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ABSTRACT 
This study estimated maize grain biomass, and grain biomass as a proportion of the absolute maize plant biomass using UAV-
derived multispectral data. Results showed that UAV-derived data could accurately predict yield with R2 ranging from 0.80 - 
0.95, RMSE ranging from 0.03 - 0.94 kg/m2 and RRMSE ranging from 2.21% - 39.91% based on the spectral datasets 
combined. Results of this study further revealed that the VT-R1 (56-63 days after emergence) vegetative growth stage was the 
most optimal stage for the early prediction of maize grain yield (R2 = 0.85, RMSE = 0.1, RRMSE = 5.08%) and proportional 
yield (R2 = 0.92, RMSE = 0.06, RRMSE = 17.56%), with the Normalized Difference Vegetation Index (NDVI), Enhanced 
Normalized Difference Vegetation Index (ENDVI), Soil Adjusted Vegetation Index (SAVI) and the red edge band being the 
most optimal prediction variables. The grain yield models produced more accurate results in estimating maize yield when 
compared to the biomass and proportional yield models. The results demonstrate the value of UAV-derived data in predicting 
maize yield on smallholder farms – a previously challenging task with coarse spatial resolution satellite sensors. 

1. INTRODUCTION

Agriculture continues to be the bedrock of food systems, 
especially in sub-Saharan Africa where population growth 
and demand for food are rapidly increasing. About 50%-
90% of the population in developing countries is 
dependent on agriculture for employment, livelihood and 
income. Between 70-90% of this percentage are 
smallholder farmers surviving on subsistence farming in 
fields characterised by infertile soils in light of climate 
change-related shocks and infertile soils. Most of these 
fields are less than a hectare and less endowed with 
resources to withstand climate shocks (Giller et al., 2021; 
Jin et al., 2019). In a recent sub-national census  Jin et al. 
(2019) showed that 50% of food calories in the region 
were produced on farms of less than 5 ha in size. However, 
despite the sector’s fundamental role in the region’s 
economies and food security, there are a plethora of 
challenges accelerating food and nutrition insecurities in 
this region. The principal cause is the decline in the 
production of staple crops (Giller et al., 2021). 
Specifically, drastically decreasing yields of critical food 
crops such as maize are attributed to among others the 
utility of rudimentary farming practices, the low inputs 
that characterize conventional farming systems, lack of 
incentives and appropriate technologies to optimize 
production, especially on smallholder farms (Giller et al., 
2021; Tan et al., 2020).  

Traditionally, several approaches that include ground 
observations, surveys and measurements have been 
adopted in crop monitoring (Mditshwa, 2017). However, 
these approaches are limited by their high labour and 
financial costs and therefore not ideal for continuous and 
time-efficient crop monitoring (Jégo et al., 2012). 
Howeverhe utilization of such multispectral satellite 
datasets in crop monitoring and yield estimation in 
smallholder farms is limited by their relatively coarse 
spatial and temporal resolutions (Stratoulias et al., 2017). 
Whereas there are numerous satellite images with high 
spatial resolutions (e.g. SPOT, Worldview and QuickBird 
and Planetscope), these are not cost-effective for 
monitoring smallholder crops. Moreover, they are often 
associated with processing complexities which makes 
them unsuitable for monitoring and estimating maize yield 
across the growing season at a farm scale (Chivasa et al., 
2020; Jin et al., 2019).  

On the other hand, UAVs, also known as drones have 
emerged as a prospective alternative source of remotely 
sensed data suitable for mapping and monitoring crop 
productivity at a farm-to-field scale (Maes et al., 2018). 
With advancements in technology, the weight and size of 
multispectral cameras have been drastically reduced to 
ease mounting on UAVs for use in precision agriculture 
(Candiago et al., 2015). UAV systems provide high spatial 
resolution remotely sensed data at user-defined revisit 
frequencies and areas of interest, hence time-efficient and 
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cost-effective agricultural applications such as yield 
modelling (Schut et al., 2018; Ziliani et al., 2018). 
Furthermore, in estimating maize crop yield using 
temporal remotely sensed datasets, it is not very clear 
whether the actual grain biomass (excluding the foliage 
and stem) or the biomass of grain yield as a proportion of 
ultimate plant biomass exhibits more accurate yield 
estimates. This has further compounded the challenge of 
using remotely sensed data to estimate the yield of crops 
such as maize when compared with crops such as 
cabbages and spinach (Abdel-Rahman et al., 2014) where 
biomass is derived from the foliage which in turn directly 
interacts with the spectral signatures used in yield 
estimation. In this regard, very few studies have utilized 
UAV-derived data in estimating maize yield at 
smallholder farms in Sub-Saharan Africa. Hence, there is 
a need to test the utility of multispectral and thermal 
drone-derived remotely sensed datasets to not only 
estimate maize yield in smallholder farms of the southern 
African region. Testing drone-derived remotely sensed 
data in estimating maize yield is important for optimizing 
agricultural production, a challenge using coarse spatial 
resolution image data. Therefore, this study aimed to test 
the utility of UAV-derived data in estimating maize yield 
across the growing season in a smallholder farm. To 
address this overarching objective, the study sought to; i) 
predict maize yield using UAV remotely sensed data in 
conjunction with the RF algorithm and determine the most 
optimal growth stage for yield prediction, and ii) compare 
the performance of using the actual grain biomass 
(excluding the foliage), and the biomass of grain yield as 
a proportion of ultimate plant biomass in estimating maize 
yield. To achieve this, the combination of bands and VIs 
and the RF algorithm regression ensemble was used. 

2. MATERIALS AND METHODS 

2.1. Study area 

This study was conducted on a smallholder farm located 
in Swayimane, KwaZulu-Natal, South Africa. The farm is 
located between 29°31’24’’S and 30°41’37’’ E (Figure 
3.1). The area has a sub-humid climate with an average 
temperature of 20 ℃ and average precipitation of  900-
1200 mm per annum (Miya et al., 2018). The study was 
conducted on a 2699.005 m2 maize field where the maize 
was sawn in November with approximately 160 days of 
the growing season.  

 

Figure 1: a) Location of the experimental field plot in 
Swayimane, KwaZulu-Natal, South Africa, and b) & c) 

The maize field. 

The maize growth stages were divided into two sub-
groups, the vegetative growth stages which are the early 
growth stages covering the V8-V10, V12-V14 and VT-R1 
growth stages and the reproductive growth stages 
covering the R2-R3 and R3-R4 growth stages. For details 
regarding the maize growth stages considered in this study 
see Buthelezi et al. (2023). 

2.2. Agricultural practices 

Maize seeds were sawn by hand in February 2021 and 
weeds were constantly hand removed throughout the 
growing season. Cow manure, instead of chemical 
fertilizers were used to optimize soil fertility. The maize 
crops in the study area were rain-fed.  

2.3. Sampling strategy for yield measurements 

To optimize the sampling procedure, a polygon of the 
entire experimental field was generated in Google Earth 
Pro and imported into ArcGIS 10.6.  Subsequently, 63-
point locations were generated inside the experimental 
field plot polygon based on stratified random sampling to 
determine the sampling points for yield data collection. 
These points were then uploaded into a Trimble handheld 
GPS with a sub-meter accuracy of 30 cm. The GPS was 
then used to locate and navigate to the sampling points in 
the field. At each location, a square meter plot was 
established and maize plants in proximity to each sample 
point were selected for yield estimation. To determine the 
absolute maize plant biomass, the sample plants (the entire 
stalk and the cob with the grains) were harvested manually 
during the reproductive stage R3-R4, which marked the 
end of the growing season of maize. These were lightly 
shredded to fit in the brown bags and appropriately 
labelled. The entire plant biomass was first oven-dried at 
60 ℃ for 48 hours and then weighed to determine the 
entire plant biomass before separating the cobs from the 
plant. After the separation, the grains were shelled to 
determine the grain yield biomass. The dry grains were 
weighed and grain yield was calculated as the weight in 
kg/m2. The dry grains were then divided by the absolute 
plant biomass to determine the proportional yield. These 
weights were then recorded on an excel spreadsheet 
together with the coordinates of each sampling point. 

2.4. UAV system and imaging sensor 

A DJI Matrice 300 UAV was used in this study for 
acquiring remotely sensed data (Figure 3.2 a). The DJI 
M300 flight controller was used for autonomous flights 
and a DJI Data Link was used to transmit flight parameters 
to the controller and to remotely control the UAV. A 
MicaSense Altum multi-spectral camera in conjunction 
with a DSL 2 was used for UAV spectral imaging of the 
study site (Figure 3.2 b). MicaSense Altum sensor is 
equipped with a DSL2 GPS to determine image 
coordinates during the acquisition period. The device 
acquires images simultaneously at a 5.2 cm spatial 
resolution in the blue (475 – 559 nm), green (560 – 667 
nm), red (668 – 716 nm), red edge (717 - 839 nm), NIR 
(840 nm) and thermal (8-14 um) regions of the EMS.  

2.5. Image acquisition and pre-processing 

A polygon was digitized on Google Earth and exported as 
a kml file. The polygon was then imported into the 
controller and used to establish the flight plan, flight 

 

a) b) 
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altitude and speed parameters for image acquisition. Prior 
to image acquisition, the sensor was calibrated by 
acquiring images of the radiometric calibration panel 
before and after the reconnaissance flight. Five images 
were acquired at different times across the growing season 
between February and May of 2021 (days after 
emergence, 35, 49, 62, 78 and 94). These images, covering 
the V8 to R3-R4 growth stages were acquired under clear 
sky conditions between 10:00 AM to 1:00 PM local time, 
which is the period of the day when changes in solar zenith 
angle are minimal and the radiation from the sun at 
maximum. The images from calibration targets were used 
in calibrating and correcting the reflectance of images. 
The calibrated images were then exported alongside all the 
other images into Pix4 D for stitching and radiometric 
correction. To accurately retrieve georeferenced ortho-
mosaicked images of the study plot for the different 
growth stages, the Altum camera was set to 80% overlap 
mode using the sensor's Wi-Fi. This facilitated the 
stitching of the images using Pix4D. After transferring the 
images into Pix4D fields, they were calibrated, 
radiometrically corrected and stitched to create ortho-
images for the entire study site. Geometric correction was 
done in QGIS 3.12.3 using field-collected ground control 
points.   

2.6.  Calculation of VIs 

The UAV-derived image bands were used to compute VIs 
and both spectral bands and indices were used to predict 
maize yield. Normalized Vegetation Index, Enhanced 
Vegetation Index, Soil Adjusted Vegetation Index , 
Optimized Soil Adjusted Vegetation Index and Simple 
Ratio were computed and used in conjunction with RF to 
estimate yield.  

2.7. Data Analysis 

2.7.1. Correlation between grain yield and the 
entire plant biomass:  
A correlation between the grain and the biomass data was 
determined to evaluate whether there was a link between 
the accumulated biomass and the actual yield at the R3-
R4 growth stage. A Pearson product-moment correlation 
test was conducted in this regard following a data 
normality test, which indicated that the data did not 
significantly deviate from the normal distribution.  

2.7.2. Maize yield prediction and accuracy 
assessment: 
To test the relationship between biomass, grain yield and 
proportional yield determined at the R3-R4 stage, the 
collected 63 yield samples and UAV data (i.e. 
combination of bands and VIs data) were divided into 
training (70%) and test (30%) datasets to derive models 
using the  RF algorithm in R statistical package. The RF 
algorithm was adopted in this study as it is a non-
parametric statistical technique that uses a bagging-based 
approach to build an ensemble of regression trees while 
ranking important variables that produce an independent 
measure of prediction error Prasad et al. (2006). In R, the 
ntree and mtry parameters were optimized using the 
doBest function. The function selected the ntree and mtry 
parameters with the lowest RMSE to determine the most 
influential parameters. These parameters were tuned to 
600 for ntree and five for mtry. In addition, the most 
optimal growth stage at which the combination of bands 
and VIs were highly correlated to the yield was assessed 

to determine the most suitable period to predict maize 
yield before harvest. Test data (30%) was used to evaluate 
the model performance of the derived models. 
Performance indicators such as R2, RMSE and RRMSE 
were determined and used to assess the accuracy of each 
model. RF Gini impurity index was employed to select 
optimal spectral features for yield estimation. 

 

3. RESULTS  

3.1. Descriptive statistics 

The highest maize grain yield and proportional yield were 
4.4 kg m2 and 0.76 kg/m2 and the lowest were 0.16kg/m2, 
and 0.04 /m2, respectively. There was considerable 
variation in maize yield samples in the study. The standard 
deviation was 1.08 and 0.15 for grain yield and 
proportional yield, respectively. Furthermore, a strong (R2 

of 0.74) positive correlation between the grain yield 
samples and the overall biomass of the maize plants was 
attained.  

3.2. Derived maize yield prediction models and their 
accuracies 

Figure 4 illustrates the model accuracies obtained in 
predicting the grain yield and proportional yield based on 
the RF algorithm. The accuracies of the prediction models 
varied greatly across the maize growing season.  

The V8-V10 model demonstrated the lowest prediction 
accuracy in estimating the grain yield (R2 = 0.85 and 
RMSE = 0.6 kg/m2). This was followed by V12-V14 and 
VT-R1 with an R2 of 0.89, RMSE of 0.12 kg/m2 and R2 of 
0.85, RMSE of 0.1 kg/m2, respectively. The prediction 
accuracy increased significantly with the R2-R3 model 
(R2 = 0.95 and RMSE = 0.09 kg/m2). The R3-R4 model 
optimally predicted the grain yield with the lowest RMSE 
= 0.03 kg/m2 and R2 = 0.92 (Figure 3.4 e). The variables 
that had the highest influence in the grain yield model 
were ENDVI, NIR, NDVI and the red edge band in 
ascending order of importance (Figure 3.5 e). 

When predicting the proportional yield, the V12-V14 
model produced the lowest prediction accuracy with an R2 

of 0.92 and RMSE of 0.11 kg/m2. The prediction of 
proportional yield improved in the V8-V10, VT-R1 and 
R2-R3 models with an R2 of 0.91, RMSE of 0.09 /m2; R2 

of 0.92, RMSE of 0.06 /m2 and R2 = 0.92, RMSE = 0.07 
/m2. The optimal model for estimating proportional yield 
produced an R2 of 0.95 and RMSE = 0.07 /m2 (Figure 3.4 
e). The most suitable predictor variables included NDVI, 
the green, NIR and red edge bands (Figure 3.5 e). 

In comparing the performance of the grain yield and 
proportional yield variables in predicting yield across all 
growth stages, the results varied greatly (Figure 4). For 
example, when estimating yield at the V8-V10 growth 
stage, the proportional yield model exhibited the poorest 
prediction accuracy with an RRMSE of 30.43% followed 
by the grain yield model with an RRMSE of 27.99%. 
Comparatively, the most optimal model in estimating 
yield during the R3-R4 growth stage was the grain yeild 
model with an RRMSE of 2.21% (Figure 2 e (i)). The most 
important variables include the ENDVI, NIR, NDVI and 
Red Edge, in order of importance (Figure 5 a). 
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Similarly, the proportional yield model yielded the poorest 
model with an RRMSE of 39.91% followed by the 
biomass model with an RRMSE of 15.37% at the V12-
V14 growth stage. The grain yield model optimally 
predicted maize yield with the lowest RRMSE = 5.44% at 
the V12-14 (Figure 4 b). The most optimal variables for 
this prediction were the green, red edge, red and blue 
bands (Figure 5 b). 

In predicting yield at the VT-R1 growth stage, the 
proportional yield model produced the highest RRMSE of 
17.56%. The prediction accuracy improved with the 
biomass and grain yield models (RRMSE = 12.56% and 
5.08%, correspondingly) (Figure 4 c). The variables that 
had the highest influence in the grain yield model were 
SAVI, NDVI, ENDVI and the green band, in order of 
importance (Figure 5 c). 

When predicting yield in the R2-R3 growth stage, the 
highest RRMSE of 22.57% was obtained by the 
proportional yield model. The biomass model improved 
the prediction by a magnitude of 8.1%, i.e., RRMSE = 
14.47%. Similarly, the grain yield model was the optimal 
model for estimating yield at the R2-R3 growth stage 
(Figure 4 d). The red-edge band, NDVI, ENDVI and SR 
were the most influential variables for this model (Figure 
5 d). 

For the R3-R4 growth stage, the proportional yield 
exhibited the lowest prediction accuracy with an RRMSE 
of 21.78%. The prediction of yield improved significantly 
with the biomass model (RRMSE = 12.97%) and even 
greater with the grain yield model (RRMSE = 2.21%) 
(Figure 4 e).  The most influential variables for this 
prediction were NDVI, NIR, ENDVI and the red edge 
band (Figure 5 e). 

 

Figure 2: Relationship between observed and predicted 
ii) grain yield and iii) proportional yield based on the 
combination of bands and VIs using the RF Model for a) 
V8-V10 b) V12-V14 c) VT-R1 d) R2-R3 and e) R3-R4 
maize growth stages. 
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Figure 3: The variable importance of the i) grain yield 
and ii) proportional yield models for a) V8-V10 b) V12-
V14 c) VT-R1 d) R2-R3 and e) R3-R4 maize growth 
stages. 

 

Figure 4: The spatial distribution of modelled maize a) 
grain yield and c) proportional yield based on the most 
optimal RF models. 

 

4. DISCUSSION 

This study sought to test the capability of UAV-derived 
data in estimating maize yield across the growing season 
using UAV remotely sensed data. Specifically, this study 
sought to predict maize grain and proportional yield using 
UAV images and the RF algorithm in smallholder farms. 

4.1. Maize yield prediction models 

The results of this study show that the early growth stages 
of the crop yielded lower overall accuracies for grain yield 
and proportional yield followed by some improvements in 
the later stages of growth (Figure 4). Specifically, the V8-
V10, V12-V14 and VT-R1 growth stages had lower 
overall accuracies when compared to the R2-R3 and R3-
R4 growth stages. Several studies (Al-Gaadi et al., 2016; 
Chivasa et al., 2017; Guindin-Garcia, 2010; Son et al., 
2013) have noted that in the early stages of crop 
development, vegetation reflectance is affected by the soil 
background, which explains the low performance of UAV 
data in predicting maize biomass, grain yield and 
proportional yield at the early (vegetative growth) stages 
of this study.  At this stage, the maize leaves are not fully 
grown, exposing the surrounding soil, which then 
interferes with the plant’s reflectance as the sensor also 
picks up the soil reflectance (Zhang et al., 2019a).   

In contrast, the later growth stages of the crop yielded 
higher overall accuracies. Specifically, the R2-R3 and R3-
R4 growth stages had higher accuracies when compared 
to the V8-V10, V12-V14 and VT-R1 stages. The high 
performance of the UAV data in predicting maize yield at 
the R2-R3 and R3-R4 stages of the growth cycle can be 
explained by existing literature which has reported 
significantly high accuracies in the prediction of maize 
yield at the late (reproductive) stages of the crop (Guindin-
Garcia, 2010; Mditshwa, 2017). Literature notes that at 
this stage, the maize leaves have grown to mid-density 
covering the surrounding soil and therefore crop 
reflectance is not impacted by the soil background 
(Mkhabela et al., 2005; Tumlisan, 2017; Tunca et al., 
2018).  

Regarding model variable importance, SAVI, OSAVI, 
and the blue and red bands were more important in the 
prediction at the early stages than in the late stages of the 
crop phenological cycle. The value of SAVI and OSAVI 
can be attributed to their ability to suppress soil 
background, hence better prediction at minimal leaf 
coverage resulting and soil exposure (Ren and Zhou, 
2019; Zhang et al., 2019b). The importance of the blue and 
red bands for these models can be explained by soil being 
more dominant than vegetation in the early stages of the 
crop resulting in high reflectance in the blue and red 
region of the EMS (Ngie and Ahmed, 2018). 

Comparatively, NDVI, ENDVI, the green, red, red edge 
and NIR bands were of significant importance in the 
prediction models at the R2-R3 and R3-R4 crop growth 
stages. The importance of NDVI and ENDVI in these 
models could be a result of the fact that when the 
reflectance measurements for the R2-R3 and R3-R4 
growth stages were taken, a saturation of the plant canopy 
had not occurred, the plant canopy had only accumulated 
to mid-density and there is a good relationship between 

(a)  
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NDVI and ENDVI and biomass and yield at mid-density 
canopies, which characterize the R2-R3 and R3-R4 maize 
growth stages (Awad, 2019). The importance of the green, 
red, red edge and NIR bands in the models of the R2-R3 
and R3-R4 growth stages for this study can be attributed 
to the fact that there was a dominance of vegetation which 
reflects strongly in the green and NIR regions of the EMS 
and highly absorbs in the red and red edge regions of the 
EMS (Khaliq et al., 2019; Marcial-Pablo et al., 2019). 

4.2. Determining the most optimal growth stages and 
variables for yield prediction  

The best-fit model for predicting maize grain yield was 
obtained at the R3-R4 growth stage, with ENDVI and the 
red edge band being the most important variables for the 
prediction of maize biomass and ENDVI and NDVI being 
the most important for the prediction of grain yield. The 
influence of the ENDVI, NDVI and the red edge in the 
prediction at this stage could be explained by the good 
relationship between the two indices and yield at mid-
density canopies before saturation (Mutanga et al., 2012; 
Tan et al., 2020). On the other hand, the literature notes 
that the red edge section of the EMS is related to 
chlorophyll and biomass, which directly relates to yield 
(Dube et al., 2017; Sibanda et al., 2017).  Generally, mid-
density canopies are characterized by a high amount of 
biomass, which is associated with high chlorophyll 
content and carbon assimilation which are sensitive to the 
red edge section of the EMS (Sibanda et al., 2021). In 
addition, the best-fit model for predicting maize 
proportional yield was obtained in the VT-R1 growth 
stage with NDVI and SAVI being the most important 
variables for the prediction of proportional yield. The 
significance of NDVI and SAVI in the prediction model 
of maize of proportional yield at this stage can be 
attributed to the fact that this is the middle stage where the 
canopy has not grown to mid-density resulting in 
significant soil exposure  (Mditshwa, 2017). This then 
results in SAVI being important in suppressing the soil 
background effect and allows NDVI to perform well as it 
has a good relationship with the yield at this stage’s 
canopy level because the canopy has not yet reached 
saturation, as canopy saturation hinders the performance 
of NDVI (Mutanga et al., 2012).  

Regarding the best-fit model for maize biomass and grain 
yield which was obtained at the R3-R4 reproductive 
development stage and proportional yield at the VT-R1 
vegetative development stage (78 and 62 days after 
emergence) of the growth cycle. Using the R3-R4 growth 
stage for biomass and grain yield prediction could be late 
for the adoption of any effective measure before harvest. 
A significant relationship was found at the VT-R1 (62 
days after emergence) growth stage for biomass as well as 
grain yield. Based on our findings, this is the optimal stage 
at which maize yield could be predicted before harvesting. 
The most significant variables for the optimal biomass, 
grain yield and proportional yield prediction models were 
the red edge band and ENDVI, SAVI and NDVI, ENDVI 
and the red edge band respectively. Furthermore, the grain 
yield produced higher prediction accuracies in estimating 
maize yield for most of the crop’s growth stages (V12-
V14, VT-R1, R2-R3 and R3-R4) when compared to the 
absolute plant biomass and the biomass of grain yield as a 
proportion of ultimate plant biomass. The absolute plant 
biomass was only optimal in the V8-V10 growth stage and 
the proportional yield produced the poorest yield 

prediction accuracies in all of the growth stages. 
Therefore, the grain yield proved to be the most optimal 
in estimating maize yield. 

Limitations of the Proposed Methodology: Despite the 
flexibility of acquiring high spatial resolution data using 
UAVs and the associated models, the spectral resolution 
of on-board sensors regulates the types and number of 
spectral derivatives that can be generated to optimise the 
accuracy of models. Higher spectral resolutions could lead 
to improved model accuracies in predicting crop yield. 
Furthermore, in this study, the harvesting procedure was 
limited to the end of the growing season, which restricted 
the measurement of biomass accumulation and yield to 
that specified period. Future studies could consider 
multiple fields and different crop varieties to generate 
more robust models with sufficient biomass data collected 
throughout the growing season. 

 

5. CONCLUSION 

This study aimed to predict maize yield (grain yield and 
proportional yield) across the growing season in a 
smallholder farm based on UAV remotely sensed data. 
The following conclusions were drawn: 

• UAV-derived data optimally predicted maize 
yield during the R3-R4 growth stage using 
ENDVI, NDVI and the red edge band  

• The VT-R1 stage was the most optimal stage for 
the early prediction of maize yields using SAVI, 
NDVI, ENDVI and the red edge band. 

• The grain yield models produced higher 
accuracies in estimating maize yield when 
compared to the absolute plant biomass and the 
biomass of grain yield as a proportion of 
absolute plant biomass models. 

The characterised variations in field productivity can 
assist farmers and decision-makers in identifying low-
yield areas within the field to adjust their management 
practices to maximize farm productivity. These findings 
highlight the utility of UAV systems in optimizing 
agricultural production through precision farming on 
smallholder farms, necessary for poverty alleviation and 
food and nutritional security 
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