eigen entropy 

 

Change of curvature 
 

Sum  

 
Verticality   

Table 2. Geometric features’ mathematical expressions. 

where  λ1, λ2, λ3 = eigenvalues  

               v3 = the third eigenvector 

 

4.3 Training and Testing Datasets 

Previous studies have randomly selected ML classifiers’ 

training/testing datasets (Zavalas et al., 2014; Mohamed et al., 

2018; Mohamed et al., 2020; Letard et al., 2021). However, this 

provided biased results because of the high spatial correlation 

between training and testing datasets. Therefore, this research 

divided the reference data into 75% for training and 25% for 

testing, and all training points within a sphere of a 5 cm radius 

around the testing points were removed to limit the effect of the 

spatial correlation (Letard et al., 2022). The training dataset was 

used to train the XBoost and RF models, and the testing dataset 

was used to evaluate the models. 

 

The data division, point cloud classification, and accuracy 

assessment were implemented using Python programming 

language, mainly scikit-learn and XGBoost libraries, on a Dell 

machine with Intel® Xeon® W-2123 processor, 3.60 GHz, and 

32 GB RAM. The results were visualized using the 

CloudCompare software. 

 

5. RESULTS AND DISCUSSION 

The classified point cloud from XGBoost and RF for Case 1 

(three classes) and Case 2 (five classes) are shown in Figures 4 

and 5, respectively. The distribution of different classes based 

on visual interpretation shows that dense sponge aggregations 

are located in the upper and lower areas of the vertical wall, 

with sparse corals observed.  

 

XGBoost achieved an OA of 74.45%, while that of RF was 

73.10%. The OA improved by ~10% when the three types of 

sponges were combined into one class using both classifiers, 

where XGBoost and RF demonstrated an OA of 84.35% and 

83.46%, respectively. Although RF achieved a close OA to 

XGBoost, the F1-score from XGBoost was superior for all 

individual classes (Tables 3 and 4). It should be noted for Case 

1 that the most frequent classes represented in the reference data 

have the highest classification scores (Rock, Sponges, and 

Corals, respectively). This was not observed for Case 2 with the 

separation of the Sponges class, where Rock had the highest F1-

score, followed by Corals, then the different types of sponges. 

 

 

Figure 4. Classified point cloud of Case 1 from: RF (left) and 

XGBoost (right). 

 

 

Figure 5. Classified point cloud of Case 2 from: RF (left) and 

XGBoost (right). 

 

Class RF XGBoost 

Rock 87.33 87.18 

Sponges 80.54 81.11 

Corals 66.39 80.78 

Average 78.09 83.03 

Table 3. F1-scores (%) of the individual classes for Case 1 

(three classes). 

 

Class RF XGBoost 

Rock 88.86 89.21 

Demospongiae 40.62 43.79 

Hexactinellid 63.69 64.70 

Other Porifera 11.69 16.23 

Corals 70.46 81.90 

Average 55.06 59.16 

Table 4. F1-scores (%) of the individual classes for Case 2 (five 

classes). 

 

XGBoost and RF are both ensemble methods that fit several 

decision trees on various sub-samples of the dataset. Although 

both could effectively predict the composition of the seafloor, 
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the effectiveness of these classifiers depends on the quality and 

quantity of the input data and the specific characteristics of the 

habitat being studied. 

 

There are some challenges associated with using this technique. 

For example, it is not easy to collect data in areas with strong 

currents. It can also be challenging to process large datasets of 

SfM photogrammetry data, particularly if the data is collected 

over a large area. In addition, if there are few labelled datasets 

available for training ML models. Despite these challenges, 

using XGBoost and SfM photogrammetry for 3D mapping 

benthic habitats is a promising approach that can improve our 

understanding of marine ecosystems and inform management 

decisions. As technology improves and datasets become more 

extensive and comprehensive, this technique will likely become 

an increasingly important tool for marine scientists and 

conservationists. 

 

6. CONCLUSIONS 

This paper explored using SfM photogrammetry and XGBoost 

classifier for benthic habitat 3D mapping at very high 

resolutions. The combination of XGBoost and SfM 

photogrammetry allows for the collection of large amounts of 

data in a relatively short time, which can be used to create high-

resolution maps of benthic habitats. It also reduces the need for 

manual data processing, which is time-consuming. Moreover, it 

allows for identifying different types of benthic classes based on 

their 3D structure, providing more detailed information than 

traditional methods that rely on 2D images. By using these tools 

to identify critical habitats, monitor changes over time, evaluate 

management strategies, and educate the public, we can work 

towards protecting and conserving marine ecosystems for future 

generations. 

 

ACKNOWLEDGEMENTS 

We would like to thank the deck and scientific crew of the 

TOSCA survey and ROV Holland I aboard the RV Celtic 

Explorer. Funding for the analysis came from a Canada 

Research Chair in Ocean Mapping as well as the Ocean Frontier 

Institute funded Benthic Ecosystem Mapping & Engagement 

(BEcoME) project. 

 

REFERENCES 

Bayley, D.T., Mogg, A.O., 2020. A protocol for the large‐scale 

analysis of reefs using Structure from Motion 

photogrammetry. Methods in Ecology and Evolution, 11(11), 

1410–1420. 

 

Brown, C.J., Smith, S.J., Lawton, P., Anderson, J.T., 2011. 

Benthic habitat mapping: A review of progress towards 

improved understanding of the spatial ecology of the seafloor 

using acoustic techniques. Estuarine, Coastal and Shelf Science, 

92(3), 502–520. 

 

Casella, E., Collin, A., Harris, D., Ferse, S., Bejarano, S., 

Parravicini, V., Hench, J.L., Rovere, A., 2017. Mapping coral 

reefs using consumer-grade drones and structure from motion 

photogrammetry techniques. Coral Reefs, 36, 269–275. 

 

Chehata, N., Guo, L., Mallet, C., 2009, September. Airborne 

LiDAR feature selection for urban classification using random 

forests. ISPRS Arch. Photogramm. Remote Sens. Spat. Inf. Sci., 

38, W8. 

 

De Oliveira, L.M.C., Lim, A., Conti, L.A., Wheeler, A.J., 2021. 

3D classification of cold-water coral reefs: a comparison of 

classification techniques for 3D reconstructions of cold-water 

coral reefs and seabed. Frontiers in Marine Science, 8, 

p.640713. 

 

De Oliveira, L.M.C., Lim, A., Conti, L.A., Wheeler, A.J., 2022. 

High-resolution 3D mapping of cold-water coral reefs using 

machine learning. Frontiers in Environmental Science, 10, 

p.1044706. 

 

Demantké, J., Vallet, B., Paparoditis, N., 2012, July. Streamed 

vertical rectangle detection in terrestrial laser scans for facade 

database production. ISPRS Ann. Photogramm. Remote Sens. 

Spat. Inf. Sci., I-3, 99–104.  

 

Ghatkar, J.G., Singh, R.K., Shanmugam, P., 2019. 

Classification of algal bloom species from remote sensing data 

using an extreme gradient boosted decision tree 

model. International Journal of Remote Sensing, 40(24), 9412–

9438. 

 

Jutzi, B., Gross, H., 2009. Nearest neighbour classification on 

laser point clouds to gain object structures from buildings. Int. 

Arch. Photogramm. Remote Sens. Spatial Inf. Sci., 38(Part 1), 

4–7. 

 

Keogh, P., Command, R. J., Edinger, E., Georgiopoulou, A., 

Robert, K., 2022. Benthic megafaunal biodiversity of the 

Charlie-Gibbs fracture zone: spatial variation, potential drivers, 

and conservation status. Marine Biodiversity, 52(5), 1–18. 

 

Letard, M., Collin, A., Corpetti, T., Lague, D., Pastol, Y., 

Ekelund, A., 2022. Classification of land-water continuum 

habitats using exclusively airborne topobathymetric LiDAR 

green waveforms and infrared intensity point clouds. Remote 

Sens., 14(2), p.341.  

 

Letard, M., Collin, A., Corpetti, T., Lague, D., Pastol, Y., 

Gloria, H., James, D., Mury, A., 2021, September. 

Classification of coastal and estuarine ecosystems using full-

waveform topo-bathymetric LiDAR data and artificial 

intelligence. In OCEANS 2021: San Diego–Porto, San Diego, 

CA, USA, 2021, pp. 1–10, doi: 

10.23919/OCEANS44145.2021.9705797. 

 

Mahmood, A., Ospina, A.G., Bennamoun, M., An, S., Sohel, F., 

Boussaid, F., Hovey, R., Fisher, R.B., Kendrick, G.A., 2020. 

Automatic hierarchical classification of kelps using deep 

residual features. Sensors, 20(2), p.447. 

 

Mallet, C., Bretar, F., Roux, M., Soergel, U., Heipke, C., 2011. 

Relevance assessment of full-waveform lidar data for urban area 

classification. ISPRS journal of photogrammetry and remote 

sensing, 66(6), S71–S84. 

 

Mohamed, H., Nadaoka, K., Nakamura, T., 2018. Assessment 

of machine learning algorithms for automatic benthic cover 

monitoring and mapping using towed underwater video camera 

and high-resolution satellite images. Remote Sens., 10(5), p.773.  

 

Mohamed, H., Nadaoka, K., Nakamura, T., 2020. Towards 

benthic habitat 3D mapping using machine learning algorithms 

and structures from motion photogrammetry. Remote 

Sens., 12(1), p.127.  

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-1131-2023 | © Author(s) 2023. CC BY 4.0 License.

 
1135



 

Mohamed, H., Nadaoka, K., Nakamura, T., 2022. Automatic 

Semantic Segmentation of Benthic Habitats Using Images from 

Towed Underwater Camera in a Complex Shallow Water 

Environment. Remote Sens., 14(8), p.1818.  

 

Mohamed, M., Morsy, S., El-Shazly, A., 2021. Evaluation of 

data subsampling and neighbourhood selection for mobile 

LiDAR data classification. The Egyptian Journal of Remote 

Sensing and Space Science, 24(3), 799–804.  

 

Morsy, S., Shaker, A., 2022. Evaluation of LiDAR-Derived 

Features Relevance and Training Data Minimization for 3D 

Point Cloud Classification. Remote Sens., 14(23), p.5934. 

 

Nemani, S., Cote, D., Misiuk, B., Edinger, E., Mackin-

McLaughlin, J., Templeton, A., Shaw, J., Robert, K., 2022. A 

multi-scale feature selection approach for predicting benthic 

assemblages. Estuarine, Coastal and Shelf Science, 277, 

p.108053. 

 

Pierce, J., Butler IV, M. J., Rzhanov, Y., Lowell, K., Dijkstra, J. 

A., 2021. Classifying 3-D Models of Coral Reefs Using 

Structure-From-Motion and Multi-View Semantic 

Segmentation. Frontiers in Marine Science, 8, p.706674.  

 

Price, D. M., Lim, A., Callaway, A., Eichhorn, M. P., Wheeler, 

A. J., Lo Iacono, C., Huvenne, V. A., 2021. Fine-scale 

heterogeneity of a cold-water coral reef and its influence on the 

distribution of associated taxa. Frontiers in Marine Science, 8, 

p.706674. 

 

Price, D.M., Robert, K., Callaway, A., Lo Lacono, C., Hall, 

R.A., Huvenne, V.A., 2019. Using 3D photogrammetry from 

ROV video to quantify cold-water coral reef structural 

complexity and investigate its influence on biodiversity and 

community assemblage. Coral Reefs, 38, 1007–1021. 

 

Robert, K., Huvenne, V.A., Georgiopoulou, A., Jones, D.O., 

Marsh, L., DO Carter, G., Chaumillon, L., 2017. New 

approaches to high-resolution mapping of marine vertical 

structures. Scientific reports, 7, p.9005. 

 

Ternon, Q., Danet, V., Thiriet, P., Ysnel, F., Feunteun, E., 

Collin, A., 2022. Classification of underwater photogrammetry 

data for temperate benthic rocky reef mapping. Estuarine, 

Coastal and Shelf Science, 270, p.107833. 

 

Trzcinska, K., Janowski, L., Nowak, J., Rucinska-Zjadacz, M., 

Kruss, A., von Deimling, J.S., Pocwiardowski, P., Tegowski, J., 

2020. Spectral features of dual-frequency multibeam 

echosounder data for benthic habitat mapping. Marine 

Geology, 427, p.106239. 

 

Weinmann, M., Jutzi, B., Hinz, S., Mallet, C., 2015. Semantic 

point cloud interpretation based on optimal neighborhoods, 

relevant features and efficient classifiers. ISPRS Journal of 

Photogrammetry and Remote Sensing, 105, 286–304. 

 

Ventura, D., Mancini, G., Casoli, E., Pace, D.S., Lasinio, G.J., 

Belluscio, A., Ardizzone, G., 2022. Seagrass restoration 

monitoring and shallow-water benthic habitat mapping through 

a photogrammetry-based protocol. Journal of Environmental 

Management, 304, p.114262. 

 

Zavalas, R., Ierodiaconou, D., Ryan, D., Rattray, A., Monk, J., 

2014. Habitat classification of temperate marine macroalgal 

communities using bathymetric LiDAR. Remote Sens., 6(3), 

2154–2175. 

 

Zhang, M., Kadam, P., Liu, S., Kuo, C.C.J., 2022. GSIP: Green 

semantic segmentation of large-scale indoor point 

clouds. Pattern Recognition Letters, 164, 9–15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-1131-2023 | © Author(s) 2023. CC BY 4.0 License.

 
1136




